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Preface

This book was born out of the need to gather and develop material for a two-
term course on microscopic nuclear physics. As I started my Nuclear Physics II
and III at the dawn of the present millenium, I realized that available material
consisted either of qualitative introductory textbooks or of handbooks aimed
for the professional practitioner. Neither of these two categories matched my
idea of a guided pedagogical, hands-on approach to a quantitative description
of the structure and decay of atomic nuclei.

The goal was to create a book that would contain an introduction to theory,
worked-out examples and end-of-the-chapter exercises. At the same time the
book should serve as a reference work for up-to-date applications of nuclear
structure methods. With this vision in mind I set out to first produce hand-
written lecture notes. On the next round of the two lecture courses the notes
were transformed into typed hand-outs, which finally grew into this textbook.

This book builds on the premise that the reader has taken lecture courses
on introductory nuclear physics and basic quantum mechanics. A good number
of postgraduate and advanced undergraduate students, both theorists and
experimentalists, have taken these courses. The style and contents of the book
have been greatly influenced by their comments and criticism.

In each chapter I first derive the basic theoretical framework, apply it
through worked-out examples and, in the end, discuss the physical implica-
tions and limitations of the theory. The formal derivations help understand
the approximations and limitations behind the nuclear models that are intro-
duced. However, the details of the derivations are not compulsory reading for
someone who wants to go directly to the applications. In fact, in my lectures
I skipped details of derivations and used the results as cookbook recipes, an
approach particularly suitable for experimentally oriented students.

Even though the nuclear models introduced are generally valid, the exam-
ples and exercises are restricted to light and medium-heavy nuclei, up to the
0f-1p-0g9/2 major shell. The reason for this is pedagogical: the small model
space makes numerical problems tractable; a pocket calculator suffices in most
cases. The applications are greatly simplified by numerical tables of two-body
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interaction matrix elements and of single-particle matrix elements of various
electromagnetic and beta-decay operators. Even the most ambitious numer-
ical applications amount to diagonalizing small symmetric matrices. In this
way the calculational bulk does not obscure the physical insight to be gained
from the exercises.

Only spherical nuclei are considered. However, nuclear structure, discussed
in terms of particles, holes and quasiparticles, is boundlessly rich even under
this constraint. Detailed single-particle and collective features emerge in elec-
tromagnetic and beta-decay transitions. The worked-out examples show in
a tangible way how the quality of the computed nuclear wave functions can
be probed by applying them to electromagnetic and beta-decay rates and
comparing the results with experimental data.

As a textbook this work is self-contained. It introduces in the first four
chapters the mathematical machinery needed for the theoretical derivations
and their applications. The main theoretical tools are angular momentum
coupling, tensor algebra, calculation of matrix elements of spherical tensor
operators, the notion of the nuclear mean field and the subtleties of occupation
number representation.

The book is divided into two parts. Part I is comprised of the first eleven
chapters, and it deals with particles and holes. Chapters 5–7 discuss the sim-
ple single-particle shell model. At the same time details of electromagnetic
and beta-decay transitions are introduced. Chapters 8–11 treat different con-
figuration mixing schemes for particle, hole and particle–hole excitations in
nuclei lying at the borders of closed major shells.

Chapters 12–19 form Part II of the book. They introduce Bogoliubov–
Valatin quasiparticles and proceed to treat the quasiparticle mean field and
configuration mixing of quasiparticle excitations. In all configuration mixing
calculations I use the same two-body interaction, namely the surface delta
interaction, SDI. The SDI is simple to derive and use, but at the same time
it is realistic enough to do service in serious computing.

I wish to acknowledge the great help of my assistants Jussi Toivanen,
Markus Kortelainen and Eero Holmlund, all PhDs by now, for their great
pedagogical work in guiding the students through a good part of the exercises
of this book. I owe my sincere thanks to Eero Holmlund also for producing the
100-odd figures of the book. I also want to extend my thanks to Dr. Matias
Aunola, Mr. Heikki Heiskanen and Mr. Mika Mustonen for their contributions
and corrections to the book.

A highly indispensable contribution to this book comes from Professor
Emeritus Pertti Lipas, who initially guided my way to nuclear physics with
his excellent lectures on the subject. As regards this book, he checked all the
theory and worked-out numerical examples, corrected errors and introduced
pedagogical improvements, revised the English language and style, and pro-
duced the final LATEXtypescript including the demanding layout of equations
and tables. Without doubt, Pertti Lipas is the person whom I owe the greatest
debt for bringing this project to conclusion.
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Preface IX

Finally, a project of this scale has demanded a great deal of extra time
outside the office hours, time that I would normally have dedicated to my
family. My deepest and loving thanks go to my wife Tiina and sons Olli and
Hannu for their patience during the writing of my lecture notes and the final
manuscript of this book.

Jyväskylä, Finland Jouni Suhonen
July 2006
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Angular Momentum Coupling

Prologue

In nuclear physics, as also in atomic and molecular physics, the entities to
be described consist of sub-entities with some orbital angular momentum and
spin. The angular momentum of the entity is built, then, of the angular mo-
menta of the sub-entities. This building process leads to quantum-mechanical
angular momentum coupling. This chapter presents the basic machinery for
treating angular momentum and its coupling. Clebsch–Gordan coefficients
and 3j symbols are introduced. It is shown that Clebsch–Gordan coefficients
and 3j symbols relate to the coupling of two angular momenta. Increasing the
number of angular momenta to be coupled leads to more complicated coupling
patterns. Transformations between different coupling schemes are mediated by
6j symbols and 9j symbols, relating to the coupling of three and four angular
momenta respectively. A host of special relations and special cases are listed
to make the manipulations of angular momentum algebra easier and more
straightforward in the physical applications of the chapters to come.

1.1 Clebsch–Gordan Coefficients and 3j Symbols

We start by discussing a system of two angular momenta. These can be the
angular momenta of two different particles or two different angular momenta
(e.g. the orbital angular momentum and spin) of one single particle. The two
angular momenta can be coupled to produce a total angular momentum J .
The notion of angular momentum can be related to abstract rotations of state
vectors in an abstract Hilbert space. This property naturally relates angular
momentum to the rotation group, the components of angular momentum be-
ing the generators of the corresponding group algebra. For our purposes these
connections to the underlying group structure and group algebra are not es-
sential, but they make the following, rather abstract definition of an angular
momentum vector more justifiable.
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The angular momentum is, as we have learned in the basic courses of clas-
sical physics, a three-component vector. To transfer the classical Hamiltonian
function to the quantum-mechanical Hamiltonian operator, one has to postu-
late certain commutation relations between the key observables of a physical
system, e.g. the commutation relations of the positions and momenta of par-
ticles. To carry the notion of classical angular momentum over to quantum
mechanics goes along the same lines by postulating commutation rules of some
key observables. In the case of angular momentum these observables are the
three components of the angular momentum operator. Related to this, we pos-
tulate that the quantity J is an angular momentum (vector) if its components
satisfy the requirements

J†k = Jk , k = 1, 2, 3 , [Ji, Jj ] = i�
∑
k

εijkJk , (1.1)

where εijk is the antisymmetric three-dimensional Levi-Civita permutation
symbol. It has the following properties: εijk = 0 if two of the indices are the
same; if all the indices are different, we have ε123 = ε231 = ε312 = 1, in cyclic
permutation; the value of the remaining non-zero permutation symbols is −1.
It is to be noted that the components 1–3 are a running numbering of the
usual x, y and z components in a Cartesian coordinate system. Thus we have
for these indices 1 ≡ x, 2 ≡ y and 3 ≡ z.

Since the angular momentum vector, defined above, is an operator, one can
find its eigenstates. These eigenstates of J satisfy the eigenvalue equations

J2|j m〉 = j(j + 1)�2|j m〉 , (1.2)
Jz|j m〉 = m�|j m〉 , (1.3)

where orthogonality and normalization (making together orthonormality) are
assumed:

〈j m|j′m′〉 = δjj′δmm′ , m = −j, −j + 1, . . . , j − 1, j . (1.4)

The quantum numbers j and m correspond to the operators J2 and Jz re-
spectively. Hence j corresponds to the length of the angular momentum vector
and m to its projection on the z-axis of a Cartesian coordinate system. As
is known from textbooks on quantum mechanics, the eigenstates of J2 and
Jz can be derived elegantly by using the ladder technique, i.e. by starting
from the simple and obvious, so-called ‘streched states’ and then applying
successively the raising and lowering ladder operators to produce the rest of
the states belonging to a multiplet with a definite j quantum number. These
raising and lowering operators of the angular momentum are defined as

J± = Jx ± iJy . (1.5)

Their commutation relations are
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[J+, J−] = 2�Jz , [J±, Jz] = ∓�J± , (1.6)

as can be easily verified by using the basic commutation relations (1.1) for the
components of the angular momentum. One can use the commutation rules
of the ladder operators to derive their raising and lowering properties

J±|j m〉 = �
√

j(j + 1)−m(m± 1) |j m± 1〉
= �

√
(j ±m+ 1)(j ∓m) |j m± 1〉 . (1.7)

The coordinate representation of the abstract angular momentum eigenstates
|j m〉 for a single particle are the usual spherical harmonics, defined in e.g.
[1–7].

Having defined the basic properties of an angular momentum operator,
we can start combining angular momenta. Let J1 and J2 be two commuting
angular momentum vectors, e.g. angular momenta of two different particles
or, say, the orbital angular momentum and spin angular momentum of a single
particle. For these angular momenta we thus have

[J1,J2] = 0 , or [J1k, J2l] = 0 for all k, l = 1, 2, 3 , (1.8)

where, for convenience, the running numbering is used for the Cartesian com-
ponents of angular momentum. Each of the angular momenta has its eigen-
states, which satisfy

J2
k|jk mk〉 = jk(jk + 1)�2|jk mk〉 , (1.9)

Jkz|jk mk〉 = mk�|jk mk〉 , k = 1, 2 . (1.10)

The sum J = J1+J2 of the two commuting angular momentum vectors is
also an angular momentum vector since it satisfies the basic properties (1.1)
of angular momentum (verifying this is left as an exercise for the reader).
From basic quantum mechanics we know that when an operator (typically
the Hamiltonian) is the sum of two or more commuting operators, then the
eigenvectors are products of eigenvectors of each individual term of the sum. So
for the total angular momentum we can write directly the product eigenstates
as

|j1 m1 j2 m2〉 = |j1 m1〉|j2 m2〉 . (1.11)

These states are eigenstates of the operator set

{J2
1 , J1z , J2

2 , J2z} , (1.12)

which constitutes a complete set of commuting operators. The explicit eigen-
value equations are

J2
k|j1 m1 j2 m2〉 = jk(jk + 1)�2|j1 m1 j2 m2〉 , (1.13)

Jkz|j1 m1 j2 m2〉 = mk�|j1 m1 j2 m2〉 , k = 1, 2 . (1.14)
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The product states (1.11) form an orthonormal set if the members of the
product form separately orthonormal sets in their respective subspaces. It
follows that

〈j1 m1 j2 m2|j′1 m′1 j′2 m′2〉 = 〈j1 m1|j′1 m′1〉〈j2 m2|j′2 m′2〉
= δj1j′1δm1m′

1
δj2j′2δm2m′

2
. (1.15)

Since the angular momenta in (1.11) are not coupled to form a well-defined
total angular momentum, we say:

The complete set of states {|j1 m1 j2 m2〉} is called the uncoupled basis.

Now it is time to start coupling the two angular momenta. The coupled
angular momentum is a member of the following set of mutually commuting
angular momenta:

{J2
1 , J2

2 , J2 , Jz} . (1.16)

The four operators have a complete set of common eigenvectors. The explicit
eigenvalue equations are

J2
k|j1 j2 j m〉 = jk(jk + 1)�2|j1 j2 j m〉 , k = 1, 2 , (1.17)

J2|j1 j2 j m〉 = j(j + 1)�2|j1 j2 j m〉 , (1.18)
Jz|j1 j2 j m〉 = m�|j1 j2 j m〉 . (1.19)

The orthonormality condition reads

〈j1 j2 j m|j1 j2 j′m′〉 = δjj′δmm′ . (1.20)

Due to the angular momentum coupling accomplished, we state:

The complete set of states {|j1 j2 j m〉} is called the coupled basis.

It is worth noting that the set (1.12) contains two angular momentum
vectors and their projections on the z-axis. On the other hand, the set (1.16)
contains three angular momentum vectors and only one projection on the z-
axis, namely the projection of the coupled angular momentum vector. This
means that coupling two angular momenta leaves only their ‘lengths’ as sharp,
measurable quantities, while their z projections become fuzzy, without any
sharp quantum number related to them.

Each of the basis sets, the uncoupled and the coupled one, forms a complete
set of states since the operators are all Hermitian. This means that an identity
operator can be formed by using the states of either set. Using the identity
operator constructed from the uncoupled basis, we can write

|j1 j2 j m〉 =
∑
m1m2

|j1 m1 j2 m2〉〈j1 m1 j2 m2|j1 j2 j m〉

≡
∑
m1m2

(j1 m1 j2 m2|j m)|j1 m1 j2 m2〉 , (1.21)



www.manaraa.com

1.2 More on Clebsch–Gordan Coefficients; 3j Symbols 7

where the quantity (j1 m1 j2 m2|j m) is called the Clebsch–Gordan coefficient.
The same notation is used in e.g. [8,9]. Other notations can be found in books
on quantum mechanics, such as [1,2,4–7]. Yet different types of notation occur
in nuclear physics textbooks [10–19]. From (1.21) it is clear that a Clebsch–
Gordan coefficient is the overlap between an uncoupled and a coupled state.
In this way the coefficients define a linear transformation from the uncoupled
basis to the coupled one. Because the norm of the states is preserved, this
transformation is also unitary.

The basic properties of angular momentum coupling and Clebsch–Gordan
coefficients are listed below.

• The projection quantum numbers have to fulfil the addition law

(j1 m1 j2 m2|j m) = 0 unless m1 +m2 = m . (1.22)

• The coupled angular momenta have to fulfil the so-called triangular con-
dition defined as

|j1 − j2| ≤ j ≤ j1 + j2 (triangular condition) (1.23)

and denoted by Δ(j1j2j).

• The quantum numbers of the angular momenta to be summed can sep-
arately be integers or half integers. However, for the sum applies the re-
striction j1 + j2 + j = integer, which leads to the following allowed values
of the total angular momentum:

j = |j1 − j2|, |j1 − j2|+ 1, . . . , j1 + j2 − 1, j1 + j2 . (1.24)

• The Clebsch–Gordan coefficients are chosen to be real, and so that

(j1 j1 j2 j2|j1 + j2 j1 + j2) = +1 , (j1 m1 j2 −j2|j m) ≥ 0 . (1.25)

These conditions fix the phases of all Clebsch–Gordan coefficients. This
phase convention needs to be taken into account when calculating numer-
ical values of the coefficients, by using either the ladder operations (1.7)
or certain recursion relations (see Exercise 1.101).

1.2 More on Clebsch–Gordan Coefficients; 3j Symbols

In the following we list the most important properties of Clebsch–Gordan
coefficients. Proofs of these properties are straightforward and are left as an
exercise for the reader. Later in the section we introduce 3j symbols as a more
symmetric alternative to the Clebsch–Gordan coefficients.
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1.2.1 Clebsch–Gordan Coefficients

By starting from the overlap of two states of the coupled basis and expanding
them in the uncoupled basis, one can prove the following, so-called orthogo-
nality property:∑

m1m2

(j1 m1 j2 m2|j m)(j1 m1 j2 m2|j′m′) = δjj′δmm′ (orthogonality) .

(1.26)
Starting from the completeness of the coupled basis∑

jm

|j1 j2 j m〉〈j1 j2 j m| = 1 , (1.27)

one can immediately derive the so-called completeness property of the Clebsch–
Gordan coefficients:∑

jm

(j1 m1 j2 m2|j m)(j1 m′1 j2 m′2|j m) = δm1m′
1
δm2m′

2
(completeness) .

(1.28)
It follows from this relation or directly from (1.27) that

|j1 m1 j2 m2〉 =
∑
jm

(j1 m1 j2 m2|j m)|j1 j2 j m〉 , (1.29)

which is the inverse of the basic Clebsch–Gordan relation (1.21).
There exist useful symmetry relations for Clebsch–Gordan coefficients. The

exchange of the coupling order of the two angular momenta introduces a phase
factor. This means that the coupling coefficients for J2 coupled with J1 to
produce J are but a phase factor times the coupling coefficients for J1 coupled
with J2 to produce J , i.e.

(j2 m2 j1 m1|j m) = (−1)j1+j2−j(j1 m1 j2 m2|j m) . (1.30)

The sign of all the projection quantum numbers in a Clebsch–Gordan coeffi-
cient can be changed and the original Clebsch–Gordan coefficient, to within
a phase, is recovered:

(j1 −m1 j2 −m2|j −m) = (−1)j1+j2−j(j1 m1 j2 m2|j m) . (1.31)

For zero values of the projection quantum numbers we have the symmetry
restriction

(j1 0 j2 0|j 0) = 0 unless j1 + j2 + j = even , (1.32)

which comes from the fact that for zero projections the angular momentum
quantum numbers all have to be integers, and the symmetry (1.30) then re-
quires that j1 + j2 − j = even, which is equivalent to (1.32) for integer values
of the j quantum numbers.
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These symmetries come in handy in actual calculations when deriving
compact expressions for physical quantities by using angular momentum al-
gebra. In the later chapters, where physical applications of angular momentum
algebra are discussed, this will be much in evidence.

There are further special properties of the Clebsch–Gordan coefficients
which are very useful in applications. A particularly simple coefficient is

(j m 0 0|j m) = 1 , (1.33)

which just records that nothing happens when a zero angular momentum
is coupled with a non-zero one. When two angular momenta are coupled to
zero angular momentum, the two angular momenta have to be necessarily the
same due to the addition property (1.24). Furthermore, the net result of the
coupling is given by the simple Clebsch–Gordan coefficient

(j m j m′|0 0) = (−1)j−m ĵ−1δm,−m′ , (1.34)

which contains the usual abbreviation, the ‘hat factor’

ĵ ≡
√
2j + 1 . (1.35)

Sometimes it is necessary to change the coupling order of the angular
momenta so that the total angular momentum is to be coupled with either one
of the original angular momenta to produce the remaining one. This change
in the coupling order produces a phase factor and a ratio of two hat factors
in the following two ways:

(j1 m1 j2 m2|j m) = (−1)j2+m2
ĵ

ĵ1
(j2 −m2 j m|j1 m1) , (1.36)

(j1 m1 j2 m2|j m) = (−1)j1−m1
ĵ

ĵ2
(j m j1 −m1|j2 m2) . (1.37)

1.2.2 More Symmetry: 3j Symbols

The symmetry properties (1.30) and (1.31) of the Clebsch–Gordan coefficients
carry a phase factor which itself is not the most symmetric possible. A more
symmetric phase factor can be produced by redefinig the Clebsch–Gordan
coefficients in a suitable way. This leads us to the so-called 3j symbols. They
are obtained from the Clebsch–Gordan coefficients by the following definition:(

j1 j2 j3
m1 m2 m3

)
≡ (−1)j1−j2−m3 ĵ3

−1
(j1 m1 j2 m2|j3 −m3) . (1.38)

Since these coefficients look more symmetric and behave more symmetrically
than the Clebsch–Gordan coefficients, they can be easily tabulated. A very
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convenient tabulation is given in the tables of Rotenberg et al. [20]. These
tables are easy to use for extracting values of specific 3j symbols.

The basic symmetry properties of the 3j symbols are the following. Ex-
change of the coupling order of the two angular momenta simply produces the
symmetric phase factor(

j2 j1 j3
m2 m1 m3

)
= (−1)j1+j2+j3

(
j1 j2 j3
m1 m2 m3

)
, (1.39)

and similarly for the change of sign of the projection quantum numbers,(
j1 j2 j3
−m1 −m2 −m3

)
= (−1)j1+j2+j3

(
j1 j2 j3
m1 m2 m3

)
. (1.40)

Furthermore, the triangular condition for the lengths of the angular momen-
tum vectors has to be satisfied, as does the additivity of the projection quan-
tum numbers:(

j1 j2 j3
m1 m2 m3

)
= 0 unless

{
Δ(j1j2j3) ,
m1 +m2 +m3 = 0 .

(1.41)

The following simple properties can be derived directly from the corre-
sponding properties (1.32) and (1.34) of the Clebsch–Gordan coefficients:(

j1 j2 0
m1 m2 0

)
= (−1)j1−m1 ĵ1

−1
δj1j2δm1,−m2 , (1.42)(

j1 j2 j3
0 0 0

)
= 0 unless j1 + j2 + j3 = even . (1.43)

It is useful to invert the relation (1.38) to enable simplification of some
expressions occurring in angular momentum algebra. This inverted relation
reads

(j1 m1 j2 m2|j3 m3) = (−1)j2−j1−m3 ĵ3

(
j1 j2 j3
m1 m2 −m3

)
. (1.44)

1.2.3 Relations for 3j Symbols

Further relations for the 3j symbols, useful in the simplification of complicated
results of angular momentum algebra or in obtaining numerical values of 3j
symbols, can be obtained from [2]:(

j + 1
2 j 1

2

m −m− 1
2

1
2

)
= (−1)j−m− 1

2

√
j −m+ 1

2

(2j + 2)(2j + 1)
, (1.45)

(
j + 1 j 1
m −m− 1 1

)
= (−1)j−m−1

√
(j −m)(j −m+ 1)

(2j + 3)(2j + 2)(2j + 1)
, (1.46)
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j + 1 j 1
m −m 0

)
= (−1)j−m−1

√
2(j +m+ 1)(j −m+ 1)
(2j + 3)(2j + 2)(2j + 1)

, (1.47)

(
j j 1
m −m− 1 1

)
= (−1)j−m

√
2(j −m)(j +m+ 1)
2j(2j + 1)(2j + 2)

, (1.48)(
j j 1
m −m 0

)
= (−1)j−m m√

j(j + 1)(2j + 1)
, (1.49)(

j j 2
m −m 0

)
= (−1)j−m 3m2 − j(j + 1)√

j(j + 1)(2j − 1)(2j + 1)(2j + 3)
. (1.50)

1.3 The 6j Symbol

The coupling of two angular momenta discussed above can be extended to a
discussion of the coupling of three and four angular momenta. The related cou-
pling coefficients bear the generic name vector coupling coefficients orWigner
nj symbols. In the case of more than two angular momenta the situation is
complicated by the fact that the angular momenta can be coupled in vari-
ous different ways, depending on the order of coupling. Let us first see which
complications this brings in the case of three angular momenta.1

Let J1, J2 and J3 be three commuting angular momentum vectors, so that
J = J1 + J2 + J3 is the total angular momentum. We have three possible
ways to couple the three angular momenta to yield J , namely

J = J12 + J3 , J12 ≡ J1 + J2 , (1.51)
J = J1 + J23 , J23 ≡ J2 + J3 , (1.52)
J = J13 + J2 , J13 ≡ J1 + J3 . (1.53)

It can be shown that

• the values of the quantum number j (corresponding to J) do not depend
on the coupling order, and that

• the states corresponding to different coupling schemes are not the same,
i.e.

|j1 j2 (j12) j3 ; j m〉 	= |j1, j2 j3 (j23) ; j m〉 	= |j1 j3 (j13) j2 ; j m〉 . (1.54)

1 A complication of another nature arises when coupling angular momenta of iden-
tical particles. The wave function of a fermion system must be antisymmetric.
This eliminates geometrically possible values of total angular momentum. For
the two-particle case see Chap. 5; for examples of three and four particles see
Subsect. 12.4.4. There is an algorithm, the so-called m table, to find which total
angular momenta are possible for a system of identical particles. (See e.g. [21].)
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In all of the above cases (1.51)–(1.53), the number of linearly independent
states is the same and each of the three sets forms a complete set of states,
with the completeness relations

1 =
∑
j12

|j1 j2 (j12) j3 ; j m〉〈j1 j2 (j12) j3 ; j m| , (1.55)

1 =
∑
j23

|j1, j2 j3 (j23) ; j m〉〈j1, j2 j3 (j23) ; j m| , (1.56)

1 =
∑
j13

|j1 j3 (j13) j2 ; j m〉〈j1 j3 (j13) j2 ; j m| . (1.57)

A change from the basis (1.51) to the basis (1.52) can be accomplished in
the following way:

|j1, j2 j3 (j23) ; j m〉 =
∑
j12

|j1 j2 (j12) j3 ; j m〉

× 〈j1 j2 (j12) j3 ; j m|j1, j2 j3 (j23) ; j m〉

≡
∑
j12

(−1)j1+j2+j3+j ĵ12ĵ23

{
j1 j2 j12
j3 j j23

}
|j1 j2 (j12) j3 ; j m〉 ,

(1.58)

where the array with braces is called the 6j symbol. Its numerical values have
been tabulated in e.g. [20]. As can be seen, a 6j symbol is proportional to
the overlap of two state vectors related to two different coupling schemes
of three angular momenta. This makes it part of a unitary transformation,
which preserves the norms of the states. Furthermore, in distinction from the
3j symbol, there are no projection quantum numbers involved. The reason is
that the 6j symbols are related to a transformation between two basis sets
where all the states have a good total angular momentum, whereas the 3j
symbol relates to a transformation between a basis of states with a good total
angular momentum and a basis of states with no total angular momentum
defined.

Starting from the defining Eq. (1.58), one can derive the following explicit
expression for the 6j symbol:{

j1 j2 j12
j3 j j23

}
=

∑
m1m2m3
m12m23m

(−1)j3+j+j23−m3−m−m23

(
j1 j2 j12
m1 m2 m12

)

×
(

j1 j j23
m1 −m m23

)(
j3 j2 j23
m3 m2 −m23

)(
j3 j j12
−m3 m m12

)
. (1.59)

This explicit form of the 6j symbol becomes handy when angular momentum
algebra produces summations over all the projection quantum numbers of a
set of four 3j symbols. This happens for some reduced matrix elements (see
Sect. 2.2), which are not dependent on any projection quantum numbers. Then
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a summation over all of the projection quantum numbers should reduce to a
quantity containing only quantum numbers associated with the lengths of the
angular momentum vectors involved. In the following, we discuss symmetry
properties of the 6j symbols.

1.3.1 Symmetry Properties of the 6j Symbol

The angular momenta involved in a 6j symbol have to satisfy certain tri-
angular conditions. From the bracket on the second line of (1.58) one can
extract all the triangular conditions needed. The left-hand side gives the con-
ditions Δ(j1j2j12) and Δ(j12j3j), and the right-hand side gives Δ(j2j3j23)
and Δ(j1j23j). These conditions can be summarized in the following compact
way: {

j1 j2 j3
l1 l2 l3

}
= 0 unless

{
Δ(j1j2j3) , Δ(l1l2j3) ,
Δ(l1j2l3) , Δ(j1l2l3) .

(1.60)

There are further symmetries on permutations of the entries in a 6j symbol.
Exchange of any two columns leave the value of the symbol unchanged:{

j1 j2 j3
l1 l2 l3

}
=

{
j2 j1 j3
l2 l1 l3

}
=

{
j3 j1 j2
l3 l1 l2

}
= · · · . (1.61)

Furthermore, the value of a 6j symbol is unaltered by the exchange of the
upper and lower arguments in each of any two columns:{

j1 j2 j3
l1 l2 l3

}
=

{
l1 l2 j3
j1 j2 l3

}
=

{
j1 l2 l3
l1 j2 j3

}
= · · · . (1.62)

Altogether these exchanges create 24 symmetry transformations of the sym-
metry group of the regular tetrahedron (see e.g. [2]). Each of them corresponds
to a rotation, reflection or both of a tetrahedron with its sides labelled by the
quantum numbers of the corresponding 6j symbol.

The many years of development of angular momentum algebra have pro-
duced various symbols related to the 6j symbol. One of the most commonly
used, besides the 6j symbol, is the so-called Racah symbol or Racah W coef-
ficient. It can be defined as

W (j1 j2 l2 l1; j3 l3) = (−1)j1+j2+l1+l2

{
j1 j2 j3
l1 l2 l3

}
. (1.63)

A useful special case of the 6j symbol occurs when one of the angular
momenta is zero. This makes one of the coupling schemes trivial, and the
transformation to the remaining coupling scheme is simplified. This simplifi-
cation appears in the 6j symbol as{

j1 j2 j3
0 j′3 j′2

}
=
(−1)j1+j2+j3

ĵ2ĵ3
δj2j′2δj3j′3Δ(j1j2j3) . (1.64)
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1.3.2 Relations for 6j Symbols

Below are listed miscellaneous results on 6j symbols (for more relations, see
e.g. [2,22]). These relations turn out to be quite convenient when one tries to
simplify complicated expressions arising from angular momentum algebra in
physical applications. In the present work most of these relations have been
used in working out final results on nuclear structure and transitions. These
useful relations are∑

j

(−1)j+j′+j′′ ĵ 2

{
j1 j2 j′

j3 j4 j

}{
j1 j3 j′′

j2 j4 j

}
=

{
j1 j2 j′

j4 j3 j′′

}
, (1.65)

∑
j

ĵ 2

{
j1 j2 j′

j3 j4 j

}{
j1 j2 j′′

j3 j4 j

}
=

δj′j′′

ĵ′
2 Δ(j1j2j

′)Δ(j3j4j′) (unitarity) ,

(1.66)∑
j

(−1)j1+j2+j ĵ 2

{
j1 j1 j′

j2 j2 j

}
= ĵ1ĵ2δj′0 , (1.67)

∑
j

ĵ 2

{
j1 j2 j′

j1 j2 j

}
= (−1)2j1+2j2Δ(j1j2j′) , (1.68)

ĵ1ĵ2

(
j1 j2 j3
0 0 0

){
j1 j2 j3
l1 l2

1
2

}
= −1 + (−1)

j1+j2+j3

2

(
l2 l1 j3
1
2 −

1
2 0

)
×Δ(j1 12 l2)Δ(j2

1
2 l1) , (1.69)

ĵ1

(
j1 j2 j3
0 0 0

){
j1 j2 j3
j j1 1

}
= −(−1)j 1 + (−1)

j1+j2+j3

√
2

(
j 1 j2
1 −1 0

)
×

(
j j1 j3
1 −1 0

)
Δ(j1j2j3) , (1.70)

ĵ1ĵ2

(
j1 j2 j3
0 0 0

){
j1 j2 j3
j2 j1 1

}
=

1 + (−1)j1+j2+j3

2

(
j1 j2 j3
1 −1 0

)
×Δ(j1 12 l2)Δ(j2

1
2 l1) . (1.71)

1.3.3 Explicit Expressions for 6j Symbols

There are reasonably simple explicit expressions for some 6j symbols. They
are often useful for simplifying final results to the level where numerical values
can be extracted by use of a pocket calculator. Examples of the use of these
expressions are given in several instances in the present work. We note addi-
tionally that numerical values can be obtained by using recursion relations of
the 6j symbols, listed in e.g. [2, 7]. We list the following explicit expressions:
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j1 j2 j3
1 j3 j2

}
= (−1)j1+j2+j3

j1(j1 + 1)− j2(j2 + 1)− j3(j3 + 1)√
4j2(j2 + 1)(2j2 + 1)j3(j3 + 1)(2j3 + 1)

,

(1.72){
j1 j2 j3
1
2 j3 − 1

2 j2 + 1
2

}
= (−1)s

√
(j1 + j3 − j2)(j1 + j2 − j3 + 1)
2(2j2 + 1)(2j2 + 2)j3(2j3 + 1)

, (1.73)

{
j1 j2 j3
1
2 j3 − 1

2 j2 − 1
2

}
= (−1)s

√
(s+ 1)(j2 + j3 − j1)
4j2(2j2 + 1)j3(2j3 + 1)

, (1.74)

{
j1 j2 j3
1 j3 − 1 j2 − 1

}
= (−1)s

√
s(s+ 1)(s− 2j1 − 1)(s− 2j1)

4j2(2j2 − 1)(2j2 + 1)j3(2j3 − 1)(2j3 + 1)
,

(1.75){
j1 j2 j3
1 j3 − 1 j2

}
= (−1)s

√
2(s+ 1)(s− 2j1)(s− 2j2)(s− 2j3 + 1)
4j2(2j2 + 1)(2j2 + 2)j3(2j3 − 1)(2j3 + 1)

, (1.76)

{
j1 j2 j3
1 j3 − 1 j2 + 1

}
= (−1)s

√
(s− 2j2 − 1)(s− 2j2)(s− 2j3 + 1)(s− 2j3 + 2)
2(2j2 + 1)(2j2 + 2)(2j2 + 3)j3(2j3 − 1)(2j3 + 1)

, (1.77)

where the sum of the angular momenta is written as

s = j1 + j2 + j3 . (1.78)

1.4 The 9j Symbol

We now investigate the problem of coupling four angular momentum vectors
to a given total angular momentum. As in the case of three angular momenta,
there are several different ways to do the coupling. To begin with, let J1,
J2, J3 and J4 be four commuting angular momentum vectors, with J =
J1 + J2 + J3 + J4 their vector sum.

We have now several possible ways to couple the four angular momenta
to the total angular momentum J . Let us look more closely at the following
two ways:

J = J12 + J34 , J12 ≡ J1 + J2 , J34 ≡ J3 + J4 , (1.79)
J = J13 + J24 , J13 ≡ J1 + J3 , J24 ≡ J2 + J4 . (1.80)
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As in the case of the 6j symbols, after making the correspondence ji ↔ J i,
j ↔ J between the angular momenta and their quantum numbers, it can be
shown that

• the values of the quantum number j do not depend on the coupling order,
and that

• the states corresponding to different coupling schemes are not the same,
i.e.

|j1 j2 (j12) j3 j4 (j34) ; j m〉 	= |j1 j3 (j13) j2 j4 (j24) ; j m〉 . (1.81)

In both of the cases (1.79) and (1.80) the number of linearly independent
states is the same and the two sets both form complete sets of states. Their
completeness relations are

1 =
∑
j12j34

|j1 j2 (j12) j3 j4 (j34) ; j m〉〈j1 j2 (j12) j3 j4 (j34) ; j m| , (1.82)

1 =
∑
j13j24

|j1 j3 (j13) j2 j4 (j24) ; j m〉〈j1 j3 (j13) j2 j4 (j24) ; j m| . (1.83)

A change from the basis (1.79) to the basis (1.80) can be accomplished,
as in the case of the 6j symbols, by a linear unitary transformation, which is
written as

|j1 j3 (j13) j2 j4 (j24) ; j m〉 =
∑
j12j34

|j1 j2 (j12) j3 j4 (j34) ; j m〉

×〈j1 j2 (j12) j3 j4 (j34) ; j m|j1 j3 (j13) j2 j4 (j24) ; j m〉

≡
∑
j12j34

ĵ12ĵ34ĵ13ĵ24

⎧⎨⎩ j1 j2 j12
j3 j4 j34
j13 j24 j

⎫⎬⎭ |j1 j2 (j12) j3 j4 (j34) ; j m〉 ,

(1.84)

where the array with braces is called the 9j symbol. Its numerical values are
tabulated in e.g. [23]. Numerical values of 9j symbols can be derived from the
values of 6j symbols because, as we see below, a 9j symbol can be written as
a sum over products of three 6j symbols. In addition, several special cases of
9j symbols reduce to simple expressions involving one or two 6j or 3j symbols
or both.

Starting from (1.84), one can derive the following explicit expression for
the 9j symbol:⎧⎨⎩ j1 j2 j12

j3 j4 j34
j13 j24 j

⎫⎬⎭ =
∑

m1m2m3m4
m12m34
m13m24m

(
j1 j2 j12
m1 m2 m12

)(
j3 j4 j34
m3 m4 m34

)

×
(

j13 j24 j
m13 m24 m

)(
j1 j3 j13
m1 m3 m13

)(
j2 j4 j24
m2 m4 m24

)(
j12 j34 j
m12 m34 m

)
.

(1.85)



www.manaraa.com

1.4 The 9j Symbol 17

This can be used for simplification purposes as an intermediate step in appli-
cations of angular momentum algebra to physical problems. As a special case
of (1.84) we can derive the following relation between the 9j and 6j symbols:⎧⎨⎩ j1 j2 j12

j3 j4 j34
j13 j24 0

⎫⎬⎭ = δj12j34δj13j24 ĵ12
−1

ĵ13
−1
(−1)j12+j13+j2+j3

{
j1 j2 j12
j4 j3 j13

}
.

(1.86)

1.4.1 Symmetry Properties of the 9j Symbol

As can be seen directly from the 3j coefficients in (1.85), there are six tri-
angular conditions to be satisfied by the nine angular momentum quantum
numbers inside the 9j symbol. These coupling rules are very symmetrically
arranged inside the 9j symbol. The angular momenta j1 and j2 are coupled
to j12, and j3 and j4 to j34, in our first set of basis states. These couplings
are symbolized in the first two rows of the 9j symbol. In our second set of
basis states, the angular momenta j1 and j3 are coupled to j13, and j2 and
j4 to j24. These couplings are symbolized in the first two columns of the 9j
symbol. The third column and third row of the 9j symbol relate to the final
couplings of the intermediate angular momenta j12 and j34, and j13 and j24,
to the total angular momentum j. This means that the value of a 9j symbol
is zero unless the triangular rule is valid for all of its columns and rows, i.e.⎧⎨⎩ j1 j2 j12

j3 j4 j34
j13 j24 j

⎫⎬⎭ = 0 unless

{
Δ(j1j2j12) , Δ(j3j4j34) , Δ(j13j24j) ,
Δ(j1j3j13) , Δ(j2j4j24) , Δ(j12j34j) .

(1.87)
It follows from the definition of the 9j symbol that its value does not

change when its columns and rows are interchanged, i.e.⎧⎨⎩ j1 j2 j12
j3 j4 j34
j13 j24 j

⎫⎬⎭ =

⎧⎨⎩ j1 j3 j13
j2 j4 j24
j12 j34 j

⎫⎬⎭ . (1.88)

Furthermore, the exchange of any two columns or any two rows changes the
symbol only by a phase factor,⎧⎨⎩ j2 j1 j12

j4 j3 j34
j24 j13 j

⎫⎬⎭ = (−1)Σ
⎧⎨⎩ j1 j2 j12

j3 j4 j34
j13 j24 j

⎫⎬⎭ = (−1)Σ
⎧⎨⎩ j4 j3 j34

j2 j1 j12
j24 j13 j

⎫⎬⎭ = · · · ,

(1.89)
with

Σ ≡ j1 + j2 + j12 + j3 + j4 + j34 + j13 + j24 + j (1.90)

being the sum of all the angular momentum quantum numbers inside the 9j
symbol.
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1.4.2 Relations for 9j Symbols

Below are listed some useful results on 9j symbols. For more relations, see e.g.
[2,7,22]. These relations are useful in simplifying results of angular momentum
algebra and in obtaining numerical values for 9j symbols. Numerical values
can also be found by using recursion relations of the 9j symbols, extensively
listed in [7]. Our list is as follows:

∑
j

ĵ 2

⎧⎨⎩ j1 j2 J
j3 j4 J ′

J J ′ j

⎫⎬⎭ =
δj2j3
2j2 + 1

, (1.91)

∑
j13j24

ĵ13
2
ĵ24

2

⎧⎨⎩ j1 j2 j12
j3 j4 j34
j13 j24 j

⎫⎬⎭
⎧⎨⎩ j1 j2 j′12

j3 j4 j′34
j13 j24 j

⎫⎬⎭ =
δj12j′12j34j′34

ĵ12
2
ĵ34

2 , (1.92)

∑
j13j24

(−1)j2+j4+j24 ĵ13
2
ĵ24

2

⎧⎨⎩ j1 j2 j12
j3 j4 j34
j13 j24 j

⎫⎬⎭
⎧⎨⎩ j1 j4 j14

j3 j2 j23
j13 j24 j

⎫⎬⎭
= (−1)j2−j4−j34+j23

⎧⎨⎩ j1 j4 j14
j2 j3 j23
j12 j34 j

⎫⎬⎭ , (1.93)

⎧⎨⎩ j1 j2 j12
j3 j4 j34
j13 j24 j

⎫⎬⎭ = (−1)2j1+j
∑
j′
(2j′ + 1)

{
j1 j2 j12
j34 j j′

}

×
{

j3 j4 j34
j2 j′ j24

}{
j13 j24 j
j′ j1 j3

}
, (1.94)

⎧⎨⎩ j1 j2 j
j3 j4 j
j′ j′ 1

⎫⎬⎭ =
(−1)j2+j3+j+j′

ĵ ĵ′

× j1(j1 + 1)− j2(j2 + 1)− j3(j3 + 1) + j4(j4 + 1)
2
√

j(j + 1)j′(j′ + 1)

{
j1 j2 j
j4 j3 j′

}
, (1.95)⎧⎪⎨⎪⎩

j1 j2 j − 1
2

j3 j4 j + 1
2

1
2

1
2 1

⎫⎪⎬⎪⎭ = − ĵ√
3

{
j1 j j4
1
2 j2 j − 1

2

}{
j4 j j1
1
2 j3 j + 1

2

}
, (1.96)

l̂ l̂′
(

l l′ L
0 0 0

)⎧⎨⎩ l l′ L
j j′ L
1
2

1
2 J

⎫⎬⎭ =
1 + (−1)l+l′+L

2
(±1)l′+j′+ 1

2

√
2L̂Ĵ

×
(

j j′ L
− 1

2
1
2 − J J

)
for J = 1

2 ±
1
2 (1.97)
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l̂ l̂′
(

l l′ L
0 0 0

)⎧⎨⎩ l l′ L
j j′ L′
1
2

1
2 1

⎫⎬⎭ =
(−1)L√

6
1 + (−1)l+l′+L

2

(
j j′ L′
1
2 −

1
2 0

)

×
[
ĵ 2 + (−1)j+j′+L′

ĵ′
2√

2L′(L′ + 1)

(
L′ 1 L
1 −1 0

)
+ (−1)l+j+ 1

2

(
L′ 1 L
0 0 0

)]
. (1.98)

Epilogue

With this selection of useful formulas, compiled for the convenience of the
reader, we can end this chapter. All the tools needed for angular momentum
coupling have been exposed and discussed for future applications. In the next
chapter we take up the important machinery of spherical tensors and their
reduced matrix elements. The formalism makes use of many of the formu-
las presented and in this way justifies the lengthy listings of relations with
complicated appearance.

Exercises

1.1. Show that the vector sum J = J1+J2 of two angular momentum vectors,
J1 and J2, is also an angular momentum vector.

1.2. The structure of the nucleus 6Li is roughly determined by two nucleons,
one proton and one neutron, in the 0p3/2 orbital.

(a) What are the possible parities and angular momenta of the states of 6Li
on this simple scheme?

(b) The spin and parity of the ground state of 6Li are measured to be 1+.
Write down explicitly the ground-state wave function for all three possi-
ble magnetic substates by using numerical values of the Clebsch–Gordan
coefficients.

1.3. Take j = 1 and write down the matrix representation of the operators
J2, J±, Jz, Jx and Jy.

1.4. The Hamiltonian of a rigid rotor can be written in a principal-axis coor-
dinate system as

H =
J2
1

2I1
+

J2
2

2I2
+

J2
3

2I3
, (1.99)

where I1, I2 and I3 are the moments of inertia with respect to the principal
axes 1, 2 and 3. Determine the eigenenergies of this Hamiltonian in the case
of j = 1 by using the matrix representation of Exercise 1.3.
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1.5. In the case that I1 = I2 the eigenenergies of the Hamiltonian (1.99) are
easy to determine without use of a matrix representation. Determine these
eigenenergies for arbitrary j and compare with the result of Exercise 1.4 in
the case j = 1.

1.6. Show that the coupled and uncoupled bases have the same dimension.

1.7. Two angular momenta, J1 (j1 = 1) and J2 (j2 = 1
2 ), are coupled to total

angular momentum J . By starting from the ‘stretched’ state

|j = 3
2 , m = 3

2 〉 = |j1 = 1, m1 = 1〉|j2 = 1
2 , m2 = 1

2 〉 (1.100)

find the Clebsch–Gordan coefficients for the state |j = 3
2 , m = 1

2 〉. Check
your result by consulting the tables of Rotenberg et al. [20] or the website
http://www.sct.gu.edu.au/research/laserP/java/ClebschGordan/.

1.8. Derive the orthogonality and completeness relations (1.26) and (1.28).

1.9. Derive the completeness and orthogonality properties of 3j symbols by
starting from the corresponding ones for the Clebsch–Gordan coefficients.

1.10. Derive the relations (1.36) and (1.37) by exploiting the relation between
the Clebsch–Gordan coefficient and the 3j symbol.

1.11. By operating with the ladder operators (1.7) on the definition (1.21) of
a Clebsch–Gordan coefficient, derive the following recursion relation√

j(j + 1)−m(m± 1)(j1 m1 j2 m2|j m± 1)
=

√
j1(j1 + 1)−m1(m1 ∓ 1)(j1 m1 ∓ 1 j2 m2|j m)

+
√

j2(j2 + 1)−m2(m2 ∓ 1)(j1 m1 j2 m2 ∓ 1|j m) . (1.101)

1.12. Derive (1.34) by starting from (1.33).

1.13. Verify that the state

|Ψ〉 =
∑

m1m2m3

(
j1 j2 j3
m1 m2 m3

)
|j1 m1〉|j2 m2〉|j3 m3〉 (1.102)

has total angular momentum zero.

1.14. Derive the following property of the 3j symbols:

∑
m1m2m3

(
j1 j2 j3
m1 m2 m3

)2

= Δ(j1j2j3) . (1.103)
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1.15. Perform the coupling of the angular momenta J1 (j1 = 1), J2 (j2 = 1
2 )

and J3 (j3 = 1
2 ) in the following two ways:

(a) J12 = J1 + J2 and J = J12 + J3,
(b) J23 = J2 + J3 and J = J1 + J23.
Write down the corresponding state vectors for j = 1,m = 1, the quantum
number j corresponding to the vector J . Compare the two sets of state vectors
and comment on the result.

1.16. Exploit the wave functions derived in Exercise 1.15 and determine the
values of the 6j symbols{

1 1
2

1
2

1
2 1 1

}
and

{
1 1

2
3
2

1
2 1 1

}
by using the definition (1.58) of the 6j symbol.

1.17. Derive (1.59) by starting from the definition (1.58) of the 6j symbol.

1.18. Derive (1.64) by starting from (1.59).

1.19. Derive (1.85) by starting from the definition (1.84) of the 9j symbol.

1.20. Show that the two sets
{
J2
1, J1z, J

2
2, J2z

}
and

{
J2
1, J

2
2, J

2, Jz
}
both

are sets of commuting operators.

1.21. The low-energy structure of 28F can be thought of as resulting from a
valence proton occupying the 0d5/2 or 1s2/2 orbital, and a valence neutron
hole occupying the 0d3/2 orbital. What are the possible angular momenta
and parities emerging for the states of 28F on this scheme? Write down the
corresponding wave functions.

1.22. Consider two nucleons in a p orbital (orbital angular momentum l = 1).
The coupling to a given total angular momentum can be done by first coupling
the spins and then the orbital angular momenta to form ss and ll couplings
to total spin S and total orbital angular momentum L. As a final step, L
and S can be coupled to a total angular momentum J . This procedure is
called the LS coupling scheme. On the other hand, one can perform for each
of the nucleons the coupling of the spin and orbital angular momenta, ls,
to yield a total single-particle angular momentum j. The two single-particle
angular momenta are then coupled to total angular momentum J . This way
of coupling is called the jj coupling scheme. The transformation mediating
the connection between the states of these two coupling schemes is carried by
9j symbols. One mediator of this transformation for two nucleons in the p
orbital and coupled to total angular momentum J = 1 is⎧⎪⎨⎪⎩

1 1
2

3
2

1 1
2

3
2

2 1 1

⎫⎪⎬⎪⎭ .

Find the value of this 9j symbol by applying the appropriate relations listed
at the end of Sect. 1.2.
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Tensor Operators and the Wigner–Eckart
Theorem

Prologue

In this chapter we pave the way to the use of the coupling methods of Chap. 1
for manipulating operators and their matrix elements. To enable smooth ap-
plication of the angular momentum methods, we introduce so-called spher-
ical tensor operators. Spherical tensors can be related to Cartesian tensors.
A Cartesian tensor of a given Cartesian rank can be reduced to spherical
tensors of several spherical ranks. There is a very convenient procedure, the
so-called Wigner–Eckart theorem, to separate the part containing the pro-
jection quantum numbers from the rest of the matrix element of a spherical
tensor operator. The remaining piece, called the reduced matrix element, is
rotationally invariant and contains the physics of the matrix element.

2.1 Spherical Tensor Operators

Spherical tensor operators are introduced in this section. In preparation to
defining them we give a short review of rotations in coordinate space. These
rotations, represented by a rotation operator R or its matrix R, induce unitary
transformations (complex rotations) in the Hilbert space of angular momen-
tum eigenstates. These eigenstates can be used to write down the matrix
representation, consisting of so-called Wigner D functions, of the unitary ro-
tations. The D functions can, in turn, be used to define the spherical tensor
operators.

2.1.1 Rotations of the Coordinate Axes

The treatment of coordinate rotations and their representation in an abstract
Hilbert space is far from exhaustive in the present work. Also, extensive list-
ings of the properties of D functions have been omitted. Details can be found
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in the standard literature on quantum mechanics and angular momentum al-
gebra, e.g. [1–7]. Explicit properties of D functions are not needed in this
book.

We begin by considering a rotation of the coordinate axes in three-
dimensional space. The position vector of a point P can be expressed in a
Cartesian coordinate system as

r =
3∑

i=1

xiêi , (2.1)

where the xi are the contravariant1 coordinates of the point (x1 ≡ x, x2 ≡ y,
x3 ≡ z) with an orthogonal system of covariant unit basis vectors {êi} ≡
{î, ĵ, k̂}. A change of basis {êi} → {ê′i} yields new coordinates x′i of the
point P such that

r′ =
3∑

i=1

x′iê′i , (2.2)

where r′ describes the new components of the position vector. Regarding
the whole vector we have r = r′; a vector as a whole is independent of
any coordinate system used to describe its components. The notation may be
misleading, but it is common in the literature. In this change of the coordinate
system the new coordinates become functions of the old coordinates,

x′i = x′i({xj}) . (2.3)

By definition, the components of any vector V transform in the same way
as the components of the position vector r under a rotation of the coordinate
axes,

V =
3∑

i=1

V iêi =
3∑

i=1

V ′iê′i = V ′ . (2.4)

Thus, on the basis of (2.3), we have

V ′i =
3∑

j=1

∂x′i

∂xj
V j ≡

3∑
j=1

Ri
jV

j . (2.5)

The transformation coefficients Ri
j are the elements of a matrix R, the rotation

matrix.
In a similar way we have for the nine contravariant components T ij of a

second-rank tensor T the transformation

1 These are the usual components of a vector in a Cartesian coordinate system.
The reader need not be frightened by the distinction made between contravariant
and covariant components. In any case, the Cartesian components are discussed
only as a means of introducing the spherical ones.
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T ′ij =
3∑

k,l=1

∂x′i

∂xk
∂x′j

∂xl
T kl =

3∑
k,l=1

Ri
kR

j
lT

kl . (2.6)

Written as a matrix equation this becomes T ′ = RTR−1, a form known as a
similarity transformation.

Using the rotation matrix R we state (2.5) as V ′ = RV . For the position
vector r we then have r′ = Rr, or in detail⎛⎝x′1

x′2

x′3

⎞⎠ =

⎛⎝R1
1 R1

2 R1
3

R2
1 R2

2 R2
3

R3
1 R3

2 R3
3

⎞⎠⎛⎝x1

x2

x3

⎞⎠ . (2.7)

The rotation matrix R is an orthogonal matrix, reflecting the fact that a vec-
tor’s length is preserved in rotations. The matrix elements Ri

j are commonly
parametrized by the Euler angles (α, β, γ),

Ri
j = Ri

j(α, β, γ) . (2.8)

2.1.2 Wigner D Functions and Spherical Tensors

As mentioned at the beginning of this section, a rotation R in a three-
dimensional Cartesian space induces a unitary transformation U of angular
momentum eigenstates |j m〉 in an abstract Hilbert space H of dimension
2j + 1. Hence there exists a correspondence R↔ U (for a detailed discussion
see e.g. [6] The transformation U is a complex rotation in H. The matrix el-
ements of the (2j + 1)× (2j + 1) dimensional matrix representation of U are
the so-called Wigner D functions Dj

m′m:

〈j m′|U
(
R(α, β, γ)

)
|j m〉 ≡ Dj

m′m(α, β, γ) , (2.9)

where U is the unitary rotation operator and R with its detailed parameters
α, β, γ signifies the rotation of the coordinate axes. These functions were in-
troduced by Wigner in [24]. As their special case one obtains for m = 0 the
spherical harmonic Y ∗jm′(β, α) multiplied by a constant. A further special case
is Dl

00(α, β, γ) = Pl(cosβ), where Pl is the usual Legendre polynomial. The
rotational nature of the D functions is apparent in the transformation formula

U(R)|j m〉 =
j∑

m′=−j
Dj

m′m(R)|j m′〉 , (2.10)

which is equivalent to (2.9) and shows how an angular momentum eigenstate
|j m〉 transforms under the complex rotation generated by the operator U .
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In quantum mechanics, transformations of state vectors also generate
compatible transformations of the operators (observables). If U transforms
the state vectors, i.e. |Ψ′〉 = U |Ψ〉, then the operators O are transformed
as O′ = UOU†. A special class of these operators consists of spherical
tensor operators TL with 2L + 1 components (projections on the z-axis)
TL,−L, TL,−L+1, . . . , TL,L−1, TLL which transform as

U(R)TLMU†(R) =
L∑

M ′=−L
TLM ′DL

M ′M (R) . (2.11)

Here L is said to be the rank of the spherical tensor TL.
We note the following properties of spherical tensor operators.

• The spherical tensor operators of the few lowest ranks are named such that
the names reflect their physical correspondence and meaning. The most
frequently encountered cases are

L = 0 : scalar (monopole) operator
L = 1 : vector (dipole) operator
L = 2 : quadrupole (moment) operator
L = 3 : octupole (moment) operator

The various ‘poles’ can refer e.g. to the multipole expansion of the elec-
tromagnetic field, the nuclear two-body interaction or the nuclear shape.

• It can be shown that the definition (2.11) of a spherical tensor is equivalent
to the commutation relations

[Jz, TJM ] =M�TJM ,

[J±, TJM ] = �
√
(J ±M + 1)(J ∓M)TJ,M±1 .

(2.12)

Here J± = Jx± iJy are the ladder operators of the angular momentum J .
Their commutation relations are

[J+, J−] = 2�Jz , [Jz, J±] = ±�J± . (2.13)

The commutation relations (2.12) can be used to test whether a set of
objects form a spherical tensor. An example of such use is provided by the
creation and annihilation operators in Chap. 4. Other examples are given
as exercises at the end of this chapter.

• For the maximal and minimal values of the projection quantum number
we have the natural rule [J±, TJ,±J ] = 0.
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2.1.3 Contravariant and Covariant Components
of Spherical Tensors

Similarly to Cartesian vectors and tensors, one can define the contravariant
and covariant components of a spherical tensor. Again, one need not worry
about this terminology, since the angular momentum algebra of the rest of this
book, and most of the literature, is based on the covariant components, but
without explicit reference to their covariant nature. However, for complete-
ness, we introduce in this subsection both types of component and discuss
their basic properties. A detailed exposition of the topic is given in [7].

We define the contravariant spherical components of a vector V as

V ±1 = ∓ 1√
2
(Vx ∓ iVy) , V 0 = Vz , (2.14)

and the covariant spherical components as

V±1 = ∓
1√
2
(Vx ± iVy) , V0 = Vz , (2.15)

where Vx, Vy and Vz are the usual (contravariant) Cartesian components of
the vector. The covariant components (2.15) are the ones which are commonly
defined as spherical components in the literature. These are the spherical
components used also in this work. In particular, for the position vector r we
have

r±1 = ∓
1√
2
(x± iy) , r0 = z , (2.16)

where x, y and z are the usual Cartesian coordinates. In fact, one can easily
relate rμ to the spherical harmonic Y1μ as

rμ =

√
4π
3

rY1μ(θ, ϕ) , μ = 0,±1 , r = |r| . (2.17)

This shows that the spherical harmonic Y1 acts like a vector. More generally,
the spherical harmonic Yl is a spherical tensor of rank l, with 2l+1 spherical
components (see the exercises at the end of this chapter). The following note
contains a summary.

• The spherical components Jμ (μ = 0,±1) of an angular momentum vector
J form a spherical tensor of rank 1.

• The spherical components rμ (μ = 0,±1) of the position vector r form a
spherical tensor of rank 1.

• The spherical components Yλμ (μ = −λ,−λ+1, . . . , λ−1, λ) of a spherical
harmonic Yλ form a spherical tensor of rank λ.
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As stated in the prologue to this chapter, a Cartesian tensor of a given
Cartesian rank can generally be reduced to spherical tensors of several spher-
ical ranks. A scalar and a vector have the same rank (0 and 1 respectively) as
a spherical or a Cartesian tensor, but a Cartesian tensor of the second rank
can be decomposed into a scalar (the trace of the Cartesian tensor), a vector
(the antisymmetric part of the Cartesian tensor) and a quadrupole spherical
tensor (the symmetric part of the Cartesian tensor). One can express this
difference by stating that a Cartesian tensor is reducible to spherical tensors
of several ranks, the spherical tensors being irreducible.

We complete our discussion of contravariant and covariant spherical com-
ponents by looking at unit vectors and products of vectors.

The contravariant components of the unit basis vectors are defined as

ê±1 = ∓ 1√
2
(êx ∓ iêy) , ê0 = êz , (2.18)

and the corresponding covariant components as

ê±1 = ∓
1√
2
(êx ± iêy) , ê0 = êz , (2.19)

where êx = î, êy = ĵ and êz = k̂ are the usual unit basis vectors of a Carte-
sian coordinate system. Equations (2.18) and (2.19) give the orthogonality
relations

êμ · êν = êμ · ê∗ν = δμν . (2.20)
Some further relations are

êμ = ê∗μ = (−1)μê−μ , êμ = êμ ∗ = (−1)μê−μ . (2.21)

A vector V can be expressed in these two bases as

V =
∑
μ

V μêμ =
∑
μ

Vμê
μ , Vμ = V · êμ , V μ = V · êμ . (2.22)

The components of V satisfy the relations

Vμ = (−1)μV −μ , V μ = (−1)μV−μ , V ∗μ = (V
∗)μ , V μ ∗ = (V ∗)μ ,

(2.23)
where the possibility of V being complex has been allowed.

The scalar, or dot, product of two vectors A and B can be written as

A ·B =
∑
μ

AμBμ =
∑
μ

AμB
μ =

∑
μ

(−1)μAμB−μ =
∑
μ

(−1)μAμB−μ .

(2.24)
For the vector, or cross, product of these vectors we have

[A×B]μ = −i
√
2
∑
νν′
(1 ν 1 ν′|1μ)AνBν′ , (2.25)

[A×B]μ = i
√
2
∑
νν′
(1 ν 1 ν′|1μ)AνBν′

. (2.26)
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2.2 The Wigner–Eckart Theorem

In this section we address the very important issue of simplifying the calcu-
lation of matrix elements of operators related to different observables of a
nucleus. This simplification is achieved by expanding the relevant observables
in terms of spherical tensors and then exploiting their special transformation
properties. The notion of a spherical tensor is the key to developing an elegant
and systematic way of treating complicated matrix elements of observables.

All this boils down to the possibility of defining a reduced matrix element
that is independent of all projection quantum numbers, namely those of the
initial and final nuclear states and that of the operator. This reduced matrix
element contains all the physical information carried by the initial and final
nuclear wave functions, as well as the physical content of the observable,
represented by the operator sandwiched between these wave functions. In the
following, we take the existence of such a reduced matrix element as a fact
without presenting a proof of it. For proof see e.g. [2] or [10].

Consider a matrix element 〈ξ′ j′m′|TLM |ξ j m〉, where TLM is a spherical
tensor of rank L, and the |ξ j m〉 are quantum states with good angular mo-
mentum j and its z projection m. The quantity ξ contains all other quantum
numbers needed to completely specify the quantum state. In the present con-
text the states could be the initial and final nuclear states of a process, e.g.
electromagnetic decay, governed by the observable TLM . As asserted above,
one can write the matrix element as a product of a geometric factor containing
the projection quantum numbers m′, m and M , and a matrix element which
does not contain them,

〈ξ′ j′m′|TLM |ξ j m〉 = ĵ′
−1
(j mLM |j′m′)(ξ′ j′‖TL‖ξ j)

= (−1)j′−m′
(

j′ L j
−m′ M m

)
(ξ′ j′‖TL‖ξ j) ,

(2.27)

where (ξ′ j′‖TL‖ξ j) is called the reduced matrix element. This is theWigner–
Eckart theorem, introduced by Wigner [24] and Eckart [25] in 1930–1931.

The Wigner–Eckart theorem is basically an existence theorem. It states
that it is possible to extract a factor containing all j quantum numbers but no
m quantum numbers. The precise definition of the reduced matrix element can
vary, and different definitions and notations occur in the literature. However,
the definition contained in (2.27) is the one of [2] and coincides with the
original definition of Racah [26].

2.2.1 Immediate Consequences of the Wigner–Eckart Theorem

We can see directly from the Wigner–Eckart theorem (2.27) that

〈ξ′ j′m′|TLM |ξ j m〉 = (j mLM |j′m′)
(j m0 LM0|j′m′0)

〈ξ′ j′m′0|TLM0 |ξ j m0〉 . (2.28)
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Once we know the matrix element for one set of quantum numbers m = m0,
M =M0 andm′ = m′0, this equation gives us the matrix element for any other
set m, M and m′. To evaluate the general matrix element on the left-hand
side, we try to find and evaluate the simplest possible matrix element on the
right-hand side. This is accomplished by choosing M0 = 0 and m′0 = m0, and
furthermore m0 = 0 if the Clebsch–Gordan coefficient does not then vanish.

From the Clebsch–Gordan coefficient in (2.27) and the conditions (1.22)
and (1.23) for its non-vanishing, we obtain the selection rules

〈ξ′ j′m′|TLM |ξ j m〉 = 0 unless

{
Δ(jLj′) ,
m+M = m′ .

(2.29)

Thus, for a non-zero matrix element of the observable TLM , one should be
able to couple the angular momentum j of the initial state and the angular
momentum L of the observable to the angular momentum j′ of the final state.
Furthermore, the projection quantum number m of the initial state and M of
the observable should sum up to the projection quantum number m′ of the
final state. So we see that angular momentum conservation is guaranteed by
the Wigner–Eckart theorem.

We derive next a symmetry relation for the reduced matrix element
(ξ′ j′‖TL‖ξ j). Applying a general property of any matrix element, we can
write the left-hand side of (2.27) as

〈ξ′ j′m′|TLM |ξ j m〉 = 〈ξ j m|(TLM )†|ξ′ j′m′〉∗ . (2.30)

Now assume that the tensor operator TL has the property

(TLM )† = (−1)MTL,−M . (2.31)

Such operators are called Hermitian tensor operators2; their M = 0 compo-
nent satisfies the normal Hermiticity criterion: (TL0)† = TL0. Applying the
Wigner–Eckart theorem to both sides of (2.30) leads to the symmetry relation

(ξ j‖TL‖ξ′ j′) = (−1)j−j
′
(ξ′ j′‖TL‖ξ j)∗ . (2.32)

Below we list explicit expressions for the most frequently occurring reduced
matrix elements. Verification of these values is left as an exercise for the reader
(see the exercises at the end of this chapter). The operators in these basic
matrix elements are the identity operator, which we denote simply by 1, the
angular momentum operator J , the spherical harmonic YL (viewed now as a
spherical tensor operator) and, as a special case of angular momentum, the
spin-12 operator S. The results are

2 A Hermitian tensor operator is consistent with the Condon–Shortley (CS) phase
convention introduced in Sect. 3.3. See also Exercise 11.50.
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(j′‖1‖j) = δjj′ ĵ , (2.33)

(j′‖J‖j) = δjj′�
√

j(j + 1)(2j + 1) , (2.34)

(l′‖YL‖l) = (−1)l
′ l̂′ L̂ l̂√
4π

(
l′ L l
0 0 0

)
, (2.35)

(12‖S‖
1
2 ) =

√
3
2 � . (2.36)

The result (2.35) is very important for the multipole decomposition of a
physical field. It is used extensively in this work for the electromagnetic field
in Chap. 6 and for the nuclear two-body interaction in Chap. 8. We make
use of this formula also for the transition matrix elements of forbidden beta
decays in Chap. 7.

2.2.2 Pauli Spin Matrices

Although we have not paid attention to explicit matrix representation of the
angular momentum operators, we now note the matrices for spin 1

2 . These ma-
trices are nothing but the matrices of general angular momentum J for the
case j = 1

2 , derivable from (1.3), (1.5) and (1.7). However, as a matter of con-
venience and historical convention, these matrices are expressed as matrices
of the operator σ such that the factor 1

2� is removed:

J = S = 1
2�σ . (2.37)

The elements of the resulting 2-by-2 matrices are 〈12m|σ|
1
2m
′〉, where m,m′ =

± 1
2 . Another historical convention is that the matrices are denoted by the

same symbols as their operators. So the matrices of the operators σx, σy and
σz are

σx =
(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (2.38)

These matrices are known as Pauli spin matrices. They were introduced by
Pauli [27] in 1927. Equations (2.36) and (2.37) yield the reduced matrix ele-
ment

( 12‖σ‖
1
2 ) =

√
6 . (2.39)

The Pauli spin matrices are Hermitian, σ†i = σi (i = x, y, z). Their com-
mutation relations are

[σi, σj ] = 2iεijkσk . (2.40)

Further relations are

{σi, σj} = 0 for all i 	= j , σ2
i = 1 for all i , (2.41)

where {A,B} ≡ AB +BA is the anticommutator of objects A and B.
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The following properties of the Pauli spin matrices are sometimes useful:

σ(σ ·A) = A12 − iσ ×A , (2.42)
(σ ·A)(σ ·B) = (A ·B)12 + iσ · (A×B) , (2.43)

(σ ×A) · (σ ×B) = 2(A ·B)12 + iσ · (A×B) , (2.44)
σ × σ ·A = 2iσ ·A , (2.45)

σ × (σ ×A) = −2A12 + iσ ×A , (2.46)

where 12 is the 2× 2 unit matrix and A and B are arbitrary vectors.
One can also form the (covariant) spherical components of the Pauli ma-

trices by using the definition (2.15). The commutation and anticommutation
rules, (2.40) and (2.41), of the Cartesian Pauli matrices are then carried over
to

[σμ, σν ] = −2
√
2(1μ 1 ν|1M)σM , (2.47)

{σμ, σν} = 2(−1)μδμ,−ν12 . (2.48)

Finally, the product of two Pauli matrices can be cast into the form

σμσν = (−1)μδμ,−ν12 − 2
√
2(1μ 1 ν|1M)σM . (2.49)

Equations (2.47)–(2.49), valid for the spherical components, are extremely
useful in the simplification of complicated commutators and products of the
Pauli matrices.

2.3 Matrix Elements of Coupled Tensor Operators

We now present useful theorems for products of two spherical tensors. In par-
ticular we state expressions for the reduced matrix elements of these products.
Proofs are omitted here but can be worked out as exercises. The theorems are
applied extensively in later chapters. We start by defining the tensor product
of two spherical tensors.

Let TL1 and TL2 be two spherical tensor operators of rank L1 and L2

respectively. The spherical tensor TL is said to be their tensor product of
rank L if

TLM =
∑

M1M2

(L1 M1 L2 M2|LM)TL1M1TL2M2 ≡ [TL1TL2 ]LM . (2.50)

There are two important special cases of this. The first is the scalar or dot
product of two spherical tensors of the same rank,

TL · SL ≡ (−1)LL̂ [TLSL]00 =
∑
M

(−1)MTLMSL,−M . (2.51)
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For vectors, L = 1, this coincides with the familiar dot product, T 1·S1 = T ·S.
The second special case is the usual vector or cross product

(T × S)M = −i
√
2 [T 1S1]1M . (2.52)

Having defined the tensor product of two tensor operators, (2.50), we are
ready to state and discuss two important theorems on the matrix elements of
coupled spherical tensors.

2.3.1 Theorem I

Let J1 and J2 be two commuting angular momentum operators and the
set {|j1 j2 j m〉} the corresponding coupled basis. Let TL1 and TL2 be two
commuting spherical tensors such that TL1 operates in the Hilbert space
spanned by the basis states {|j1 m1〉} and TL2 operates in the Hilbert space
spanned by the basis states {|j2 m2〉}. Let

TLM = [TL1TL2 ]LM (2.53)

be the tensor product to be considered. Then the reduced matrix element of
TL is

(j1 j2 j‖TL‖j′1 j′2 j′) = ĵ L̂ ĵ′

⎧⎨⎩ j1 j2 j
j′1 j′2 j′

L1 L2 L

⎫⎬⎭ (j1‖TL1‖j′1)(j2‖TL2‖j′2) . (2.54)

Equation (2.54) makes it possible to calculate the reduced matrix element
of a tensor product of two commuting operators from the reduced matrix
elements of each member of the tensor product, evaluated in its own subspace.
The two separate reduced matrix elements are combined by a 9j symbol to
produce the desired final matrix element. In this way the original, usually
rather complicated reduced matrix element can be expressed as a product of
two, usually much simpler, matrix elements. The two commuting operators
can refer e.g. to two different particles or to the spatial and spin variables of
one particle.

For the scalar product (2.51) of two commuting spherical tensors we have
the following special case of (2.54):

(j1 j2 j‖TL · SL‖j′1 j′2 j′) = δjj′(−1)j2+j+j′1 ĵ

{
j1 j2 j
j′2 j′1 L

}
× (j1‖TL‖j′1)(j2‖SL‖j′2) .

(2.55)

Important basic results are obtained when Theorem I, (2.54), is applied to
a single particle with spin. The spin–orbit-coupled wave functions are of the
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form |n l 1
2 j m〉. With the radial matrix element factored out, the quantum

numbers appearing in the reduced matrix element for these states are l, 1
2

and j.
The key to the following relations is to write the spin or spatial operator

as a tensor product of that operator and the identity operator 1, of spherical
rank L = 0, operating in the other space. Thus we write the Pauli spin tensor
operator σ, defined in (2.37) and of spherical tensor rank L = 1, as σ = [1σ]1.
So we have a tensor product of two commuting spherical tensors, the identity
1 operating in coordinate space and σ operating in spin space. The resulting
reduced matrix element is

(l 1
2 j‖σ‖l′ 12 j′) =

√
6 δll′ ĵ ĵ′(−1)l+j+ 3

2

{
1
2

1
2 1

j′ j l

}
, (2.56)

where the basic reduced matrix elements (2.33) and (2.39) have been inserted.
The matrix element (2.56) is directly the one used as the single-particle matrix
element of the Gamow–Teller beta-decay operator in Sect. 7.2.

For the spherical tensor Yλ = [Yλ1]λ we find similarly

(l 1
2 j‖Yλ‖l′ 12 j′) =

1√
4π
(−1)j′− 1

2+λ 1 + (−1)l+l′+λ

2
ĵ ĵ′ λ̂

(
j j′ λ
1
2 −

1
2 0

)
,

(2.57)
where (2.33) and (2.35) have been inserted. This particular matrix element
appears in the single-particle matrix elements of the electromagnetic decay
operators in Sect. 6.1 and in the interaction matrix elements of a separable
two-body nucleon–nucleon force in Sect. 8.2.

Along the same lines, one obtains for the orbital angular momentum op-
erator L the result

(l 1
2 j‖L‖l′ 12 j′) = δll′ ĵ ĵ′

√
l(l + 1)(2l + 1)(−1)l+j′+ 3

2

{
l l 1
j′ j 1

2

}
� . (2.58)

As special cases of (2.56) and (2.58) we have the diagonal matrix elements

(l 1
2 j‖σ‖l 1

2 j) =

√
2j + 1
j(j + 1)

[
j(j + 1)− l(l + 1) + 3

4

]
, (2.59)

(l 1
2 j‖L‖l 1

2 j) =

√
2j + 1
4j(j + 1)

[
j(j + 1) + l(l + 1)− 3

4

]
� , (2.60)

These are used in the computation of the reduced matrix element of the
magnetic dipole operator in Sect. 6.2.

2.3.2 Theorem II

Let TL1 and TL2 be two spherical tensors that both operate in a Hilbert space
spanned by the basis states {|α j m〉}, where α is a set of additional quantum
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numbers needed to fully specify the basis states. Let

TLM = [TL1TL2 ]LM (2.61)

be the tensor product to be considered. Then the reduced matrix element of
TL is

(α j‖TL‖α′ j′) = (−1)j+L+j′L̂
∑
α′′j′′

{
L1 L2 L
j′ j j′′

}
× (α j‖TL1‖α′′ j′′)(α′′ j′′‖TL2‖α′ j′) .

(2.62)

In Theorem II, (2.62), the separation of the two parts of the reduced matrix
element is not as ‘clean’ as in Theorem I, (2.54). This is due to the fact that
the completeness relation 1 =

∑
αj |α j〉〈α j| has to be used to achieve the

separation present in Theorem II.
As a special case of (2.62) we have for the scalar product of two spherical

tensors operating in the same Hilbert space the expression

(α j‖TL · SL‖α′ j′) = δjj′ ĵ
−1 ∑

α′′j′′
(−1)j′′−j(α j‖TL‖α′′ j′′)(α′′ j′′‖SL‖α′ j′) .

(2.63)
A straightforward application of this gives

(l‖L2‖l′) = δll′ l(l + 1)l̂�2 . (2.64)

Epilogue

This chapter was closed by introducing two important theorems on reduced
matrix elements of coupled spherical tensor operators. The two key quanti-
ties of this chapter, namely the spherical tensors and their reduced matrix
elements, defined by the Wigner–Eckart theorem, play an important role in
subsequent physical applications. These tensor methods play a dominant role
also in nuclear shell theory, as is extensively discussed in [10]. The life of a
nuclear physicist would be much harder without spherical tensors and reduced
matrix elements.

Exercises

2.1. Starting from the explicit expression of the spherical harmonic Y1m(θ, ϕ)
(see, e.g. [6]), derive (2.17).

2.2. By using the commutation relations (2.12), show that the spherical com-
ponents Jμ, μ = 0,±1, of the angular momentum operator J form a spherical
tensor of rank 1.
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2.3. By using the commutation relations (2.12), show that the spherical com-
ponents Yλμ, μ = −λ,−λ+1, . . . , λ− 1, λ, of the spherical harmonic Yλ form
a spherical tensor of rank λ.

2.4. Verify the orthogonality relations (2.20).

2.5. Verify that the spherical components of the vector product of two vectors,
A and B, satisfy the relation (2.25).

2.6. By using the Wigner–Eckart theorem derive the Landé formula

〈ξ j m|A|ξ j m′〉 = 〈ξ j m|A · J |ξ j m〉
j(j + 1)

〈ξ j m|J |ξ j m′〉 , (2.65)

where A is an arbitrary vector operator and J is the angular momentum
operator.

2.7. Derive the symmetry relation (2.32).

2.8. Derive the reduced matrix elements (2.33) and (2.34) by using the
Wigner–Eckart theorem.

2.9. Derive the reduced matrix element (2.35) by using the Wigner–Eckart
theorem and the Gaunt formula∫ 2π

0

dϕ
∫ π

0

sin θ dθ Y ∗l1m1
(θ, ϕ)Yl2m2(θ, ϕ)Yl3m3(θ, ϕ)

= (−1)m1
l̂1 l̂2 l̂3√
4π

(
l1 l2 l3
0 0 0

)(
l1 l2 l3
−m1 m2 m3

)
. (2.66)

2.10. Evaluate the reduced matrix element (n′ l′‖r‖n l).

2.11. Derive the Pauli spin matrices (2.38) by using general properties of
angular momentum from Sect. 1.1.

2.12. Verify the commutation relations (2.40) and the anticommutation rela-
tions (2.41) of the Pauli spin matrices.

2.13. Verify as many as you can of the relations (2.42)–(2.46).

2.14. Verify the commutation relations (2.47) and the anticommutation rela-
tions (2.48) of the spherical components of the Pauli spin matrices.

2.15. Show that the scalar product of two vectors coincides with the scalar
product of two rank-1 spherical tensors, as stated in (2.51).

2.16. Establish the relation (2.52) between the vector product of two vectors
and the rank-1 product of two rank-1 spherical tensors.
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2.17. Derive the formula (2.54).

2.18. Derive (2.55) from (2.54).

2.19. Derive the reduced matrix elements (2.56) and (2.58) from (2.54) and
the reduced matrix elements (2.33)–(2.36).

2.20. Derive the expression (2.57). Hint: Feel free to use the relations for 6j
and 9j symbols listed in Sects. 1.3 and 1.4.

2.21. Verify the formulas (2.59) and (2.60) by starting from (2.56) and (2.58)
and using explicit expressions given for the 6j symbol in Sect. 1.3.

2.22. The nuclear magnetic dipole moment μ is defined as

μ(α, J) ≡ 〈αJ, M = J |μz|αJ, M = J〉 , (2.67)

where J is the total angular momentum andM its z projection, and α denotes
all the other quantum numbers identifying the state. The details of the vector
operator μ depend on the description of the nuclear system. Express μ(α, J)
as a product of an algebraic factor and the reduced matrix element of μ. What
is the reason for the fact that μ can differ from zero only for J ≥ 1

2?

2.23. Evaluate the reduced matrix element (n′ l′ 12 j′‖r‖n l 1
2 j). The electric

dipole operator can be written as −er. Can you find a reason why no single-
particle state can have a non-zero electric dipole moment, defined analogously
to (2.67)?

2.24. The quadrupole moment Q of a nucleus is defined as

Q(α, J) ≡
√
16π
5
〈αJ, M = J |Q20|αJ, M = J〉 , (2.68)

where J is the total angular momentum andM its z projection, and α denotes
all the other quantum numbers identifying the state. Here Q2 is the electric
quadrupole operator, a tensor operator of rank 2. ExpressQ(α, J) as a product
of an algebraic factor and the reduced matrix element of Q2. Deduce the
angular momentum values for which Q is non-vanishing.

2.25. The excited states of atoms and nuclei usually de-excite via spontaneous
photon emission (multipole radiation). The magnetic substates of the angular
momentum are not measured and thus a convenient observable turns out to
be the reduced transition probability

B(σλ; J → J ′) ≡
∑
μM ′

∣∣〈α′ J ′M ′|Mσλμ|αJ M〉
∣∣2 , (2.69)

where J is the total angular momentum and M its z projection, and α de-
notes all the other quantum numbers needed to specify the state. The elec-
tromagnetic transition operatorMσλ is a rank-λ spherical tensor of electric
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or magnetic origin, as indicated by σ = E or σ = M (see Chap. 6). Show that
one can write

B(σλ; J → J ′) =
1

2J + 1

∣∣(α′ J ′‖Mσλ‖αJ)
∣∣2 . (2.70)

2.26. By applying the appropriate reduced matrix elements of Sect. 2.3, find
the single-particle value (l 1

2 j‖μsp‖l 1
2 j) of the magnetic dipole moment for

the cases j = l + 1
2 and j = l − 1

2 . The single-particle magnetic-moment
operator is

μsp =
μN

�

[
glJ + (gs − gl)S

]
, (2.71)

where μN is the nuclear magneton and gl and gs are the orbital and spin
gyromagnetic ratios respectively (see Chap. 6).

2.27. Find the single-particle value

Qsp(nlj) = −e
2j − 1
2j + 2

〈r2〉nl (2.72)

of the electric quadrupole moment by starting from (2.68) and using the single-
particle quadrupole operator

Q20 = er2Y20(θ, ϕ) . (2.73)

Note: The quantity 〈r2〉nl is used to designate the integral over the radial
wave functions of the single-particle states.

2.28. Prove Theorem II stated in (2.62).

2.29. Derive the special case (2.63) from (2.62).

2.30. Derive the reduced matrix element (2.64) by starting from (2.63).
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The Nuclear Mean Field and Many-Nucleon
Configurations

Prologue

After the two preceding chapters, throughout impregnated with messy-looking,
though necessary mathematics, we are finally entering the realm of basic con-
cepts of nuclear structure physics. While the preceding chapters may have
been a shock to the reader not familiar with the fine details of angular mo-
mentum coupling, the present chapter should offer a soothing soft landing to
the basic philosophy behind the nuclear shell model, namely the nuclear mean
field.

The mean field is discussed both phenomenologically and as an expression
of self-consistency. The many-body theory of the subsequent chapters is based
on the notions of a single-particle basis and an antisymmetric many-particle
state, called the Slater determinant, formed of them. It turns out that a major
part of the nucleon–nucleon interactions can be included in the single-particle
energies of the mean field. Thus the Slater determinants represent a long leap
towards a proper many-body wave function for strongly interacting nucleons.

3.1 The Nuclear Mean Field

A nucleus of mass number A, neutron number N and proton number (atomic
number) Z, consists of A strongly interacting nucleons, N neutrons and Z
protons. In addition to the strong nuclear force, the protons feel also the
Coulomb force. In the present work the nucleons are considered to be point
particles without any internal structure. This is an excellent approximation
when the purpose is to study nuclear structure at low energies. Along the
same lines, the nuclear forces are described without attention to the ba-
sic mechanisms underlying them, i.e. the mesonic or quark degrees of free-
dom. The two-nucleon interaction is described by two-body interaction matrix
elements, without a detailed account of the methods used to obtain them.
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The A-nucleon Schrödinger equation cannot be solved exactly, at least for
A > 10. Therefore one has to look for reasonable approximate methods to
solve this many-body problem of strongly interacting particles. An elegant
approximation is to convert the strongly interacting system of particles into a
system of weakly interacting quasiparticles quasiparticles are often referred to
as particles approximation the system of quasiparticles can be treated as a set
of A non-interacting quasiparticles. The remaining interactions, called residual
interactions, can be treated in perturbation theory. The transformation from
particles to quasiparticles is not easy, and its success depends on the nuclear
system under discussion.

In this section we discuss the mean-field (or Hartree–Fock) quasiparticles.
They can be introduced in the following way. LetH be the nuclear many-body
Hamiltonian consisting of kinetic energy T and potential energy V , i.e.

H = T +V =
A∑
i=1

t(ri)+
A∑

i,j=1
i<j

v(ri, rj) =
A∑
i=1

−�2

2mN
∇2

i +
A∑

i,j=1
i<j

v(ri, rj) , (3.1)

where mN is the mass of a nucleon (here we assume that the masses of a
proton and a neutron are the same, i.e. mNc2 ≈ 940MeV), and ri denotes
the coordinates of nucleon i. A summed single-particle potential energy, so far
undefined, can be added and subtracted,

H =
[
T +

A∑
i=1

v(ri)
]
+

[
V −

A∑
i=1

v(ri)
]
≡ HMF + VRES , (3.2)

where

HMF = T +
A∑
i=1

v(ri) ≡ T + VMF =
A∑
i=1

[t(ri) + v(ri)] ≡
A∑
i=1

h(ri) (3.3)

is the nuclear mean-field Hamiltonian and

VRES = V −
A∑
i=1

v(ri) =
A∑

i,j=1
i<j

v(ri, rj)−
A∑
i=1

v(ri) (3.4)

is the residual interaction. It is presumed that the residual interaction is much
reduced in strength from the original interaction V .

3.1.1 The Mean-Field Approximation

In the mean-field approximation each nucleon can be viewed as moving in an
external field created by the remaining A−1 nucleons. This external potential
VMF can be thought of as a time average, during a suitably defined short time
interval ΔT , of the interactions between the nucleon and its A−1 neighbours:
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VMF =
A∑
i=1

v(ri) , v(ri) =
1
ΔT

∫ T+ΔT

T

dt
A∑
j=1
j �=i

v
(
ri(t), rj(t)

)
. (3.5)

It must be understood that the time-average idea can only provide intuitive
guidance and cannot be implemented in practice.

In the mean-field approximation a strongly interacting many-fermion sys-
tem becomes a system of A non-interacting fermions (quasiparticles) in an
external potential v(r). For such an external potential it is easy to find the
stationary one-particle states; it is the usual potential well problem of ele-
mentary quantum mechanics. From these one-particle states it is again easy
to construct the A-particle wave function, as demonstrated below.

The mean-field Hamiltonian HMF is easy to treat since the corresponding
A-nucleon Schrödinger equation

HMFΨ0(r1, r2, . . . , rA) = EΨ0(r1, r2, . . . , rA) (3.6)

can be separated by using the ansatz wave function

Ψ0(r1, r2, . . . , rA) = φα1(r1)φα2(r2) · · ·φαA(rA) . (3.7)

Substituting this ansatz into the Schrödinger equation (3.6) yields A identical
one-nucleon Schrödinger equations

h(r)φα(r) = εαφα(r) , h(r) = t(r) + v(r) =
−�2

2mN
∇2 + v(r) , (3.8)

with the separation constants εαi satisfying the condition

E =
A∑
i=1

εαi . (3.9)

The solution of the many-nucleon Schrödinger equation is thus a product of
single-particle wave functions obtained by solving a one-nucleon Schrödinger
equation for an external potential well. In this way the mean-field concept has
turned the complicated many-nucleon problem into a simple one-nucleon one.

The problem remains how to determine the mean field, in particular an
optimal mean field that minimizes the residual interaction between the qua-
siparticles. To solve the problem we seek an optimal set {φα(r)} of one-
quasiparticle states. This is a Rayleigh–Ritz variational problem where the
variations φα(r) → φα(r) + δφα(r) of the single-particle orbitals are deter-
mined by minimizing the ground-state energy of the nucleus

Egs = 〈Ψ0|H|Ψ0〉 , H = T + VMF + VRES . (3.10)

As the starting point of the variational calculation it is customary to use either
a product ansatz
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Ψ0(r1, r2, . . . , rA) =
A∏
i=1

φαi(ri) , (3.11)

constituting the Hartree method, or an antisymmetrized product ansatz

Ψ0(r1, r2, . . . , rA) = A
[

A∏
i=1

φαi(ri)

]
, (3.12)

constituting the Hartree–Fock method. The antisymmetrized ansatz wave func-
tion is called the Slater determinant of the given single-particle states. Here A
is an antisymmetrization operator that performs the sign-accompanied permu-
tations of the single-particle orbitals in the product wave function; A also car-
ries a normalization factor. For example, for three particles in single-particle
states labelled 1, 2, 3 the normalized antisymmetric state, or Slater determi-
nant, is

Ψ0(r1, r2, r3) =
1√
6

∣∣∣∣∣∣
φ1(r1) φ1(r2) φ1(r3)
φ2(r1) φ2(r2) φ2(r3)
φ3(r1) φ3(r2) φ3(r3)

∣∣∣∣∣∣ . (3.13)

The energy (3.10) has to be varied under the constraint that the normaliza-
tion of Ψ0 is preserved, 〈Ψ0|Ψ0〉 = 1. This leads to the constrained variational
problem

δ

(
〈Ψ0|H|Ψ0〉
〈Ψ0|Ψ0〉

)
= 0 , (3.14)

which can be transformed into an unconstrained one by using the method of
Lagrange undetermined multipliers. After performing the variation, it turns
out that the undetermined multipliers are nothing but the single-particle en-
ergies εα. One ends up with the following Hartree(–Fock) equation:

−�2

2mN
∇2φα(r) + VH(F)({φi(r)})φα(r) = εαφα(r) ,

i = 1, 2, . . . , A , α = 1, 2, . . . ,∞ .

(3.15)

This equation is like the Schrödinger equation except that the simple potential
term V (r) is replaced with a functional of the unknown wave functions,

V (r)→ VH(F)({φi(r)}) . (3.16)

Here VH refers to the Hartree mean field and VHF to the Hartree–Fock mean
field; the two alternatives are carried in parallel.

Equation (3.15) is nonlinear and therefore much more difficult to solve
than the Schrödinger equation. The solution can only be carried out by
iteration. This means that we start from a set of guessed single-particle wave
functions {φ(0)i (r)}Ai=1 and use them to calculate the initial potential term
V

(0)
H(F). As the following step we solve the equation for a complete set of new
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wave functions {φ(1)α (r)}∞α=1 and eigenenergies ε
(1)
α . With this new set of eigen-

functions we generate the next potential V (1)
H(F) and solve (3.15) for the next

set of eigenfunctions and eigenenergies. In a schematic way, this process can
be depicted as

φ
(0)
i −→ V

(0)
H(F) −→ φ(1)α , ε(1)α

φ
(1)
i−→ V

(1)
H(F) −→ · · · −→ φ(n)α , ε(n)α . (3.17)

This process is repeated until self-consistency is achieved. This means that
the wave functions (or eigenenergies) do not differ more than a preset limit in
two consecutive iterations, i.e.

‖φ(n−1)α − φ(n)α ‖ < preset limit , (3.18)

where ‖ · · · ‖ denotes the norm of a wave function.
When the iteration has converged and self-consistency been achieved, one

has generated a self-consistent mean field vH(F)(r) and the associated eigen-
states φα(r) and eigenenergies εα, all simultaneously. The generated set of
eigenenergies can be schematically drawn inside the generated self-consistent
mean-field potential well, as shown in Fig. 3.1. We may also note that for a
finite potential well there will be, in addition to the bound states shown, an
infinite number of unbound states.

α α

r
v(r)

Fig. 3.1. Schematic view of a central mean-field potential and its single-particle
eigenenergies

In our example the generated mean-field potential is central, i.e. only a
function of r. Central mean-field potentials describe spherical nuclei, and they
are the ones we address in this work. Deviations from centrality show up as
a dependence of the potential on the polar and azimuthal angles θ, ϕ of the
spherical coordinates; such potentials are used to describe deformed nuclei.
The Hartree–Fock equation (3.15) is derived and further discussed in Sect. 4.5.
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3.1.2 Phenomenological Potentials

Often one just selects a particular type of mean-field potential without going
through the steps leading to self-consistency. The use of such phenomeno-
logical potentials is a practical shortcut, taken at the expense of theoretical
precisenes. The simplest frequently used potential is the three-dimensional
harmonic oscillator potential

vHO(r) = −V1 + kr2 = −V1 + 1
2mNω2r2 , (3.19)

where V1 and k are parameters to be fitted for best result. A common, more
realistic choice is the Woods–Saxon potential

vWS(r) =
−V0

1 + e(r−R)/a
. (3.20)

Its usual parametrization is

R = r0A
1/3 = 1.27A1/3 fm (nuclear radius) , (3.21)

a = 0.67 fm (surface diffuseness) , (3.22)

V0 =
(
51± 33N − Z

A

)
MeV , (3.23)

the + sign being for a proton and the − sign for a neutron. When not making
a distinction between the nucleons one may use V0 = 57MeV as a suitable
average value.

It is possible to select the oscillator energy spacing �ω and the depth V1 so
that the resulting potential vHO is roughly equivalent to a given Woods–Saxon
potential vWS; see Fig. 3.2. To find such an oscillator potential, we choose �ω
to simulate the Woods–Saxon major spacing. Then we fix V1 so that the 0s
state occurs at the same energy in both potentials.

The equivalent harmonic oscillator potential reproduces quite nicely the
wave functions of the Woods–Saxon potential near the bottom of the wells, but
when approaching zero energy, the differences grow (see Subsect. 3.2.2). Near
zero energy the Woods–Saxon wave functions have a long tail extending far
beyond the nuclear radius R, whereas the harmonic oscillator wave functions
decrease sharply beyond the potential wall.

3.1.3 The Spin–Orbit Interaction

The central potential alone does not reproduce the experimentally observed
qualitative behaviour of the single-particle energies in the mean field. The
observed energies bunch into groups, or shells, similarly to the atomic case.
These groups of states and the energy gaps between them are depicted in
Fig. 3.3.

The nucleon numbers at which energy gaps occur are calledmagic numbers.
Their experimentally known values are 2, 8, 20, 28, 50, 82, 126; further values
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−V0

−V1

vWS

−V0 /2

vHO

R=nuclear radius
r

v

0

a= ‘thickness of the surface’

Fig. 3.2. Two phenomenological mean-field potentials: the Woods–Saxon potential
vWS and the approximately equivalent harmonic oscillator potential vHO

are uncertain. To reproduce these numbers theoretically, one needs to add
to the mean-field potential a term resulting from the spin–orbit interaction.
This spin–orbit interaction, or coupling or force, splits the states of the same
orbital angular momentum quantum number l into two, with total single-
particle angular momenta j = l + 1

2 and j = l − 1
2 .

The nuclear spin–orbit interaction does not have the same origin as the
spin–orbit interaction in atoms. The atomic spin–orbit force has a well-known
electromagnetic origin and causes part of the atomic fine structure, on the
millielectronvolts scale, while the energy differences are on the electronvolts
scale. The atomic shells are not significantly affected by spin–orbit effects. In
nuclei the spin–orbit splitting is on the million electronvolts scale, as are the
single-particle energy differences. Yet another difference is that the splitting
order is opposite in nuclei to that in atoms. In fact, the origin of the nuclear
spin–orbit force is not well understood, and phenomenological descriptions
must be relied upon.

3.2 Woods–Saxon Wave Functions

We now give a numerical solution of the Schrödinger equation with the
Woods–Saxon potential (3.20) together with the Coulomb potential and spin–
orbit coupling. The solution is constructed in a basis of harmonic oscillator
wave functions. We therefore state their analytic properties in considerable
detail. A busy reader can skip this part without losing track of the rest of
the book. Only a few basic equations of this section are needed later, and
references to them are given in the appropriate places.
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PROTONS

~ 20 MeV

~ 6 MeV

~ 12 MeV

~ 5 MeV

~ 5 MeV

~ 5 MeV

~ 4 MeV

7/2f     −space

0d 3/2

1s1/20d 5/2
0p1/2

0s1/2

0p3/2

1p3/2

0g9/2

0f7/2

0f5/2

1p1/2

NEUTRONS

p−f −space

s−d −space

p−space

v

r

r

2

8

20

28

50

2

8

50

28

20

Fig. 3.3. Schematic view of mean-field potentials for protons and neutrons. The
magic numbers and shells of states are indicated with rough energies

We solve the Schrödinger equation with the complete Hamiltonian

h =
−�2

2mN
∇2 + v(r) + vLS(r)L · S

=
−�2

2mN

(
∇2

r −
L2/�2

r2

)
+ vWS(r) + vC(r) + vLS(r)L · S , (3.24)

where the radial derivative has the usual form (see e.g. [6])

∇2
r ≡

1
r2
d
dr

(
r2
d
dr

)
. (3.25)

The Woods–Saxon term vWS(r) is given in (3.20), and we use the parameter
values (3.21)–(3.23). The Coulombic part of the potential is

vC(r) =
Ze2

4πε0

⎧⎪⎨⎪⎩
3− (r/R)2

2R
, r ≤ R ,

1
r

, r > R ,
(3.26)



www.manaraa.com

3.2 Woods–Saxon Wave Functions 47

which is the static Coulomb potential of a uniformly charged sphere of ra-
dius R, to be taken from (3.21). The term vC(r) applies only to protons; for
neutrons it is zero.

For the spin–orbit term we use [12]

vLS(r) = v
(0)
LS

(r0
�

)2 1
r

[
d
dr

1
1 + e(r−R)/a

]
. (3.27)

The second pair of parentheses serves to indicate that the derivative does
not operate on the wave function. The r dependence is phenomenological.
The derivative makes the spin–orbit effect peak in the nuclear surface region.
However, the radial dependence is often neglected so that vLS(r) is replaced by
a constant; see Exercise 3.11. In (3.27) we use the Woods–Saxon parameters
(3.21)–(3.23) and take the strength to be

v
(0)
LS = 0.44V0 . (3.28)

Let us examine the angular momentum dependence of the wave functions
generated by the Hamiltonian (3.24), which contains the terms with L2 and
L · S. We assert that the angular momentum eigenstates of these operators
are the states |l 1

2 j m〉 of the coupled basis defined in (1.16–1.20) with j1 = l,
j2 = 1

2 . The eigenvalue Eqs. (1.17)–(1.19) become

L2|l 1
2 j m〉 = l(l + 1)�2|l 1

2 j m〉 , (3.29)

S2|l 1
2 j m〉 = 3

4�2|l 1
2 j m〉 , (3.30)

J2|l 1
2 j m〉 = j(j + 1)�2|l 1

2 j m〉 , (3.31)

Jz|l 1
2 j m〉 = m�|l 1

2 j m〉 . (3.32)

When we write J2 = (L + S)2 = L2 + 2L · S + S2 and use the preceding
equations, we see that

L · S|l 1
2 j m〉 = 1

2

[
j(j + 1)− l(l + 1)− 3

4

]
�2|l 1

2 j m〉 . (3.33)

Equations (3.29 and (3.33) prove our assertion and give the eigenvalues of the
relevant operators L2 and L · S.

This leads us to seek eigenfunctions of the Hamiltonian (3.24) in the form
|n l 1

2 j m〉, where n completes the labelling. The Schrödinger equation for this
ansatz is

h|n l 1
2 j m〉 =

{
−�2

2mN

[
∇2

r −
l(l + 1)

r2

]
+ vWS(r) + vC(r)

+ 1
2

[
j(j + 1)− l(l + 1)− 3

4

]
�2vLS(r)

}
|n l 1

2 j m〉

≡ hlj(r)|n l 1
2 j m〉

= εnlj |n l 1
2 j m〉 , (3.34)
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where the notation hlj(r) indicates that the angular momentum quantum
numbers l and j are parameters of the radial Hamiltonian. It should be in-
tuitively clear that the energy does not depend on the projection quantum
number m because all directions are equivalent for a spherically symmetric
Hamiltonian. This can also be formally proved by means of the Wigner–Eckart
theorem (2.27). Equation (3.34) is in fact the radial Schrödinger equation for
our Woods–Saxon Hamiltonian, and we can here replace the complete wave
function1 |n l 1

2 j m〉 = fnlj(r) |l 1
2 j m〉 by the radial function fnlj(r):

hlj(r)fnlj(r) = εnljfnlj(r) . (3.35)

This is the differential equation to be solved for the eigenvalues εnlj and
eigenfunctions fnlj . The eigenfunctions are orthogonal with respect to n; or-
thogonality with respect to l, j is carried by the angular momentum states
|l 1

2 j m〉. We select the phases to be real and normalize, so that we have∫ ∞
0

r2dr fnlj(r)fn′lj(r) = δnn′ . (3.36)

3.2.1 Harmonic Oscillator Wave Functions

The differential Eq. (3.35) could be solved by direct numerical methods. How-
ever, we choose to solve it by seeking the wave functions as a linear combina-
tions of harmonic oscillator wave functions gnl(r):

fnlj(r) =
∑
ν

A(nlj)
ν gνl(r) ,

∑
ν

[
A(nlj)
ν

]2 = 1 , (3.37)

where we have included the normalization condition. The solution is found
by forming the Hamiltonian matrix in the harmonic oscillator basis and di-
agonalizing it (see e.g. [6]). The angular momentum part is the same for the
Woods–Saxon and oscillator wave functions, so we may ignore it in the di-
agonalization calculation. We are thus concerned with the matrix elements∫ ∞

0

r2dr gν′l(r)hlj(r)gνl(r) ≡ 〈ν′|hlj(r)|ν〉 . (3.38)

This method of solution provides a direct comparison between Woods–Saxon
and harmonic oscillator wave functions through the expansion coefficients
A
(nlj)
ν that emerge from the process.
Let us review the oscillator functions gnl(r). For the potential (3.19) they

are solutions of the radial Schrödinger equation
1 As is customary, we are here ignoring the difference between a state vector and
its coordinate representation, the wave function. The difference is made clear in
Sect. 3.3.
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−�2

2mN

[
∇2

r −
l(l + 1)

r2

]
gnl(r)− V1 + 1

2mNω2r2gnl(r) = εnlgnl(r) , (3.39)

where

2n+ l = N = 0, 1, 2, 3, . . . , (3.40)

εnl = −V1 + (N + 3
2 )�ω = −V1 + (2n+ l + 3

2 )�ω (3.41)

are the radial quantum numbers and energy eigenvalues. Here we use the
convention where the principal quantum number n = 0, 1, 2, 3, . . . indicates
the number of nodes of the wave function, i.e. the number of places where
the wave function crosses zero. This convention is used also by some other
authors, for example [17]. Many others, e.g. [9, 10, 12, 16] use the convention
ñ = n+ 1 = 1, 2, 3, . . ., where also the zero of the wave function at the origin
is counted as a node.

The function can be written explicitly as [28]

gnl(r) =

√
2n!

b3Γ (n+ l + 3
2 )

(r

b

)l
e−r

2/2b2L
(l+ 1

2 )
n (r2/b2) , (3.42)

where L
(l+ 1

2 )
n (x) is the associated Laguerre polynomial [29]. The parameter

b is called the oscillator length. It characterizes the width of the oscillator
potential and is given by

b ≡
√

�

mNω
=

�c√
(mNc2)(�ω)

≈ 197.33√
940× �ω [MeV]

fm . (3.43)

The value of �ω can be obtained from a simple argument [16] resulting in the
formulas

�ω = 41A−1/3MeV , b = 1.005A1/6 fm , (3.44)

or from the more refined Blomqvist–Molinari formula [30], which gives satis-
factory agreement with observed charge radii,

�ω =
(
45A−1/3 − 25A−2/3

)
MeV . (3.45)

In the following, we adopt this more refined value of �ω to evaluate b.
The orthonormality relation of the oscillator functions is∫ ∞

0

r2dr gnl(r)gn′l(r) = δnn′ . (3.46)

In the present work their phase has been chosen to satisfy the requirements
[17,28]

gnl(r)
r→∞−→ (−1)n × positive function , (3.47)

gnl(r)
r→0−→ rl > 0 . (3.48)
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Some other authors use the convention Gnl(r) = (−1)ngnl(r), which leads to
positive functions at large distances and functions of varying sign, (−1)n, near
the origin.

The first three associated Laguerre polynomials are

L
(l+ 1

2 )
0 (x) = 1 , (3.49)

L
(l+ 1

2 )
1 (x) = l − x+ 3

2 , (3.50)

L
(l+ 1

2 )
2 (x) = 1

2

[
(l + 3

2 )(l +
5
2 )− 2(l +

5
2 )x+ x2

]
, (3.51)

and further polynomials can be derived e.g. by using the recursion relation [29]

L
(l+ 1

2 )
n (x) = L

(l+ 3
2 )

n (x)− L
(l+ 3

2 )
n−1 (x) . (3.52)

Numerical values for the gnl(r) can be obtained conveniently by exploiting
the auxiliary functions vnl(r) [10], defined through

gnl(r) =

√
2l+2−n(2n+ 2l + 1)!!
b3
√

πn![(2l + 1)!!]2
(r

b

)l
e−r

2/2b2vnl(r2/b2) , (3.53)

and using the recursion relations

vn,l−1(x) = vn−1,l−1(x)− 2xvn−1,l(x)/(2l + 1) , (3.54)
vnl(x) = [(2l + 1)vn,l−1(x) + 2nvn−1,l(x)] /(2n+ 2l + 1) . (3.55)

By using (3.43) and (3.53)–(3.55), one can generate the radial wave functions
gnl(r).

3.2.2 Diagonalization of the Woods–Saxon Hamiltonian

The matrix elements (3.38) are computed by numerical integration. To avoid
prior numerical differentiation by the term ∇2

r in the Woods–Saxon radial
Hamiltonian hlj(r), we take ∇2

rgln(r) from the harmonic oscillator equation
(3.39). This leaves us with

〈ν′|hlj(r)|ν〉 =
∫ ∞
0

r2dr gν′l(r)gνl(r)
[

�2

2mN

(
4n+ 2l + 3

b2
− r2

b4

)
+ vWS(r) + vC(r) + 1

2

[
j(j + 1)− l(l + 1)− 3

4

]
�2vLS(r)

]
, (3.56)

where the explicit angular momentum dependence of the spin–orbit term is
taken from (3.34).

In principle the dimension of the matrix of the Woods–Saxon Hamiltonian
is infinite. The practical dimensions are determined by the convergence of
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Table 3.1. Woods–Saxon energies εnlj and oscillator amplitudes A
(nlj)
ν , defined in

(3.35)–(3.37), for neutron single-particle states in 16O

nlj εnlj (MeV) ν = 0 ν = 1 ν = 2 ν = 3 ν = 4 ν = 5 ν = 6

0s1/2 −31.091 0.999 0.011 0.004 −0.015 −0.003 −0.002 0.000
0p3/2 −18.612 0.999 0.004 0.035 −0.024 −0.001 −0.006 0.001
0p1/2 −13.466 0.997 −0.010 0.065 −0.026 0.006 −0.009 0.002
0d5/2 −6.359 0.992 −0.057 0.098 −0.054 0.020 −0.021 0.001
1s1/2 −3.970 −0.007 0.943 −0.214 0.196 −0.126 0.074 −0.056
0d3/2 1.098 0.902 −0.242 0.250 −0.169 0.129 −0.102 0.073

Table 3.2. Woods–Saxon energies εnlj and oscillator amplitudes A
(nlj)
ν , defined in

(3.35)–(3.37), for proton single-particle states in 16O

nlj εnlj (MeV) ν = 0 ν = 1 ν = 2 ν = 3 ν = 4 ν = 5

0s1/2 −26.445 0.999 −0.011 0.005 −0.016 −0.002 −0.002
0p3/2 −14.451 0.998 −0.026 0.039 −0.029 0.002 −0.007
0p1/2 −9.328 0.995 −0.045 0.074 −0.035 0.011 −0.012
0d5/2 −2.731 0.985 −0.100 0.114 −0.071 0.033 −0.029
1s1/2 −0.709 0.015 0.905 −0.275 0.235 −0.167 0.108
0d3/2 4.088 0.807 −0.306 0.309 −0.244 0.203 −0.168

the summation over ν. Tables 3.1–3.4 give numerical examples of the ampli-
tudes A

(nlj)
ν for the neutrons and protons in the nuclei 168O8 and

40
20Ca20. The

parameters used are those given in (3.21)–(3.23) and (3.28).
The tables show that the main oscillator component for each n is ν = n.

The wave functions of the lowest-lying Woods–Saxon states are seen to match
the corresponding oscillator states almost exactly. With increasing energy
more than one oscillator wave function acquires a non-negligible amplitude in
the expansion, indicating increasing deviation from the near match.

Note that some of the highest-lying states have positive energies. These
states are discrete states; they do not belong to the continuum of free states.
They are due to the l(l + 1)/r2 term of the radial Schrödinger equation. For
l > 0 the term acts as a ‘centrifugal barrier’ for positive energies. It gives rise to
quasi-stationary, long-lived single-particle states localized within the barrier.
In our examples it is easy to understand that these states are indeed quasi-
stationary when we look at the barrier heights. The height of the centrifugal
barrier is

vcf(R) =
�2

2mN

l(l + 1)
R2

≈ 13.2A−2/3l(l + 1)MeV . (3.57)

For the 0d3/2 proton state at 4.088MeV in 16O (Table 3.1) this gives vcf(R) =
12.5MeV. Additionally we have for protons the Coulomb barrier

vC(R) =
Ze2

4πε0
1
R
≈ 1.15ZA−1/3MeV , (3.58)
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Table 3.3. Woods–Saxon energies εnlj and oscillator amplitudes A
(nlj)
ν , defined in

(3.35)–(3.37), for neutron single-particle states in 40Ca

nlj εnlj (MeV) ν = 0 ν = 1 ν = 2 ν = 3 ν = 4 ν = 5

0s1/2 −38.842 0.998 −0.051 −0.035 −0.014 0.001 0.002
0p3/2 −29.541 0.999 −0.003 −0.027 −0.025 −0.004 0.001
0p1/2 −26.942 0.999 0.039 −0.009 −0.024 −0.006 −0.001
0d5/2 −19.614 0.999 0.035 −0.003 −0.032 −0.007 −0.002
1s1/2 −15.684 0.051 0.997 0.005 0.022 −0.044 −0.004
0d3/2 −14.310 0.996 0.070 0.038 −0.027 −0.005 −0.007
0f7/2 −9.323 0.997 0.045 0.039 −0.042 −0.004 −0.010
1p3/2 −5.673 0.003 0.985 −0.088 0.109 −0.091 0.027
1p1/2 −3.320 −0.035 0.966 −0.131 0.167 −0.116 0.054
0f5/2 −1.346 0.988 −0.009 0.132 −0.064 0.031 −0.033
0g9/2 0.985 0.988 −0.010 0.120 −0.081 0.031 −0.039

Table 3.4. Woods–Saxon energies εnlj and oscillator amplitudes A
(nlj)
ν , defined in

(3.35)–(3.37), for proton single-particle states in 40Ca

nlj εnlj (MeV) ν = 0 ν = 1 ν = 2 ν = 3 ν = 4 ν = 5

0s1/2 −29.982 0.995 −0.087 −0.034 −0.014 0.002 0.003
0p3/2 −21.255 0.998 −0.044 −0.026 −0.026 −0.001 0.001
0p1/2 −18.573 0.999 −0.002 −0.009 −0.026 −0.004 −0.001
0d5/2 −11.871 0.999 −0.013 0.000 −0.037 −0.003 −0.003
1s1/2 −7.900 0.085 0.992 −0.068 0.034 −0.057 0.006
0d3/2 −6.489 0.998 0.015 0.044 −0.037 0.000 −0.010
0f7/2 −2.143 0.997 −0.016 0.050 −0.056 0.006 −0.015
1p3/2 1.092 0.041 0.946 −0.205 0.166 −0.148 0.076
0f5/2 5.542 0.945 −0.128 0.202 −0.146 0.105 −0.095

which for 16O gives vC(R) = 3.65MeV. The combined barrier height is thus
four times the single-particle energy.

Figure 3.4 shows some of the Woods–Saxon wave functions tabulated in
Tables 3.1–3.4. The examples indicate that a typical Woods–Saxon wave func-
tion strongly resembles its main oscillator component. The examples with
three components included, ν = 0, 1, 2, show good convergence. Usually full
convergence is obtained by including oscillator functions up to ν = 8 in the
expansion (3.37). It is in fact often a good approximation in nuclear structure
calculations to use pure harmonic oscillator wave functions instead of Woods–
Saxon ones. However, oscillator functions are inadequate for bound neutron s
states close to zero energy and for l > 0 states with positive energy.

Even though we have obtained accurate numerical solutions for the single-
particle states in the mean field, it is instructive to examine qualitatively the
evolution of the spectrum with the development of the Hamiltonian. Figure
3.5 shows this evolution from the simple harmonic oscillator spectrun to a
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Fig. 3.4. Plots of selected Woods–Saxon wave functions (solid line) of Tables 3.1–
3.4. The dashed line gives the leading harmonic oscillator component. The two upper
panels are for the neutron 1s1/2 and proton 0d5/2 states in

16O, the two lower panels
for the proton 1s1/2 and neutron 1p1/2 states in

40Ca. In the upper left and lower
right panels the dash-dotted line gives the result of an expansion including only
ν ≤ 2
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Woods–Saxon spectrum with spin–orbit interaction. As seen from (3.40) and
(3.41), in the oscillator potential the single-particle orbitals nlj for 2n+ l = N
are degenerate within one major oscillator shell N . All the wave functions
within this major shell have the same parity P = (−1)l = ± given by the
spherical harmonic Ylm(θ, ϕ) of the angular part of the wave function.

Adding up the number of protons or neutrons that can, according to the
Pauli principle, fill the shells in the harmonic oscillator potential, we get the
magic numbers 2, 8, 20, 40, 70, 112, . . .. The Woods–Saxon potential splits the
different l values within the same N but leaves the magic numbers unchanged.
Finally, switching on the spin–orbit interaction produces the experimentally
observed magic numbers.

We can get a clear picture of the energy separation ΔLS
nl between the spin–

orbit partners j+ = l + 1
2 and j− = l − 1

2 by using (3.33):

ΔLS
nl = εnlj− − εnlj+ ≈ −(l + 1

2 )�
2Cnl (3.59)

Cnl =
Cnlj+ + Cnlj−

2
, Cnlj =

∫ ∞
0

r2dr f2nlj(r)vLS(r) . (3.60)

The function vLS(r), given in (3.27), is negative because of the derivative, so
Cnl is negative and the spin–orbit splittingΔLS

nl is positive as shown in Fig. 3.5.
If vLS is replaced by a (negative) constant, a possibility mentioned after (3.27),
Cnlj becomes just that constant because of the normalization (3.36). Then the
splitting becomes exactly that given by (3.59), i.e. proportional to l+ 1

2 . The
spin–orbit splitting in Fig. 3.5 indeed increases visibly linearly with l, although
the figure is based on an exact Woods–Saxon calculation including the vLS(r)
of (3.27).

3.3 Many-Nucleon Configurations

Consider a nucleon moving in a central mean field v(r) with a spin–orbit po-
tential vLS(r)L · S. The central mean field can emerge from a Hartree–Fock
calculation or it can be phenomenological, e.g. of the Woods–Saxon type. As
an abbreviation we adopt the symbol x to describe both the spatial coordi-
nates r and the spin degree of freedom, represented by a spin-12 spinor; we call
this ‘coordinate representation’. The nucleon is described by the Schrödinger
equation

h(x)φα(x) = εαφα(x) , h(x) = t(r) + v(r) + vLS(r)L · S , (3.61)

where α stands for a complete set of quantum numbers necessary for describing
the state.

We assume that (3.61) has been solved, with resulting single-particle states
φα(x) and single-particle energies εα. Due to the presence of the spin–orbit
term in the Hamiltonian, the orbital angular momentum and spin cannot be
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Fig. 3.5. Evolution of the neutron single-particle spectrum of 136Xe from the har-
monic oscillator spectrum to the Woods–Saxon spectrum without and with the
spin–orbit term in (3.24). The Woods–Saxon parameters are from (3.21)–(3.23) and
the additional spin–orbit parameter from (3.28). The equivalent oscillator potential
(see Fig. 3.2) has the parameters �ω = 6.53MeV and V1 = 48.6MeV. The parity P
of each oscillator major shell is indicated

treated separately. As can be seen from (3.33), the coupled angular momentum
states |l 1

2 j m〉 are eigenstates of L · S, i.e. the spin–orbit term is diagonal in
the coupled basis. Therefore the eigenstates φα(x) are necessarily states of
the coupled basis.

Single-particle states and single-particle energies are the foundation of the
nuclear shell model. They are needed throughout this book, so a convenient
notation is desirable. Following Baranger [31] we adopt the notation

|φα〉 ≡ |α〉 ≡ |amα〉 , a = nalaja , (3.62)

Here la and ja have their usual meanings as the quantum numbers for orbital
and total angular momenta of the orbital a, while na is the additional, energy-
related quantum number often called principal quantum number; see (3.40).
The quantity mα is the z projection of ja. The coordinate representation of
the state vector |α〉 is the wave function 〈x|α〉 = φα(x). In detail we have the
single-particle wave function

〈x|α〉 = φα(x) = ηagnala(r)
[
Yla(Ω)χ 1

2

]
jamα

, Ω = (θ, ϕ) . (3.63)

We have chosen here the radial function as the harmonic oscillator function
gnala(r) discussed in Subsect. 3.2.1. This is the usual choice in microscopic
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nuclear structure calculations. The wave-function coupling of the orbital an-
gular momentum and the spin is expressed in the notation (2.50) defined for
tensor products; thus we have explicitly[

Yla(Ω)χ 1
2

]
jamα

=
∑
mm′

(la m 1
2 m′|ja mα)Ylam(Ω)χ 1

2m
′ , (3.64)

where Ylam(Ω) is an eigenfunction of orbital angular momentum (spherical
harmonic) and χ 1

2m
is a spin-12 eigenspinor. In matrix representation the

spinors are

χ 1
2
1
2
≡ χ+ ≡ χ↑ =

(
1
0

)
, (3.65)

χ 1
2 ,− 1

2
≡ χ− ≡ χ↓ =

(
0
1

)
. (3.66)

The phase factor ηa in (3.63) depends on the adopted phase convention.
There are two widely used phase conventions, namely

ηa =

{
1 Condon–Shortley phase convention ,

ila Biedenharn–Rose phase convention .
(3.67)

The CS phase convention [32] is common in the literature on the nuclear
shell model, whereas the BR convention [33] is used when dealing with BCS
(Bardeen–Cooper–Schrieffer) quasiparticles. With the BR phase convention
the BCS occupation amplitudes ua(BR) are all positive, whereas within the CS
phase convention the sign is given by ua(CS) = (−1)laua(BR). Here we adopt
the Condon–Shortley phase convention, but keep the discussion so general
that it is easy to switch between the two conventions.

The single-particle wave functions φα(x) form an orthonormal and com-
plete set:

〈α|β〉 =
∫

φ†α(x)φβ(x)d
3r = δαβ (orthonormality) , (3.68)

∑
α

φα(x)φ†α(x
′) = δ(r − r′) (completeness) , (3.69)

where the bra part contains Hermitian conjugation, rather than mere complex
conjugation, because of the presence of the spinor χ 1

2ms
. The orthonormality

and completeness relations for the spin-12 spinors are

χ†1
2m

χ 1
2m

′ = δmm′ , (3.70)∑
m

χ 1
2m

χ†1
2m

= 12 , (3.71)

where 12 is the unit two-by-two matrix.
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The delta symbol in (3.68) contains all the quantum numbers of (3.62),
i.e.

δαβ = δnanbδlalbδjajbδmαmβ . (3.72)

The A-nucleon wave function has to be antisymmetric with respect to
the exchange of any two protons or any two neutrons, due to the quantum
statistics of identical fermions. We write the A-nucleon wave function as a
product of a proton factor and a neutron factor,

ΨA(x1,x2, . . . ,xA) = ΨZ(x1,x2, . . . ,xZ)ΨN (y1,y2, . . . ,yN ) . (3.73)

Applied to the protons, the antisymmetry requirement is

PijΨZ(x1, . . . ,xi, . . . ,xj , . . . ,xZ) = ΨZ(x1, . . . ,xj , . . . ,xi, . . . ,xZ)
= −ΨZ(x1, . . . ,xi, . . . ,xj , . . . ,xZ) (3.74)

for any exchange (i, j). Antisymmetry is similarly required of ΨN . As noted
already in Subsect. 3.1.1, an antisymmetric wave function can be written as
a Slater determinant. The Z-proton wave function thus becomes

ΨZ = Ψπ1π2···πZ (x1,x2, . . . ,xZ) = A
[

Z∏
i=1

φπi(xi)

]

=
1√
Z!

∣∣∣∣∣∣∣∣∣
φπ1(x1) φπ1(x2) · · · φπ1(xZ)
φπ2(x1) φπ2(x2) · · · φπ2(xZ)

...
...

. . .
...

φπZ (x1) φπZ (x2) · · · φπZ (xZ)

∣∣∣∣∣∣∣∣∣ , (3.75)

where the label πi contains all the quantum numbers of a proton orbital.
We note in passing that the antisymmetrizer can be expressed formally as

A = 1√
Z!

∑
P∈SZ

sign(P )
∏
ij

Pij , (3.76)

where Pij exchanges the pair (i, j), sign(P ) = −1 for an odd number of pair
exchanges, and SZ is the permutation group of Z particles that includes all
possible Z-particle permutations.

Combining the similar proton and neutron parts we can write the total
A-nucleon wave function as

Ψπ1π2···πZν1ν2···νN (x1,x2, . . . ,xZ ,y1,y2, . . . ,yN )
= Ψπ1π2···πZ (x1,x2, . . . ,xZ)Ψν1ν2···νN (y1,y2, . . . ,yN ) , (3.77)

where the labels νi contain the quantum numbers of the neutron single-particle
orbitals.
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All properties of the antisymmetric Z-proton (N -neutron) wave functions
follow from the properties of the determinant (3.75). Taking πi = πj for a
given pair i, j means that the ith and jth rows of the determinant are equal.
Then the determinant vanishes, and so the Z-proton wave function vanishes.
This is nothing but the Pauli exclusion principle: two identical nucleons may
not occupy the same quantum state φπ.

Let us discuss now the possible mean-field proton configurations given by
sets of the quantum numbers (π1, π2, . . . , πZ). Due to the spherical symmetry
of the Hamiltonian, all the 2jp + 1 proton single-particle states |pmπ〉, mπ =
−jp,−jp + 1, . . . , jp − 1, jp are degenerate, i.e. they have the same energy. As
an example we can take the neon (Ne) nucleus with Z = 10. The proton
ground-state configuration can be schematically written as2

Ψ(Z=10)
0 (x1,x2, . . . ,x10)

= A
[
φ0s1/2(x1)φ0s1/2(x2)φ0p3/2(x3) · · ·φ0d5/2(x10)

]
. (3.78)

This state is constructed on the principle that the 0s1/2 orbital can accom-
modate two protons, the 0p3/2 orbital four protons, the 0p1/2 orbital two
protons and, finally, the 0d5/2 orbital six protons. For simplicity of notation,
the proton label π has been suppressed since only proton orbitals are involved.
Proton configurations for Z = 10 are depicted in Fig. 3.6.

When the protons move independently in the mean field, their contribution
to the ground-state energy is given by

E
(Z=10)
0 = 2ε0s1/2 + 4ε0p3/2 + 2ε0p1/2 + 2ε0d5/2 . (3.79)

Treating the first excited proton state similarly to the ground state we have
its wave function

Ψ(Z=10)
1 (x1,x2, . . . ,x10)

= A
[
φ0s1/2(x1)φ0s1/2(x2) · · ·φ0d5/2(x9)φ1s1/2(x10)

]
, (3.80)

with the associated energy

E
(Z=10)
1 = 2ε0s1/2 + 4ε0p3/2 + 2ε0p1/2 + ε0d5/2 + ε1s1/2 . (3.81)

This and some other excited-state configurations are illustrated in Fig. 3.6.
So far we have looked only at the protons of the neon nucleus. However, to
obtain the states of a given isotope A

10NeN , say
20
10Ne10, one has to take into

account also the neutron configurations.
Below we note some further aspects of the preceding discussion.

2 The various possible intermediate and final angular momentum couplings are
disregarded.



www.manaraa.com

3.3 Many-Nucleon Configurations 59

ε
F

(p)

ground
state

Z=10             Ne

2

8

20

φ0s1/2

φ1s1/2

φ0p1/2φ0p3/2

r
v(r)

1. excited
state state

2. excited 3. excited
state

φ0d

φ0d

5/2

3/2

Fig. 3.6. Ground-state and excited-state configurations for the 10 protons of the
neon nucleus. The symbol ε

(π)
F denotes the position of the proton Fermi level, which

is located at the last occupied single-particle level in the ground-state configuration

• In our example of proton configurations in Ne the excitation energy from
the ground-state configuration to the first excited configuration is

E
(Z=10)
1 − E

(Z=10)
0 = ε1s1/2 − ε0d5/2 , (3.82)

corresponding to a jump of one proton from the d5/2 orbital to the s1/2
orbital. The second and third excited states can be interpreted as similar
jumps of one or two protons from the ground-state configuration, as shown
in Fig. 3.6.

• Each Z-proton (N -neutron) Slater determinant corresponds to one
Z-proton (N -neutron) configuration.

• The energy of the highest occupied single-particle state in the ground-
state configuration is called the Fermi energy. In a nucleus, we have both
a proton and a neutron Fermi energy. The Fermi level, or Fermi surface,
is located at the Fermi energy.

Before closing this chapter, let us generalize the orthonormality and com-
pleteness relations (3.68) and (3.69) to many-nucleon configurations. The
Z-proton Slater determinants form an orthonormal and complete set of wave
functions. For orthonormality we have
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d3r1d3r2 · · ·d3rZΨ†π1π2···πZ (x1,x2, . . . ,xZ)Ψπ′

1π
′
2···π′

Z
(x1,x2, . . . ,xZ)

= δπ1π′
1
δπ2π′

2
· · · δπZπ′

Z
(orthonormality) .

(3.83)
The completeness relation is∑

π1···πZ
Ψπ1π2···πZ (x1,x2, . . . ,xZ)Ψ†π1π2···πZ (x

′
1,x
′
2, . . . ,x

′
Z)

= δ(r1 − r′1)δ(r2 − r′2) · · · δ(rZ − r′Z) (completeness) ,
(3.84)

where the sum runs over all possible Z-proton configurations. Similar expres-
sions are valid for the neutrons.

As noted in (3.63), the relation between a one-proton state vector |π〉 and
its coordinate representation, the wave function φπ(x), is φπ(x) = 〈x|π〉,
where |x〉 is the state vector describing a particle in the infinitesimal vicinity
of x with a definite spin (see e.g. [6]). We now generalize this notion to the
case of Z protons:

Ψπ1π2···πZ (x1,x2, . . . ,xZ) = 〈x1,x2, . . . ,xZ |π1 π2 · · · πZ〉 , (3.85)

where |π1 π2 · · · πZ〉 is an antisymmetrized state vector with the single-
particle states |π1〉, . . . , |πZ〉 occupied. A corresponding expression applies to
neutrons.

Epilogue

In this chapter we introduced and discussed the very basic concept of the nu-
clear shell model, the nuclear mean field. It was conjectured that a large part
of the nucleon–nucleon interaction can be hidden in Slater determinants that
describe non-interacting nucleons moving in the mean-field orbitals. These
wave functions can be considered as zeroth-order approximations to the true
many-body wave functions of A interacting nucleons. In the remaining chap-
ters we present and investigate various approximation schemes for the true
many-nucleon wave functions. In all of these more sophisticated schemes the
notion of the mean-field single-particle space plays a crucial role.

Exercises

3.1. Using the Wigner–Eckart theorem prove that the eigenvalues of a scalar
Hamiltonian like (3.24) are independent of the projection quantum numberm.

3.2. Derive (3.56).
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3.3. By using (3.21), (3.43) and (3.44) show that

R

b
≈ 1.26A1/6 . (3.86)

3.4. Derive an expression for the Laguerre polynomial L(l+ 1
2 )

3 (x) by using the
relations (3.53)–(3.55).

3.5. Verify the numerical values and A dependence in (3.57) and (3.58).

3.6. In (3.60) one can substitute the harmonic oscillator radial wave functions
for the Woods–Saxon ones to produce

Cnl ≈
∫ ∞
0

r2dr g2nl(r)vLS(r) . (3.87)

Show that to a fair approximation

Cnl ≈ v
(0)
LS

(r0
�

)2
Rg2nl(R) , (3.88)

where R is the nuclear radius and the constant v
(0)
LS is given in (3.28).

3.7. By using (3.88) show that one can write

ΔLS
0l ≈ 22.44A−1/6 exp

(
−1.60A1/3

) 2l+1

√
π(2l − 1)!!

(
1.60A1/3

)l
MeV . (3.89)

3.8. Verify the relations (3.70) and (3.71).

3.9. Verify the validity of the orthonormality relation (3.68) for the harmonic
oscillator wave functions (3.63).

3.10. Verify the validity of the completeness relation (3.69) by assuming the
completeness ∑

nalamα

F ∗nalamα(r)Fnalamα(r
′) = δ(r − r′) ,

Fnalamα(r) ≡ gnala(r)Ylamα(Ω) ,
(3.90)

of the harmonic oscillator wave functions.

3.11. Calculate the values of the overlap intergrals∫ ∞
0

g0s(r)g0p(r)r2dr ,

∫ ∞
0

g0s(r)g0d(r)r2dr ,

where the gnl(r) are harmonic oscillator wave functions (3.42).
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3.12. Calculate the spin–orbit splitting of the 0p orbital in the nucleus 12C.
Assume that the spin–orbit interaction is

vLS = v0L · S/�2 , v0 = −20A−2/3MeV , (3.91)

where v0 has been estimated from experimental data.

3.13. Construct a harmonic oscillator potential for the neutrons of 16O such
that it is equivalent to the Woods–Saxon potential used to produce the data
given in Table 3.1. To achieve this, select �ω to equal the Woods–Saxon 0p3/2
excitation energy. Then choose V1 so that the 0s1/2 energy is the same for
both potentials. Sketch a figure like Fig. 3.2.

3.14. Consider the protons of the nucleus 40Ca. Write down the radial Woods–
Saxon wave function for each of the orbitals 0s1/2, 0p3/2 and 0p1/2 in terms
of harmonic oscillator wave functions. Use the data of Table 3.4 and include
the first three terms. Plot the functions.
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Occupation Number Representation

Prologue

The first two chapters of this book presented angular momentum algebra as
the basic tool of nuclear theory. That includes angular momentum coupling
coefficients, spherical tensor operators and reduced matrix elements. In the
preceding chapter we introduced the mean-field concept, along with associated
many-nucleon wave functions, Slater determinants, describing configurations
of non-interacting particles in mean-field single-particle orbitals.

In this chapter we introduce an alternative to the traditional wave function
concept, namely the occupation number representation. This new concept can
be viewed as a clever book-keeping method for manipulating many-nucleon
wave functions and their matrix elements. The method incorporates the notion
of a Slater determinant in such a way that mathematical manipulations in
actual calculations are much more elegant and tractable than when operating
directly with the many-nucleon wave function.

In occupation number representation, state vectors of different particle
numbers can be discussed within the same formalism by introducing the so-
called Fock space with its particle creation and annihilation operators. The
fermionic character of nucleons is taken into account by anticommutation rules
for these operators. Towards the end of this chapter we present a powerful
method, known as Wick’s theorem, for calculating nuclear matrix elements
and apply it to derive the Hartree–Fock equation.

4.1 Occupation Number Representation of
Many-Nucleon States

Manipulation of many-nucleon wave functions, the Slater determinants of
Sect. 3.2, can be tedious even if the number of nucleons is small. To make
things easier and more systematic, an efficient book-keeping method is needed.
The introduction of such a method is the subject of the present chapter.
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We start by discussing the basic principles of many-body quantum me-
chanics from the point of view of particle creation and annihilation. Conven-
tionally this type of approach to the quantum many-body problem is called
second quantization. A more appropriate name, however, is occupation number
representation.

4.1.1 Fock Space: Particle Creation and Annihilation

States in occupation number representation exist in so-called Fock space. This
space is constructed as follows. Consider a given set of single-particle states
{|αi〉}. Build from them the complete set of N -particle basis states, Slater
determinants:

{|α1 α2 . . . αN 〉}α1α2···αN .

The notation means that all basis vectors with different sets of N single-
particle quantum numbers, i.e. all N -particle configurations, are included.
These vectors span the Hilbert space for N identical fermions in the given
single-particle states. The totality of these Hilbert spaces with different values
of N is the Fock space built on the single-particle states.

The basis vectors of a Fock space, which are Fock vectors, can be specified
by listing the occupation numbers of the single-particle states, i.e.

|α1 α2 . . . αN 〉 = |n1 n2 n3 . . .〉 , (4.1)

where

ni =

{
1 , if i ∈ {α1, . . . , αN}
0 , if i /∈ {α1, . . . , αN}

,

∞∑
i=1

ni = N . (4.2)

So, instead of having a set of N single-particle quantum numbers, in occu-
pation number representation we have N occupation numbers ni = 1 for the
occupied single-particle orbitals i.

Fock space is convenient for handling operators that change particle num-
ber. We denote such operators by c†α and its Hermitian conjugate cα, and they
have the following properties:

c†α gives birth to a nucleon in state |α〉 (creation operator),
cα deletes a nucleon from state |α〉 (annihilation operator).

Their action on a Fock vector |n1 n2 n3 . . .〉 is defined by

c†α|n1 . . . nα . . .〉 =
{
ηα|n1 . . . nα + 1 . . .〉 , if nα = 0 ,

0 , if nα = 1 ,
(4.3)

cα|n1 . . . nα . . .〉 =
{
ηα|n1 . . . nα − 1 . . .〉 , if nα = 1 ,

0 , if nα = 0 ,
(4.4)
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where
ηα ≡ (−1)

∑
β<α nβ = ±1 . (4.5)

The phase factor ηα can be justified by using the following construction.
Let us write the N -particle state as

|α1 α2 . . . αN 〉 ≡ c†α1c
†
α2 · · · c

†
αN |0〉 =

∏
α

(
c†α

)nα |0〉 , (4.6)

where the particle vacuum |0〉 is defined as

|0〉 ≡ |0 0 0 . . .〉 . (4.7)

Note the convention we adopt for the order of writing creation operators; this
is our standard order. For the vacuum we have from (4.4)

cα|0〉 = 0 for all α . (4.8)

The phase factor ηα relates to changes in the ordering of creation operators
in (4.6). Since the creation operators create, and the annihilation operators
annihilate, fermions, they satisfy the anticommutation relations{

cα, cβ
}
= 0 ,

{
c†α, c

†
β

}
= 0 for all α, β,{

cα, c
†
β

}
= δαβ ,

(4.9)

where {· · · } is an anticommutator :

{A,B} ≡ AB +BA . (4.10)

The phase factor ηα depends on the standard order of creation opera-
tors.1 One has to anticommute a creation or an annihilation operator through∑

β<α nβ creation operators when acting on a state vector |n1 n2 n3 . . .〉 of N
particles to produce a state vector of N+1 or N−1 particles with its creation
operators in standard order.

Equation (4.6) defines the order in which an ordered set, labelled 1, 2, . . .,
of creation operators are applied to the vacuum state. However, given a set
of creation operators, in practice one has to label them first in a definite
order. In this work we label according to increasing single-particle energy. Thus
our labelling order is 0s1/2, 0p3/2, 0p1/2, 0d5/2, 1s1/2, 0d3/2, 0f7/2, . . .. The
degenerate angular momentum substates we order in a sequence of increasing
m quantum number.

1 The standard order opposite to ours is also known in the literature, e.g. [17], so
that |α1 α2 . . . αN 〉 ≡ c†αN c†αN−1 · · · c†α1 |0〉.
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4.1.2 Further Properties of Creation and Annihilation Operators

We list here some specific properties of the creation and annihilation opera-
tors. As noted above in passing, creation and annihilation operators are related
by Hermitian conjugation, (

c†α
)†
= cα . (4.11)

The coordinate representation, i.e. the wave function, of a single-particle state
is obtained as

φα(x) = 〈x|α〉 = 〈x|c†α|0〉 . (4.12)

Equation (3.63) shows that the two different phase conventions (3.67)
for single-particle wave functions imply corresponding phase conventions for
creation operators. The Condon–Shortley creation operator c†α(CS) and the
Biedenharn–Rose one c†α(BR) are related through

c†α(BR) = i
lac†α(CS) , (4.13)

leading to
cα(BR) = (−1)la ilacα(CS) . (4.14)

The commutation relations of creation and annihilation operators are, how-
ever, the same for the CS and BR phase conventions, as given by (4.9).

So far we have considered only one given species of identical fermions,
either protons or neutrons. The wave function of N protons or N neutrons
is of the form (4.6); in coordinate representation it is a Slater determinant
like (3.75).2 Such a wave function is antisymmetric under the exchange of any
two particles. A wave function containing both protons and neutrons is of the
form (3.77), with no antisymmetry requirement between proton and neutron
labels. However, in occupation number representation it is convenient to treat
protons and neutrons on an equal footing, so that their mutual creation and
annihilation operators anticommute. We thus extend the anticommutation
relations (4.9) to include{

cπ, cν
}
= 0 ,

{
c†π, c

†
ν

}
= 0 ,

{
cπ, c

†
ν

}
= 0 . (4.15)

This extension is essentially notational and has no physical consequences.
In the isospin formalism, introduced in Sect. 5.5, protons and neutrons are
treated as members of the same species, the nucleon. Then the anticommuta-
tion relations (4.9) apply so that α and β include the isospin labels.

One operator that frequently appears in computations of nuclear proper-
ties is the particle number operator n̂, defined as

n̂ = n̂p + n̂n =
∑
π

n̂π +
∑
ν

n̂ν =
∑
π

c†πcπ +
∑
ν

c†νcν , (4.16)

2 States of the form (4.6) are frequently called Slater determinants even when not
using coordinate representation.
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where n̂p and n̂n are the particle number operators for protons and neutrons
respectively. The sums in these operators run over all proton (labels π) or neu-
tron (labels ν) single-particle states. The eigenvalue equations for the number
operators are

n̂p|π1 π2 . . . πZ ν1 ν2 . . . νN 〉 = Z|π1 π2 . . . πZ ν1 ν2 . . . νN 〉 , (4.17)
n̂n|π1 π2 . . . πZ ν1 ν2 . . . νN 〉 = N |π1 π2 . . . πZ ν1 ν2 . . . νN 〉 . (4.18)

4.2 Operators and Their Matrix Elements

In this section we discuss the occupation number representation of one- and
two-body operators. In addition, the matrix elements of spherical tensors are
discussed in considerable detail.

4.2.1 Occupation Number Representation of One-Body Operators

Let t be a one-body operator, e.g. the kinetic energy of a particle. A one-body
operator is an operator which acts on the coordinates, including spin, of only
one particle at a time. If this is particle number i, the one-body operator is
t(i). In coordinate representation it is t(xi), where xi comprises both the space
and spin variables. The total effect of an operator T acting on a nucleus is
obtained by summing the actions on individual nucleons, i.e. T =

∑A
i=1 t(xi).

A familiar example of a one-body operator is the kinetic-energy operator which
depends only on the space variables ri.

It can be proved that a general one-body operator can be expressed in
occupation number representation as

T =
A∑
i=1

t(xi) =
∑
αβ

tαβc
†
αcβ ,

tαβ ≡ 〈α|T |β〉 =
∫

φ†α(x)t(x)φβ(x)d
3r .

(4.19)

Example 4.1
The angular momentum operators Jz and J± can be expressed in occupation
number representation as

Jz = �
∑
α

mαc
†
αcα , J± = �

∑
α

m∓α c†αcα∓1 , (4.20)

where
m±α ≡

√
(ja ±mα + 1)(ja ∓mα) , cα±1 ≡ ca,mα±1 . (4.21)

This representation of the angular momentum operators can be conveniently
used in the commutation relations (2.12) to test whether a set of operators
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form a spherical tensor. In this way one can show that the operators c†α and
c̃α are spherical tensors of rank ja. Note that this expands the concept of
spherical tensor to odd-half-integer ranks.

For a one-body spherical tensor operator Tλμ one can derive the following,
very useful formula:

Tλμ =
∑
αβ

〈α|Tλμ|β〉c†αcβ = λ̂−1
∑
ab

(a‖T λ‖b)
[
c†ac̃b

]
λμ

, (4.22)

where the tilde operator

c̃α ≡ (−1)ja+mαc−α , c−α = ca,−mα (4.23)

is an annihilation operator with the proper behaviour of a spherical tensor of
rank ja. The matrix element 〈α|Tλμ|β〉 is the single-particle matrix element,
and the matrix element (a‖T λ‖b) is the reduced single-particle matrix element.
The matrix elements carry the information about the properties of the one-
body operator involved.

The single-particle matrix elements completely characterize the operator;
they have nothing to do with the many-body aspects of nuclear structure. The
many-nucleon aspects are probed by the latter part of Tλμ, namely the part
containing the particle creation and annihilation operators. One can imagine
that the one-body operator probes the nucleus by scattering particles from one
single-particle orbital to another. To each scattering it attaches an amplitude,
the single-particle matrix element, characterizing the scattering properties of
the operator itself.

4.2.2 Matrix Elements of One-Body Operators

When evaluating electromagnetic or beta decay rates, one needs to compute
matrix elements of the one-body operators in (4.22), of the type

〈ξf Jf Mf |Tλμ|ξi Ji Mi〉 =
∑
αβ

〈α|Tλμ|β〉〈ξf Jf Mf |c†αcβ |ξi Ji Mi〉 , (4.24)

where ξ represents one or more additional quantum numbers needed to com-
pletely specify each state of the system. Applying the Wigner–Eckart theorem
to this yields the very important expression

(ξf Jf‖T λ‖ξi Ji) = λ̂−1
∑
ab

(a‖T λ‖b)(ξf Jf‖
[
c†ac̃b

]
λ
‖ξi Ji) . (4.25)

The reduced matrix element (4.25) is called the transition amplitude; when
referring to a decay process it can also be called the decay amplitude. The ma-
trix element 〈ξf Jf Mf |c†αcβ |ξi Ji Mi〉 is called the one-body transition den-
sity, and the reduced matrix element (ξf Jf‖

[
c†ac̃b

]
λ
‖ξi Ji) is called the reduced
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one-body transition density. The transition densities characterize the many-
nucleon properties of the initial (i) and final (f) nuclear states. They do not
contain any information about the transition operator beyond its one-body
character.

4.2.3 Occupation Number Representation of Two-Body Operators

A two-body operator v(i, j), e.g. the potential energy of interaction, acts si-
multaneously on the observables of two particles i and j. One can sum all the
pairwise actions of this operator to produce the total action V . In coordinate
representation its expression is

V =
∑
i<j

v(xi,xj) = 1
2

∑
i�=j

v(xi,xj) , (4.26)

where we allow also a spin dependence for the two-body operator. It can be
shown that in occupation number representation

V = 1
2

∑
αβγδ

vαβγδc
†
αc
†
βcδcγ ,

vαβγδ =
∫

φ†α(x1)φ
†
β(x2)v(x1,x2)φγ(x1)φδ(x2)d3r1d3r2 .

(4.27)

In addition to spatial coordinates and spin variables the two-body operator
v(i, j) can contain isospin dependence. In that case the single-particle wave
functions carry also isospin labels. An isospin-dependent two-nucleon interac-
tion is an important practical example.

It is convenient to write the two-nucleon interaction V by using an anti-
symmetrized two-nucleon interaction matrix element v̄αβγδ:

V = 1
4

∑
αβγδ

v̄αβγδc
†
αc
†
βcδcγ , v̄αβγδ ≡ vαβγδ − vαβδγ , (4.28)

with the symmetry properties3

v̄αβγδ = −v̄βαγδ = −v̄αβδγ = v̄βαδγ = v̄∗γδαβ . (4.29)

These symmetries are helpful in actual calculations. It is worth noting that
the antisymmetrized matrix element (4.29) is the same as the normalized and
antisymmetrized two-body matrix element defined by some authors, e.g. [17]:

v̄αβγδ = n.as.〈αβ|V |γδ〉n.as. . (4.30)

3 See also (13.127).
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4.3 Evaluation of Many-Nucleon Matrix Elements

We now discuss the evaluation of many-particle matrix elements of the type

〈α1 α2 . . . αN |O|β1 β2 . . . βN ′〉 ,

where O is an operator corresponding to a nuclear observable. Computation
of matrix elements of this type is considerably simplified by resorting to a
particular formalism that paves the way to Wick’s theorem. This formalism
consists of several auxiliary operations, called normal ordering, contraction,
etc. These operations are discussed in detail in this section.

4.3.1 Normal Ordering

The development of our mathematical machinery starts by introducing the
normal-ordered productN [· · · ]. Let

∏
(· · · ) be a product of creation operators

from the set
{
A†k

}
and annihilation operators from the set

{
Ak

}
(annihilation

operators relative to a vacuum |Ψ0〉),∏
=

∏({
Ak

}
,
{
A†l

})
.

Then N
[∏ ]

is the normal-ordered product of the operators if

N
[∏ ]

= (−1)P
∏(

creation × annihilation
)
, (4.31)

where P is the number of transpositions (exchanges of places of two particles)
needed to transport all the annihilation operators to the right of the creation
operators. For fermion single-particle operators, transpositions of a creation
operator and an annihilation operator ignore the δαβ part of the anticommu-
tation rule in (4.9). Thus in the normal-ordering process all fermion creation
and annihilation operators are taken to anticommute. This is just a definition
of a mathematical procedure, not a violation of the fermion nature of the
operators.

The final normal-ordered product is not uniquely defined since one can
anticommute among the creation operators and among the annihilation op-
erators according to (4.9). All forms obtained by such anticommutation are
considered to be equivalent.

Example 4.2
Consider the following normal ordering of a product, where the annihilation
operators cα annihilate the particle vacuum |0〉:

N
[
c†αcβc

†
γcδ

]
= (−1)1c†αc†γcβcδ = (−1)2c†αc†γcδcβ .

The resulting two forms of the normal-ordered product are equivalent. The
first phase factor arises from the single transposition exchanging the places
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of cβ and c†γ . This is the relevant transposition. The second transposition is
allowed by the anticommutation rule of two annihilation operators and thus
produces an equivalent form of normal ordering.

A frequently used alternative notation for the normal ordering is

N [ABC · · · ] ≡ : ABC · · · : , (4.32)

where A,B,C, . . . are arbitrary operators and the two colons separate the
product to be normal ordered.

It is important to recognize that normal ordering is always relative to a
given vacuum |Ψ0〉. Usually, but not always, the annihilation operators in-
volved are defined with respect to this particular vacuum. In this case the
vacuum expectation value of the normal-ordered product clearly vanishes. It
is also clear that the normal ordering is a linear operation, i.e.

N
[
λ1

∏
+λ2

∏′ ] = λ1N
[∏ ]

+ λ2N
[∏′ ]

, (4.33)

N
[∏(∏′+∏′′ )] = N [∏∏′ ]+N [∏∏′′ ] (4.34)

for any c-numbers λ1 and λ2 and any products involved.

4.3.2 Contractions

Now we are ready to enter the second phase of development of the machinery
for matrix element computation. For a given species of fermion, let A be any
creation or annihilation operator and B likewise. Then their contraction is
defined as

AB ≡ AB −N [AB] . (4.35)

This is a c-number, as is easily seen. In fact, performing a contraction can be
viewed as an operation with respect to the vacuum specified by the normal
ordering in the definition (4.35). It is also easily seen that

{A,B} = 0 implies AB = 0 , (4.36)

i.e. that the contraction of two anticommuting operators vanishes. Further-
more, if A and B are operators associated with the vacuum |Ψ0〉, we have
〈Ψ0|N [AB]|Ψ0〉 = 0. It follows that

〈Ψ0|AB|Ψ0〉 = 〈Ψ0|AB|Ψ0〉 = AB .

So from the fact that a contraction is a c-number we have the important result

AB = 〈Ψ0|AB|Ψ0〉 . (4.37)
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Here the contraction, the related normal ordering and the operators are de-
fined with respect to the same vacuum |Ψ0〉.

Example 4.3
Let us apply (4.37) to particle creation and annihilation operators with respect
to the particle vacuum |0〉:

ckc
†
l = 〈0|ckc

†
l |0〉 = δkl , c†kcl = 0 , c†kc

†
l = 0 , ckcl = 0 . (4.38)

In the general case we define

AB ≡ 〈φ0|AB|φ0〉 (4.39)

as a contraction with respect to the vacuum |φ0〉, even if A and B were defined
with respect to some other vacuum |Ψ0〉. Examples of the use of this definition
come later, e.g. in the case where the contractions of particle creation and
annihilation operators are taken with respect to the particle–hole vacuum.

4.3.3 Wick’s Theorem

Next we combine normal-ordered products with contractions. A normal-
ordered product containing contractions is of the form

N [ABCDE · · ·XY Z] ≡ (−1)PBEDYN
[
AC · · ·XZ

]
, (4.40)

where P is that number of operator transpositions which takes all contracted
pairs to the left of the normal-ordered operator product. With the concepts
defined, we now state without proof Wick’s theorem [34]:

ABCDEF · · ·
= N

[
ABCDEF · · ·

]
+N

[
ABCDEF · · ·

]
+N

[
ABCDEF · · ·

]
+ all other 1-contractions

+N
[
ABCDEF · · ·

]
+ all other 2-contractions

+ · · ·
+ all normal-ordered terms with n contractions
+ · · ·
+ all terms with all pairs contracted .

(4.41)
Wick’s theorem is valid for any vacuum |φ0〉 when the normal ordering is

taken with respect to that vacuum. Since the vacuum expectation value of all
normal-ordered terms vanishes we have the compact result



www.manaraa.com

4.3 Evaluation of Many-Nucleon Matrix Elements 73

〈φ0|ABCDEF · · · |φ0〉 =
∑

all contraction
combinations

(−1)no. of contraction line crossings

× product with all pairs contracted .

(4.42)
This formula means that one has to form all possible completely contracted
products and sum them with appropriate phase factors. The phase factor is
+1 if the number of intersections of contraction lines is even and −1 if it is
odd. Next we show some simple examples of the use of this powerful result.

Example 4.4
The normalization of the one-particle states c†α|0〉 can be verified as follows:

〈α|β〉 = 〈0|cαc†β |0〉 = 〈0|cαc
†
β |0〉 = (−1)0cαc

†
β = δαβ .

In this trivial example there are no crossings of contraction lines and the value
of the contraction is given in (4.38).

Example 4.5
The calculation of the matrix element of a one-body operator T for the one-
particle states c†α|0〉 proceeds as follows:

〈α|T |β〉 =
∑
α′β′

tα′β′〈0|cαc†α′cβ′c†β |0〉

=
∑
α′β′

tα′β′〈0|cαc†α′cβ′c†β + cαc
†
α′cβ′c†β + cαc

†
α′cβ′c†β |0〉

=
∑
α′β′

tα′β′
[
(−1)0cαc†α′cβ′c†β + (−1)1cαcβ′c†α′c

†
β + (−1)0cαc

†
βc
†
α′cβ′

]
=

∑
α′β′

tα′β′ [δαα′δβ′β − 0 + 0] = tαβ , (4.43)

where we have taken the contractions from (4.38). This result in fact proves
(4.19) for the case of one-particle states.

Example 4.6
The overlap of the two-particle states |αβ〉 = c†αc

†
β |0〉, α 	= β, is calculated as

follows:

〈αβ|γδ〉 = 〈0|cβcαc†γc
†
δ|0〉 = 〈0|cβcαc†γc

†
δ|0〉+ 〈0|cβcαc†γc

†
δ|0〉

= δβδδαγ − δβγδαδ . (4.44)

This verifies that 〈αβ|αβ〉 = 1. For the two-body interaction V , as expressed
in (4.28), a similar calculation gives

〈αβ|V |γδ〉 = v̄αβγδ . (4.45)
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This proves (4.27), via (4.28), for the case of two-particle states. It also con-
firms that the matrix element (4.30) is indeed computed with antisymmetrized
and normalized two-particle states.

4.4 Particle–Hole Representation

In this section we define the particle operators c†α, cα and hole operators
h†α, hα, and the associated vacuum which is annihilated by annihilation op-
erators of both types. This vacuum is called the particle–hole vacuum (or
the Hartree–Fock vacuum) and is denoted by |HF〉. This vacuum contains A
non-interacting nucleons, namely Z protons and N neutrons. The nucleus is
assumed to be in its ground state, i.e. the energy levels filled up to the proton
and neutron Fermi levels. Then the nucleus is said to be in its particle–hole
ground state. The situation is illustrated in Fig. 4.1.

εF

r
v(r)

hβ HF

cα

fully occupied

Fig. 4.1. Particle–hole vacuum and a particle–hole excitation

This type of a vacuum is reasonable to define for nuclei at closed major
shells. These closed-shell nuclei or doubly magic nuclei display a hierarchy
of particle–hole excitations, as is discussed at the end of this section. When
departing from a full major shell, this hierarchy is lost. Such open-shell nuclei
are treated by other methods. One of the most successful of them is the use
of BCS quasiparticles, extensively discussed in the latter half of this book.

The operators corresponding to the particle–hole vacuum are defined sep-
arately below and above the Fermi surface. The orbitals above the Fermi
surface are particle orbitals and those below are hole orbitals. The notation is
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c†α , cα when εα > εF ,

h†β = c̃β , hβ = c̃†β when εβ ≤ εF ,
(4.46)

where
c̃β = (−1)jb+mβc−β , −β = (b,−mβ) . (4.47)

The c†α create particles above the Fermi surface, whereas the h†β annihilate
particles and thus create holes below the Fermi surface. In this introductory
section we take the index α to denote an orbital above the Fermi surface
(εα > εF) and the index β to denote one below (εβ ≤ εF). In subsequent
sections this convention is abandoned and the location of an orbital relative
to the Fermi surface, whenever known, is indicated explicitly, e.g. under a
summation symbol.

4.4.1 Properties of Particle and Hole Operators

Equations (4.46) and (4.47) lead to the following useful relations between the
particle and hole operators:

cβ = −h̃†β , c†β = −h̃β (εβ ≤ εF) . (4.48)

The hole operators h†β and h̃β are spherical tensors of rank jb since they
are constructed from the spherical tensors c̃β and c†β , respectively, in the way
shown in (4.46) and (4.48). The relations (4.46)–(4.48) constitute the particle–
hole representation. The particles and holes thus defined can be considered to
be Hartree–Fock quasiparticles. For these quasiparticles we have

cα|HF〉 = 0 , hβ |HF〉 = 0 (εα > εF , εβ ≤ εF) , (4.49)

with the particle–hole vacuum defined as

|HF〉 = c†π1c
†
π2 · · · c

†
πZc†ν1c

†
ν2 · · · c

†
νN |0〉 . (4.50)

Thus the particle–hole vacuum consists of Z protons occupying the Z lowest
proton orbitals and N neutrons occupying the N lowest neutron orbitals. The
last occupied orbitals for protons and neutrons are the proton and neutron
Fermi levels.

The concept of quasiparticle can be elaborated further by defining a uni-
tary transformation U from particle operators to Hartree–Fock quasiparticle
operators:⎛⎜⎜⎝

c†α
c̃α
h†β
h̃β

⎞⎟⎟⎠ =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 0 1
0 0 −1 0

⎞⎟⎟⎠
⎛⎜⎜⎝

c†α
c̃α
c†β
c̃β

⎞⎟⎟⎠ (εα > εF , εβ ≤ εF) . (4.51)
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The transformation matrix satisfies U†U = 14, where 14 is the four-by-four
unit matrix. This transformation is simple in that it defines each quasiparticle
operator in terms of just one particle operator. More complicated unitary
transformations to quasiparticles have been devised to convert a complicated
many-body problem to a more tractable one. They are discussed in Part II of
this book.

The advantage of the particle and hole creation operators, defined in (4.46),
are their simple contraction properties relative to the particle–hole vacuum.
These contractions read

cαc
†
α′ = 〈HF|cαc†α′ |HF〉 = δαα′ (εα, εα′ > εF) ,

hβh
†
β′ = 〈HF|hβh†β′ |HF〉 = δββ′ (εβ , εβ′ ≤ εF) ,

others = 0 .

(4.52)

The contractions of the particle operators c†α and cα with respect to the
particle–hole vacuum are

c†βcβ′ = 〈HF|c†βcβ′ |HF〉 = 〈HF|h̃βh̃†β′ |HF〉 = δββ′ (εβ ≤ εF) ,

cαc
†
α′ = 〈HF|cαc†α′ |HF〉 = δαα′ (εα > εF) ,

others = 0 .

(4.53)

Example 4.7
Contractions with respect to the particle–hole vacuum are evaluated as shown
in this example. We calculate the expectation value of the two-body interac-
tion (4.28) in the particle–hole vacuum:

〈HF|V |HF〉 = 1
4

∑
αβγδ

v̄αβγδ〈HF|c†αc
†
βcδcγ |HF〉

= 1
4

∑
αβγδ

v̄αβγδ〈HF|h̃αh̃βh̃†δh̃†γ |HF〉

= 1
4

∑
αβγδ

v̄αβγδ

(
h̃αh̃βh̃

†
δh̃
†
γ + h̃αh̃βh̃

†
δh̃
†
γ

)
= 1

4

∑
αβγδ

v̄αβγδ(δαγδβδ − δαδδβγ)

= 1
4

∑
ββ′

εβ≤εF
εβ′≤εF

(v̄ββ′ββ′ − v̄ββ′β′β) = 1
2

∑
ββ′

εβ≤εF
εβ′≤εF

v̄ββ′ββ′ . (4.54)
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4.4.2 Particle–Hole Representation of Operators and Excitations

The particle representation of a general one-body operator was given in (4.19).
It is a suitable starting point for the particle–hole representation of such an
operator. The orbitals are divided into particle and hole categories and the
transformations (4.48) are applied below the Fermi surface. It can be shown
(see Exercises) that in the particle–hole representation a general one-body
operator T becomes

T =
∑
αβ

tαβc
†
αcβ =

∑
β

εβ≤εF

tββ +
∑
αα′

εα>εF
εα′>εF

tαα′c†αcα′ −
∑
αβ

εα>εF
εβ≤εF

tαβc
†
αh̃
†
β

−
∑
βα

εβ≤εF
εα>εF

tβαh̃βcα −
∑
ββ′

εβ≤εF
εβ′≤εF

tββ′ h̃†β′ h̃β . (4.55)

The operators in T are already normal-ordered with respect to the particle–
hole vacuum |HF〉, so that we can write

T =
∑
β

εβ≤εF

tββ +N [T ]HF , (4.56)

where N [· · · ]HF denotes normal ordering with respect to |HF〉.
Two-body operators V can be represented in the particle–hole language

in a similar way. However, this representation is not needed later in the book
and is therefore omitted here, but can be found in e.g. [12].

Consider next excitations of the particle–hole vacuum. In Fig. 4.1 the
particle–hole vacuum is shown (enclosed by curly bracket) together with the
operational regimes of the particle creation operators c†α and hole creation
operators h†β . The simplest excitation of a closed-shell nucleus is a particle–
hole excitation

|pαhβ〉 = c†αh
†
β |HF〉 . (4.57)

This excitation is shown in Fig. 4.1. It can be viewed as the creation of a
particle and a hole on the particle–hole vacuum, or as exciting a particle
from the particle–hole vacuum into the empty orbitals above the Fermi level.
The description of the excited states of a closed-shell nucleus relies on the
treatment of this type of excitations, and higher, many-particle–many-hole
excitations within different approximation schemes, including their mixing
through the residual interactions. These matters will be discussed extensively
later.

Additional interesting nuclei near closed major shells are those whose
ground states are of one-particle, one-hole, two-particle or two-hole type,

c†α|HF〉 , h†β |HF〉 , c†αc
†
α′ |HF〉 , h†βh

†
β′ |HF〉 . (4.58)

Such nuclei will be discussed in Chap. 5 and in some later chapters, in the
context of configuration mixing of the basic excitations (4.57) and (4.58).
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4.5 Hartree–Fock Equation from Wick’s Theorem

The Hartree–Fock equation can be derived elegantly by applying Wick’s theo-
rem in the particle–hole representation. This means that we use normal order-
ing and contraction with respect to the particle–hole vacuum |HF〉. However,
instead of using the particle–hole representation of the Hamiltonian, we use
its particle representation.4 Thus we exploit the contractions (4.53).

4.5.1 Derivation of the Hartree–Fock Equation

Starting directly from Wick’s theorem (4.41), we obtain for the potential part
of the Hamiltonian

4V =
∑
αβγδ

v̄αβγδc
†
αc
†
βcδcγ =

∑
αβγδ

v̄αβγδN
[
c†αc
†
βcδcγ

]
−

∑
αβγδ

v̄αβγδ〈HF|c†αcδ|HF〉N
[
c†βcγ

]
+

∑
αβγδ

v̄αβγδ〈HF|c†αcγ |HF〉N
[
c†βcδ

]
+

∑
αβγδ

v̄αβγδ〈HF|c†βcδ|HF〉N
[
c†αcγ

]
−

∑
αβγδ

v̄αβγδ〈HF|c†βcγ |HF〉N
[
c†αcδ

]
−

∑
αβγδ

v̄αβγδ〈HF|c†αcδ|HF〉〈HF|c
†
βcγ |HF〉

+
∑
αβγδ

v̄αβγδ〈HF|c†αcγ |HF〉〈HF|c
†
βcδ|HF〉

=
∑
αβγδ

v̄αβγδN
[
c†αc
†
βcδcγ

]
−

∑
αβγ

εα≤εF

v̄αβγαN
[
c†βcγ

]
+

∑
αβδ

εα≤εF

v̄αβαδN
[
c†βcδ

]
+

∑
αβγ

εβ≤εF

v̄αβγβN
[
c†αcγ

]
−

∑
αβδ

εβ≤εF

v̄αββδN
[
c†αcδ

]
−

∑
αβ

εα≤εF
εβ≤εF

v̄αββα +
∑
αβ

εα≤εF
εβ≤εF

v̄αβαβ . (4.59)

With renamed summation indices and the symmetry properties (4.29) of the
antisymmetrized two-body matrix elements, this is reduced to

4V =
∑
αβγδ

v̄αβγδN
[
c†αc
†
βcδcγ

]
+4

∑
αβγ

εα≤εF

v̄αβαγN
[
c†βcγ

]
+2

∑
αβ

εα≤εF
εβ≤εF

v̄αβαβ . (4.60)

Applied to the second normal-ordered product, the definition of contraction
(4.35) gives
4 The particle–hole representation of the Hamiltonian could be used, but it is very
complicated and would not serve our purposes here.
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N
[
c†βcγ

]
= c†βcγ − 〈HF|c

†
βcγ |HF〉 = c†βcγ − δβγ (εβ ≤ εF) . (4.61)

This leads to the following expression for the Hamiltonian:

H = T + V =
∑
αβ

tαβc
†
αcβ +

1
4

∑
αβγδ

v̄αβγδN
[
c†αc
†
βcδcγ

]
+

∑
αβγ

εα≤εF

v̄αβαγ(c
†
βcγ − δβγ) + 1

2

∑
αβ

εα≤εF
εβ≤εF

v̄αβαβ

= 1
4

∑
αβγδ

v̄αβγδN
[
c†αc
†
βcδcγ

]
+

∑
αβ

(
tαβ +

∑
γ

εγ≤εF

v̄γαγβ

)
c†αcβ

− 1
2

∑
αβ

εα≤εF
εβ≤εF

v̄αβαβ . (4.62)

The second term is seen to be a one-body term. We abbreviate its matrix
element as

tαβ +
∑
γ

εγ≤εF

v̄γαγβ ≡ Tαβ . (4.63)

To proceed, we change the single-particle basis so that the set of creation
operators {c†α} is transformed to a new set {b†α}. This is accomplished by a
unitary transformation U:

c†α =
∑
α′

U∗αα′b
†
α′ , cα =

∑
α′

Uαα′bα′ . (4.64)

Substituting these into the one-body part of (4.62) gives∑
αβ

Tαβc
†
αcβ =

∑
α′β′

∑
αβ

TαβU
∗
αα′Uββ′b†α′bβ′ ≡

∑
α′β′

T ′α′β′b
†
α′bβ′ , (4.65)

where T ′ is the one-body operator expressed in the new basis. We now require
the new basis to be such that T ′ is diagonal, i.e.

T ′α′β′ = εα′δα′β′ . (4.66)

Combining (4.65) and (4.66) in matrix form we have

U†TU = T′ = diag(ε1, ε2, . . .) , (4.67)

where diag(ε1, ε2, . . .) is a diagonal matrix with diagonal elements ε1, ε2, . . ..
This means that the unitary transformation U is chosen such that it diagonal-
izes the one-body part of the Hamiltonian. We can now drop the prime from
T ′ and rename the indices so that (4.66) becomes
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Tαβ = εαδαβ . (4.68)

Substituting back from (4.63) we finally have

tαβ +
∑
γ

εγ≤εF

v̄γαγβ = εαδαβ . (4.69)

This is the Hartree–Fock equation [35, 36] for the computation of the eigen-
energies εα.

4.5.2 Residual Interaction; Ground-State Energy

If one manages at the outset to choose that particular set of single-particle
orbitals c†α|0〉 which satisfies the Hartree–Fock equation (4.69), then the one-
body part Tαβ of the Hamiltonian is immediately diagonal and the operators
c†α are identified with the operators b†α that appear in (4.65). In this case the
Hamiltonian can be written concisely as

H = HHF + VRES . (4.70)

The part HHF is the total single-particle energy for the Hartree–Fock mean
field,

HHF =
∑
α

εαc
†
αcα , (4.71)

where we have used (4.62), (4.63) and (4.68). The residual interaction is what
is left over of the Hamiltonian (4.62), namely

VRES = 1
4

∑
αβγδ

v̄αβγδN
[
c†αc
†
βcδcγ

]
HF
− 1

2

∑
αβ

εα≤εF
εβ≤εF

v̄αβαβ , (4.72)

where N [· · · ]HF denotes normal ordering with respect to the particle–hole
vacuum |HF〉.

The last term of (4.72) is important for the absolute ground-state energies;
for the excitation energies it cancels out. It is remarkable that the derivation
of the Hartree–Fock equation via Wick’s theorem gives as a by-product an
explicit expression for the residual interaction VRES. This expression is useful
when calculating corrections, e.g. by perturbation theory, to the mean-field
approximation of nuclear structure.

In the mean-field approximation the nuclear ground state is the Hartree–
Fock vacuum |HF〉. We calculate the ground-state energy as the expectation
value of the Hamiltonian:
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EHF = 〈HF|H|HF〉 = 〈HF|HHF|HF〉 − 1
2

∑
αβ

εα≤εF
εβ≤εF

v̄αβαβ

=
∑
α

εα〈HF|c†αcα|HF〉 − 1
2

∑
αβ

εα≤εF
εβ≤εF

v̄αβαβ =
∑
α

εα≤εF

εα − 1
2

∑
αβ

εα≤εF
εβ≤εF

v̄αβαβ .

(4.73)

From the Hartree–Fock equation (4.69) we have

εα = tαα +
∑
β

εβ≤εF

v̄βαβα , (4.74)

which gives for the Hartree–Fock ground-state energy

EHF =
∑
α

εα≤εF

tαα + 1
2

∑
αβ

εα≤εF
εβ≤εF

v̄αβαβ . (4.75)

The Hartree–Fock equation (4.69) can be cast into coordinate representa-
tion (see Exercises). The result has the form

−�2

2mN
∇2φα(x) + VHF

(
{φβ(x)}εβ≤εF

)
φα(x) = εαφα(x) . (4.76)

The potential VHF cannot be expressed by itself but only as it acts on φα:

VHF
(
{φβ(x)}εβ≤εF

)
φα(x) = vH(x)φα(x)−

∫
d3r′vF(x′,x)φα(x′) ,

vH(x) =
∑
β

εβ≤εF

∫
d3r′φ†β(x

′)v(x′,x)φβ(x′) ,

vF(x′,x) =
∑
β

εβ≤εF

φ†β(x
′)v(x′,x)φβ(x) .

(4.77)
The first term with the local potential vH(x) is called the Hartree or direct
term, and the second term with the non-local potential vF(x′,x) is called the
Fock or exchange term. The formal solution of this non-linear equation was
discussed in Sect. 3.1.

4.6 Hartree–Fock Eigenvalue Problem

The Hartree–Fock equation (4.69) can be converted to an eigenvalue problem
of a Hermitian matrix. To do so, the wave functions φα(x) = 〈x|α〉 in (4.76)
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are expanded in terms of some basis states, usually harmonic oscillator wave
functions. Thus we seek solutions of the Hartree–Fock equation in the form

|α〉 =
∑
j

Cα
j |j〉 , (4.78)

where the basis {|j〉} is orthonormal and complete. These conditions lead to
the following constraints on the expansion coefficients Cα

j of the Hartree–Fock
wave function (4.78):∑

j

(
Cα
j

)∗
Cβ
j = δαβ (orthonormality) , (4.79)

∑
α

Cα
i

(
Cα
j

)∗ = δij (completeness) . (4.80)

The coefficients Cα
j are determined by performing a variation of the

Hartree–Fock ground-state energy EHF as given in (4.75). In this procedure
we seek the minimum of EHF using the Cα

j as variational parameters subject
to the normalization condition (4.79). This constrained variational problem is
solved by the technique of Lagrange undetermined multipliers. The variational
condition yields

∂

∂
(
Cα
j

)∗ [EHF −
∑
α′

εα′
∑
j′

(
Cα′
j′

)∗
Cα′
j′

]
= 0 , (4.81)

where the Lagrange multipliers are denoted by εα′ . For the differentiation
the normalization condition (4.79) is relaxed but must be restored at the end.
Noting the simple relations (4.43) and (4.45) and substituting the states (4.78)
into EHF we obtain

EHF =
∑
α

εα≤εF

〈α|T |α〉+ 1
2

∑
αβ

εα≤εF
εβ≤εF

〈αβ|V |αβ〉

=
∑
α

εα≤εF

∑
jj′

(
Cα
j

)∗
Cα
j′〈j|T |j′〉

+ 1
2

∑
αβ

εα≤εF
εβ≤εF

∑
jj′

∑
j1j2

(
Cα
j

)∗(
Cβ
j1

)∗
Cα
j′C

β
j2
〈jj1|V |j′j2〉 . (4.82)

We now carry out the differentiation of both terms of (4.81):

∂EHF

∂
(
Cα
j

)∗ =∑
j′

[
〈j|T |j′〉+

∑
β

εβ≤εF

∑
j1j2

(
Cβ
j1

)∗〈jj1|V |j′j2〉Cβ
j2

]
Cα
j′ , (4.83)

∂

∂
(
Cα
j

)∗ ∑
α′

εα′
∑
j′

(
Cα′
j′

)∗
Cα′
j′ = εαC

α
j . (4.84)
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The final result is∑
j′

H
(HF)
jj′ Cα

j′ = εαC
α
j ,

H
(HF)
jj′ ≡ tjj′ +

∑
β

εβ≤εF

∑
j1j2

(
Cβ
j1

)∗
v̄jj1j′j2C

β
j2

.
(4.85)

In this way we have been able to convert the Hartree–Fock equation into an
eigenvalue problem for the matrix H(HF) with elements H

(HF)
jj′ . The column

vector {Cα
j } is the representation of the solution |α〉 of the Hartree–Fock

equation in the basis {|j〉}. The Lagrange multipliers εα are identified as the
Hartree–Fock single-particle energies to be solved as eigenvalues of the matrix
H(HF). As one would expect on physical grounds, the matrix is Hermitian (see
Exercises).

The diagonalization procedure produces Hartree–Fock wave functions
φα(x) as linear combinations (4.78) of known standard basis functions ψj(x) =
〈x|j〉. At closed neutron and proton major shells, the natural choice for ψj

are the harmonic oscillator (radial) wave functions (3.42). Hartree–Fock wave
functions of magic nuclei are then expansions mathematically similar to the
Woods–Saxon expansion (3.37).

The non-linearity of the Hartree–Fock equation is present irrespective of
the method of solution. In particular, the matrix equation (4.85) must be
solved iteratively since the solutions Cβ

j themselves are building blocks of the
matrix H(HF) to be diagonalized.

Epilogue

In this chapter we have developed the powerful formalism of occupation num-
ber representation. It is an elegant and efficient alternative to the traditional
manipulation of wave functions and their matrix elements. The clever book-
keeping feature of the method has its culmination in Wick’s theorem, which
provides for efficient evaluation of nuclear matrix elements. In the chapters
to follow, occupation number representation is used to describe many-nucleon
states and to calculate important matrix elements both for nuclear transitions
and for two-body interaction matrix elements.

Exercises

4.1. By using the actions (4.3) and (4.4) of the creation and annihilation
operators on Fock vectors verify the anticommutation relations (4.9).
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4.2. Consider two sets of single-particle states in coordinate representation,

φα(x) = 〈x|c†α|0〉 , ψα(x) = 〈x|b†α|0〉 , (4.86)

as given by (4.12). Furthermore, let U be a unitary transformation such that

φα(x) =
∑
β

Uαβψβ(x) . (4.87)

Show that
cα =

∑
β

U∗αβbβ , bα =
∑
β

Uβαcβ . (4.88)

4.3. If the c† and c operators of Exercise 2 satisfy the fermion anticommuta-
tion relations (4.9) show that the operators b† and b also satisfy them.

4.4. If a one-body operator T is written in the form (4.19) in the c†, c basis
of Exercise 2 show that the same form is valid in the b†, b basis related to the
previous basis by a unitary transformation U.

4.5. By acting with the proton and neutron number operators of (4.16) on
the A-nucleon wave function verify the results (4.17) and (4.18).

4.6. Verify the validity of the representations of the angular momentum op-
erators Jz and J± as given in (4.20) and (4.21).

4.7. Show that the operators c†α and c̃α are spherical tensors of rank ja.

4.8. By using the Wigner–Eckart theorem derive the expression on the right-
hand side of (4.22).

4.9. Verify the validity of (4.25) by starting from (4.22).

4.10. Based on Exercise 2.22 and (4.25) what can you say about the electric
dipole moment of a nuclear state?

4.11. Show that the contraction (4.35) is a c-number.

4.12. Show that the contraction of two anticommuting operators vanishes, i.e.
verify (4.36).

4.13. Let A =
∑

α xαAα and B =
∑

β yβBβ be arbitrary operators built from
operators Aα and Bβ using c-numbers xα and yβ . By using the definition
(4.35) of the contraction show that it is a linear operation, i.e.

AB =
∑
αβ

xαyβAαBβ . (4.89)
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4.14. By starting from (4.37), where both the operators and the contraction
have been defined with respect to the same vacuum |Ψ0〉, show that for the
same operators the contraction relative to any vacuum |φ0〉 can be written as
in (4.39). Hint : The operators A and B of (4.37) can be related by a unitary
transformation to operators which have been defined relative to the vacuum
|φ0〉. Use of (4.89) also helps.

4.15. By using the contraction technique verify (4.45).

4.16. Verify the particle–hole representation of a one-body operator (4.55).

4.17. Let |Ψi〉 = c†i |0〉 and |Ψf 〉 = c†f |0〉 be the initial and final one-particle
states. Evaluate the reduced one-body transition density

(Ψf‖
[
c†ac̃b

]
λ
‖Ψi) . (4.90)

4.18. Evaluate the reduced one-body transition density (4.90) when the one-
particle states of the previous exercise are replaced by the one-hole states
|Ψi〉 = h†i |HF〉 and |Ψf 〉 = h†f |HF〉.

4.19. Let |Ψi〉 =
[
c†aih

†
bi

]
JiMi
|HF〉 and |Ψf 〉 = |HF〉. Evaluate the reduced

one-body transition density (4.90) for these states.

4.20. Complete all the details leading to (4.60).

4.21. By using the coordinate representations (4.19) and (4.27) of the kinetic
energy and potential energy operators derive the coordinate representation,
contained in (4.76) and (4.77), of the Hartree–Fock equation (4.69).

4.22. The Hartree–Fock equation (4.76) becomes the Hartree equation when
the Fock term is omitted from (4.77). Solve the Hartree equation for N nu-
cleons assuming a two-nucleon interaction potential

v(rj , rl) = −Cδ(rj − rl) , (4.91)

where C is a constant. This delta-function interaction describes a two-nucleon
force of zero range. It can be used to mimick the strong short-range nature of
the nuclear two-body interaction. Start the iteration (see Subsect. 3.1.1, the
scheme (3.17) in particular) with the plane waves

φ
(0)
j (r) =

1√
V
eikj ·r , (4.92)

where V is a normalization volume and kj a wave vector of a plane-wave state
below the Fermi surface; ignore spin. The associated unperturbed energy is

ε
(0)
j =

�2k2j
2mN

, kj ≡ |kj | , (4.93)

where mN is the nucleon mass. What happens when the Fock term is added
to the calculation?
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4.23. By using the contraction technique show that for the one-hole state

|β−10 〉 ≡ h†β0 |HF〉 (4.94)

the expectation value of the Hamiltonian H = T + V is

〈β−10 |H|β−10 〉 =
∑
β �=β0
εβ≤εF

tββ + 1
2

∑
β,β′ �=β0
εβ≤εF
εβ′≤εF

v̄ββ′ββ′ . (4.95)

4.24. Show that

EHF − 〈β−10 |H|β−10 〉 = tβ0β0 +
∑
β

εβ≤εF

v̄β0ββ0β , (4.96)

where the hole state is defined in (4.94) and the Hartree–Fock ground-state
energy is given in (4.75).

4.25. The separation energy of a nucleon from the orbital β0 is defined for
magic nuclei as

Sβ0 ≡ E(β−10 ,∞)− EHF , (4.97)

where the Hartree–Fock ground-state energy is given in (4.75) and

E(β−10 ,∞) ≡ 〈β−10 |H|β−10 〉+ E∞ . (4.98)

Here E∞ ≈ 0 is the energy of the separated nucleon at infinity. Show that the
separation energy can be written simply as

Sβ0 = −εβ0 . (4.99)

This result is known as Koopmans’ theorem.

4.26. By using the contraction technique show that the excitation energy of
the particle–hole state

|αβ−1〉 ≡ c†αh
†
β |HF〉 (4.100)

is
E(αβ−1) ≡ 〈αβ−1|H|αβ−1〉 − EHF = εα − εβ − v̄αβαβ . (4.101)

This is the residual interaction energy of the particle and the hole subtracted
from the pure particle–hole mean-field energy.

4.27. Verify (4.79) and (4.80) by starting from (4.78) and the assumption that
the orbitals |α〉 form a complete orthonormal set of states.

4.28. Derive the expression (4.83) for the derivative of the Hartree–Fock
ground-state energy by starting from (4.82).

4.29. Show that the matrix HHF with elements given in (4.85) is Hermitian.
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The Mean-Field Shell Model

Prologue

Chapter 3 introduced the notion of a nuclear mean field with associated single-
particle orbitals. It was explained how the single-particle energies can be ob-
tained either by using an empirical Woods–Saxon potential or by the self-
consistent Hartree–Fock approach, extensively discussed in Chap. 4.

In this chapter the mean-field concept is used to discuss the ground state
and few lowest excited states of nuclei with the simplest possible structure.
These simple nuclei are light to medium-heavy, with mass numbers ranging
from A = 4 to A = 54. They consist of magic nuclei, single-particle and single-
hole nuclei, and two-particle and two-hole nuclei. The valence space for the
active particles or holes is built on the nuclear core consisting of the lowest,
inactive single-particle orbitals of the mean field.

For magic nuclei, i.e. nuclei with completely filled proton and neutron
major shells, the ground state is the particle–hole vacuum and the lowest
excited states are particle–hole excitations of it. The one- and two-particle
nuclei are defined as having one or two particles outside the nuclear core. The
one- and two-hole nuclei, on the other hand, consist of one or two holes in
the particle–hole vacuum. Except for a few qualitative comments, no residual
interaction or configuration mixing is included in the discussion. The isospin
representation of the states of two-particle and two-hole nuclei and particle–
hole nuclei is introduced.

5.1 Valence Space

In this chapter we discuss concrete applications of the mean-field shell model
to nuclei in the 0p, 0d-1s and 0f-1p-0g9/2 major shells. In this simple approach
the nucleons appear non-interacting and occupy single-particle energy levels
of the mean field. We discuss the following types of nuclei.
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• Magic nuclei, where both the protons and neutrons have completely filled
major shells at some magic numbers.

• Semi-magic nuclei, where protons (neutrons) have a completely filled ma-
jor shell, and the neutrons (protons) do not.

• Nearly magic nuclei, with one or two valence nucleons or holes.

The simple approach of this chapter does not take into account any residual
interaction VRES. Each state is built from a single configuration, i.e. there is
no configuration mixing. A key notion in our discussion is the valence space
or model space which consists of all single-particle orbitals actively involved
in the generation of configurations of the many-nucleon system considered.

Figure 5.1 shows a typical valence space for protons or neutrons. In this
particular case the Fermi energy lies at the magic number 20. Below the
Fermi level we have the active hole orbitals of the 0d-1s major shell (with
hole creation operators h†β) and above it the active particle orbitals of the 0f-
1p-0g9/2 shells (with particle creation operators c†α). The lowest excitations
are particle–hole excitations across the Fermi surface from the 0d-1s shells
to the 0f-1p-0g9/2 shells. All the orbitals below the 0d-1s shell, i.e. below the
magic number 8, are considered to be inert. This inactive lowest range of the
mean-field orbitals is called the core. The core is the effective particle vacuum,
i.e.

cα|CORE〉 = 0 for all α in the valence space. (5.1)

εF

βh

1p−0f    −0g5/2 9/2

0f7/2 VALENCE SPACE

CORE

cα

r

v(r)

1s−0d

50

28

20

8

2

Fig. 5.1. Valence space and core. The ground state is the particle–hole vacuum.
Excitations are described by creation of holes below, and particles above, the magic
shell gap 20.
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The 0d-1s major shell forms the filled part of the particle–hole vacuum |HF〉
and the 0f-1p-0g9/2 orbitals are the empty orbitals of |HF〉.

The reason for defining a core is that the computational effort increases
very rapidly with an increasing number of single-particle orbitals included in
the valence space. The computational burden can be lightened by dropping the
lowest-lying orbitals from the valence space and burying them into the inert
core. The use of a core is of course an approximation, and its consequences
should be examined in each case. For low-lying nuclear states core excitations
do not play a role, except in cases where highly collective low-energy states can
be built by opening the core. Problems of this kind arise in large shell-model
calculations, e.g. when trying to discuss 3− octupole-vibrational states. In
general the size of the valence space needed increases with excitation energies
to be calculated.

For nuclei with more than 20 protons or neutrons one could simply take
as active shells the 0f-1p-0g9/2 valence space, pushing the 0d-1s shells into the
core. For nuclei with fewer than 20 protons or neutrons the 0d-1s shells could
serve as a valence space to study either the particle states beyond the magic
core of eight particles or the hole states below the magic number 20.

In the following sections we calculate one- and two-particle and one-
and two-hole excitation energies and compare them with experimental data.
Throughout this chapter, we assume that the relative energies of the single-
particle orbitals are the same for protons and neutrons. This is a very good
approximation for light nuclei near the valley of beta-decay stability. The ex-
perimental data used in the book are taken from the Table of Isotopes [37]
and the website [38].

5.2 One-Particle and One-Hole Nuclei

One-particle and one-hole nuclei allow of the simplest possible theoretical
description of their states. This description consists of one particle outside
an inert core or one hole in a completely filled valence space. Below we give
several examples of such nuclei.

5.2.1 Examples of One-Particle Nuclei

The structure of one-particle nuclei within the simple mean-field picture is
the following. One-proton states |π〉 and one-neutron states |ν〉 are described
as

|π〉 = c†π|CORE〉 , |ν〉 = c†ν |CORE〉 , (5.2)

where |CORE〉 is the core with its Fermi level at some magic number. The
operator c†π creates a proton and c†ν creates a neutron in one of the available
single-particle orbitals above the magic shell gap. These nuclei are always odd-
mass or odd-A nuclei, or simply odd nuclei. According to their Z and N they
are called even–odd or odd–even nuclei.
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The nuclei 178O9 and
17
9F8 are examples of one-particle nuclei. In the 0d-1s

valence space with the core

|CORE〉 = |CORE(0s-0p)〉π|CORE(0s-0p)〉ν (5.3)

their mean-field structure is given by1

|17O ; 5/2+gs〉 = c†ν0d5/2 |CORE〉 , (5.4)

|17O ; 1/2+〉 = c†ν1s1/2 |CORE〉 , (5.5)

|17O ; 3/2+〉 = c†ν0d3/2 |CORE〉 , (5.6)

|17F ; 5/2+gs〉 = c†π0d5/2 |CORE〉 , (5.7)

|17F ; 1/2+〉 = c†π1s1/2 |CORE〉 , (5.8)

|17F ; 3/2+〉 = c†π0d3/2 |CORE〉 . (5.9)

These excitations can be compared to the experimental ones, depicted
in Fig. 5.2. The expected ground state 5/2+ and the two expected excited
states 1/2+ and 3/2+ are clearly visible in the experimental spectra of the
one-proton nucleus 17F and the one-neutron nucleus 17O.

We digress for a moment in anticipation of later chapters. The negative-
parity states in the 3–5 MeV range result from configuration mixing of more
complicated excitations. They involve opening the core and allowing jumps of
nucleons across the N = 8 and the Z = 8 magic gaps. These states can be
produced by coupling either a neutron (17O) or a proton (17F) to an excitation
constructed from many proton and neutron particle–hole excitations across
the gap between the 0p and 0d-1s major shells. This kind of multiparticle
excitation is interpreted as a vibration, whose quantum is a phonon. The
parity of the phonon is negative, so coupling with a particle in the 0d-1s shell
of positive parity produces a negative-parity state consisting of two-particle–
one-hole components. Because of the parity difference the vibrations do not
disturb the one-particle excitations in 17O and 17F, the nuclear Hamiltonian
being parity conserving.

Similarly, the 7/2− ground state of 4120Ca21 and
41
21Sc20 can be described in

the simplest possible scheme by taking the 0f7/2 orbital as the valence space
and the orbitals below as the inert core. This choice of valence space produces
only the ground state shown in Fig. 5.3. Simple excited states of these nuclei
result from leaps of the odd nucleon from the 0f7/2 orbital to the rest of the
0f-1p-0g9/2 space. Because of the large (≈ 5MeV) magic gaps above N = 28
and Z = 28 these states lie at high excitation energies and are therefore not
seen in the figure.

1 Here, and in many places in the sequel, the projection quantum number is omitted
as irrelevant.
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Fig. 5.2. Experimental spectra of the one-hole nuclei 15N and 15O and the one-
particle nuclei 17O and 17F. States of the one-particle and one-hole types are shown
with a thick line

5.2.2 Examples of One-Hole Nuclei

One-hole nuclei are simply described as having one hole in a completely filled
valence space. In the following the symbol |HF〉 designates the valence space
which consists of the filled orbitals of the particle–hole vacuum.

Examples of one-hole nuclei are 15
7N8 and

15
8O7. The simplest description

of them is to use the 0p shell as the valence space, with the 0s1/2 orbital
remaining as the core. The one-hole ground state and excited state of each
nucleus can then be written as

|15N ; 1/2−gs〉 = h†π0p1/2 |HF〉 , (5.10)

|15N ; 3/2−〉 = h†π0p3/2 |HF〉 , (5.11)

|15O ; 1/2−gs〉 = h†ν0p1/2 |HF〉 , (5.12)

|15O ; 3/2−〉 = h†ν0p3/2 |HF〉 , (5.13)

where
|HF〉 = |HF(0p)〉π|HF(0p)〉ν (5.14)

is the hole vacuum with its Fermi surface at the Z = 8 and N = 8 magic
numbers. These simple states can be clearly seen in the experimental spectra



www.manaraa.com

92 5 The Mean-Field Shell Model

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
E

xc
ita

tio
n 

en
er

gy
 [M

eV
]

 3/2+ 0.000

 1/2+ 2.523

 7/2− 2.814
 3/2− 3.019

 9/2− 3.598

3.883
 5/2+ 3.939

 3/2+ 0.000

 1/2+ 2.467

 7/2− 0.000

 1/2+ 3.333

 7/2− 0.000

 1/2+ 3.333

Jπ E Jπ E Jπ E Jπ E
39
19

K
20

39
20

Ca
19

41
20

Ca
21

41
21

Sc
20

?

? 5/2

39
K2019 Ca

39
20 19 Ca

41
20 21 Sc

41
21 20

Fig. 5.3. Experimental spectra of the one-hole nuclei 39K and 39Ca, and the one-
particle nuclei 41Ca and 41Sc. The one-hole type of states have been drawn with a
thick line. A question mark indicates incomplete experimental identification of the
spin or energy of the state

of 15N and 15O, depicted in Fig. 5.2. The two positive-parity ‘intruder’ states
below the 3/2− state come from exciting particles across the Z = 8 or N = 8
magic gap to produce a negative-parity phonon that is then coupled to a hole
in the negative-parity 0p shell. Due to the parity difference these one-particle–
two-hole excitations do not mix with the one-hole states.

In a similar way, the 39
19K20 and

39
20Ca19 nuclei can be viewed as one-hole

nuclei within the simplest possible scheme where the valence space consists of
the 0d-1s major shell and the lower-lying 0s and 0p shells form the core. In
this case the hole vacuum |HF〉 is the 0d-1s shell with its Fermi surface at the
Z = 20 and N = 20 magic numbers. The resulting single-hole states are

|39K ; 3/2+gs〉 = h†π0d3/2 |HF〉 , (5.15)

|39K ; 1/2+〉 = h†π1s1/2 |HF〉 , (5.16)

|39K ; 5/2+〉 = h†π0d5/2 |HF〉 , (5.17)

|39Ca ; 3/2+gs〉 = h†ν0d3/2 |HF〉 , (5.18)

|39Ca ; 1/2+〉 = h†ν1s1/2 |HF〉 , (5.19)
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|39Ca ; 5/2+〉 = h†ν0d5/2 |HF〉 . (5.20)

These states can be recognized in the experimental spectra of Fig. 5.3. Again,
the ‘intruding’ negative-parity states can be explained as above.

The one-particle and one-hole nuclei can be used to probe experimen-
tally the Hartree–Fock mean field since the excitation energies of their sim-
ple states show the energy differences between the mean-field single-particle
orbitals. Thus we can read from the experimental spectra of 17O and 17F
in Fig. 5.2 that the energy difference between the 0d5/2 and 1s1/2 single-
particle Hartree–Fock orbitals is ≈0.7MeV, and that between the 0d3/2 and
0d5/2 orbitals is ≈ 5.1MeV. These experimental Hartree–Fock energies can
be used in calculations for nuclei with a few particles occupying the 0d-1s
shell. From the hole states of 39K and 39Ca in Fig. 5.3 we obtain similarly
that ε1s1/2 − ε0d5/2 ≈ 1.4MeV and ε0d3/2 − ε0d5/2 ≈ 3.9MeV; these energies
are applicable to nuclei with a few holes in the 0d-1s shell. Finally we deduce
from the spectra of 15N and 15O in Fig. 5.2 that ε0p1/2 − ε0p3/2 ≈ 6.3MeV,
which is applicable to nuclei with a few holes in the 0p shell.

5.3 Two-Particle and Two-Hole Nuclei

Two-particle and two-hole nuclei can be described within occupation number
representation in a straightforward manner by creating two particles on top
of a suitably chosen core (particle vacuum) or by creating two holes into a
hole vacuum. These particle and hole vacuums are chosen as was done for the
one-particle and one-hole nuclei in Sect. 5.2. Angular momentum coupling is
necessary to describe the states of a two-particle or two-hole nucleus. This
coupling is discussed in detail below.

5.3.1 Examples of Two-Particle Nuclei

In the case of two like nucleons outside the core we write the wave function
as

|a b ; J M〉 = Nab(J)
[
c†ac
†
b

]
JM
|CORE〉

= Nab(J)
∑

mαmβ

(ja mα jb mβ |J M)c†αc
†
β |CORE〉 ,

Nab(J) =

√
1 + δab(−1)J
1 + δab

,

(5.21)

where Nab(J) is a normalization factor and the quantum numbers α and β
both signify either proton or neutron orbitals. For a = b, i.e. two identical
nucleons in the same single-particle orbital a = nalaja, the normalization
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factor vanishes if J is odd, which means that only states of even J occur.
Otherwise we have

Nab(J) = 1 for a 	= b , Naa(J = even) =
1√
2

. (5.22)

Calculation of the overlap of two states of the form (5.21) is left as an exercise.
Two-particle nuclei described by (5.21) are always even–even (or doubly even)
nuclei.

In the case of one proton and one neutron outside the core the nuclear
state is a normalized proton–neutron two-particle state of the form

|p n ; J M〉 =
[
c†pc
†
n

]
JM
|CORE〉 =

∑
mπmν

(jp mπ jn mν |J M)c†πc
†
ν |CORE〉 ,

(5.23)
where π ≡ (p,mπ), p = nplpjp and ν ≡ (n,mν), n = nnlnjn. Evaluation of
the overlap of two states of the form (5.23) is left as an exercise. Two-particle
nuclei of this type are always odd–odd (or doubly odd) nuclei.

The two creation operators in (5.21) and (5.23) always anticommute, as we
know from the relations (4.9) and (4.16). Taking into account the symmetry
properties of the Clebsch–Gordan coefficients, reviewed in Subsect. 1.2.1, we
find for two-particle states the inversion relations

|b a ; J M〉 = (−1)ja+jb+J+1|a b ; J M〉 , (5.24)

|np ; J M〉 = (−1)jp+jn+J+1|p n ; J M〉 . (5.25)

Nuclei of the same mass number A, known as isobars, have many compa-
rable properties. We select isobars with A = 6 (Fig. 5.4), A = 18 (Fig. 5.5)
and A = 42 (Fig. 5.6) to examine two-particle nuclei. For the A = 6 isobars
6He, 6Li and 6Be the low-energy states can be identified as the two-particle
states

|6He ; 0+, 2+〉 = 1√
2

[
c†ν0p3/2c

†
ν0p3/2

]
0+,2+

|CORE〉 , (5.26)

|6Li ; 0+, 1+, 2+, 3+〉 =
[
c†π0p3/2c

†
ν0p3/2

]
0+,1+,2+,3+

|CORE〉 , (5.27)

|6Be ; 0+, 2+〉 = 1√
2

[
c†π0p3/2c

†
π0p3/2

]
0+,2+

|CORE〉 , (5.28)

where the core only contains the 0s1/2 orbital,

|CORE〉 = |CORE(0s)〉π|CORE(0s)〉ν . (5.29)

As seen in Fig. 5.4, the two-particle states account for the presence of nearly
all of the low-energy states in these nuclei. The Coulomb energy2 has been
2 See 17.4.5.
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Fig. 5.4. Experimental low-energy spectra of the two-particle nuclei 6He, 6Li and
6Be. All experimental energy levels up to the 2+(T = 1) level are shown. In 6Li the
2+ state at 5.366MeV is unbound. The Coulomb energy has been subtracted and
the isospin quantum numbers of the relevant states are displayed

subtracted in the figure, which puts the 0+ states at the same level. The
isospin quantum numbers, to be discussed in Sect. 5.5, are displayed in the
figure.

Our current, highly simplified theory does not give any energy differences
between states of different J ; they are degenerate. All the Jπ = 0+, 1+, 2+, 3+

states in the three isobars are predicted to have the same energy 2ε0p3/2 . Only
the residual interaction, discussed extensively in the later chapters, will lift
the degeneracy. However, we note the regularity of the experimental energy
differences among comparable states in Fig. 5.4: the 0+(T = 1) and 2+(T = 1)
levels are very nearly equidistant in the three nuclei. A good residual inter-
action would predict these differences as well as the 1+ and 3+ energies and
the ‘extra’ 2+ state in 6Li.

Figure 5.5 shows the low-energy spectra of the isobars 18O, 18F and 18Ne.
The counterparts of the following two-particle states are identified among the
experimental states:

|18O ; 0+, 2+, 4+〉 = 1√
2

[
c†ν0d5/2c

†
ν0d5/2

]
0+,2+,4+

|CORE〉 , (5.30)
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Fig. 5.5. Experimental low-energy spectra of the two-particle nuclei 18O, 18F and
18Ne. For 18F only the positive-parity states are shown. The Coulomb energy has
been subtracted and the isospin quantum numbers of the relevant states are dis-
played

|18F ; 0+, 1+, 2+, 3+, 4+, 5+〉 =
[
c†π0d5/2c

†
ν0d5/2

]
0+,1+,2+,3+,4+,5+

|CORE〉 ,
(5.31)

|18Ne ; 0+, 2+, 4+〉 = 1√
2

[
c†π0d5/2c

†
π0d5/2

]
0+,2+,4+

|CORE〉 , (5.32)

where
|CORE〉 = |CORE(0s-0p)〉π|CORE(0s-0p)〉ν . (5.33)

As in the case of the A = 6 nuclei, all the J states in (5.30)–(5.32) are
degenerate in our simple description. The comparable experimental levels in
the three isobars again have nearly the same energies.

Figure 5.6 shows the low-energy spectra of 42Ca, 42Sc and 42Ti. Their
0+–7+ states are mainly two-particle states of the form

|A = 42 ; (0f7/2)2 J+〉 = N
[
c†0f7/2c

†
0f7/2

]
J+
|CORE〉 , (5.34)

where the core contains the orbitals within the 0s-0p-0d-1s shells. These nu-
clei form a special case since the valence space between adjacent magic num-
bers consists of the 0f7/2 orbital only. All nuclei with this valence space are
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Fig. 5.6. Experimental low-energy spectra of the two-particle nuclei 42Ca, 42Sc and
42Ti. For the even–even isobars all experimental levels are shown up to 6+(T = 1),
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traditionally called f7/2-shell nuclei. They have been studied by shell-model
calculations long before any advanced computing equipment existed.

5.3.2 Examples of Two-Hole Nuclei

The wave functions of two-hole nuclei are similar to those of two-particle
nuclei. For two proton holes or two neutron holes we have, similarly to (5.21),

|a−1 b−1 ; J M〉 = Nab(J)
[
h†ah

†
b

]
JM
|HF〉 , Nab(J) =

√
1 + δab(−1)J
1 + δab

.

(5.35)
For one proton hole and one neutron hole we have, similarly to (5.23),

|p−1 n−1 ; J M〉 =
[
h†ph

†
n

]
JM
|HF〉 . (5.36)

The hole character of the single-particle components is indicated by the su-
perscript −1. Two-proton-hole nuclei and two-neutron-hole nuclei are always
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even–even nuclei, and proton-hole–neutron-hole nuclei are always odd–odd
nuclei. Overlaps of wave functions of the types (5.35) and (5.36) are discussed
as exercises.

The two hole-creation operators in (5.35) and (5.36) always anticommute
because they both are associated with particle annihilation through (4.46) and
two particle annihilation operators anticommute according to (4.9). This fact,
together with the symmetry properties of the Clebsch–Gordan coefficients,
gives the symmetry relations

|b−1 a−1 ; J M〉 = (−1)ja+jb+J+1|a−1 b−1 ; J M〉 , (5.37)

|n−1 p−1 ; J M〉 = (−1)jp+jn+J+1|p−1 n−1 ; J M〉 . (5.38)

Examples of two-hole nuclei are provided by the mass chains A = 38
(Fig. 5.7) and A = 54 (Fig. 5.8). The states of 38Ar, 38K and 38Ca are

|38Ar ; 0+, 2+〉 = 1√
2

[
h†π0d3/2h

†
π0d3/2

]
0+,2+

|HF〉 , (5.39)

|38K ; 0+, 1+, 2+, 3+〉 =
[
h†π0d3/2h

†
ν0d3/2

]
0+,1+,2+,3+

|HF〉 , (5.40)
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Fig. 5.7. Experimental low-energy spectra of the two-hole nuclei 38Ar, 38K and
38Ca. All known energy levels up to the 2+ state are shown. The Coulomb energy
has been subtracted and the isospin quantum numbers of the relevant states are
displayed
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Fig. 5.8. Experimental energy levels of the two-hole nuclei 54Fe, 54Co and 54Ni. The
Coulomb energy has been subtracted and the isospin quantum numbers displayed

|38Ca ; 0+, 2+〉 = 1√
2

[
h†ν0d3/2h

†
ν0d3/2

]
0+,2+

|HF〉 , (5.41)

where the particle–hole vacuum is defined as

|HF〉 = |HF(Z = 20)〉π|HF(N = 20)〉ν . (5.42)

As in the case of two-particle nuclei, all these two-hole states are degenerate
within our simple approach. Turning on the residual interaction will split the
degeneracies in various ways and explain the additional 1+ state in 38K.

Figure 5.8 shows the known experimental energy levels of 54Fe, 54Co and
54Ni. They can be explained as arising from two holes in the 0f7/2 shell:

|A = 54 ;
[
(0f7/2)−1

]2
J+〉 = N

[
h†0f7/2h

†
0f7/2

]
J+
|HF〉 , (5.43)

where the particle–hole vacuum corresponds to a state whose Fermi surfaces
occur at the magic numbers Z = 28 and N = 28.

5.4 Particle–Hole Nuclei

The starting point for the description of particle–hole nuclei is the particle–
hole vacuum |HF〉, which describes the ground state of a doubly magic even–
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even nucleus. This even–even nucleus serves as a reference nucleus for calcu-
lation of its own excited states and states of its neighboring nuclei. All these
states are constructed by creating particle–hole excitations on the particle–
hole vacuum.

Particle–hole excited states are created by letting one nucleon jump from a
state below the Fermi level to a state above it. This can be done in two essen-
tially different ways, which constitute charge-conserving and charge-changing
particle–hole excitations. The former are jumps from a proton (neutron) hole
state to a proton (neutron) particle state. They are denoted as pp−1 and
nn−1, and they generate excited states of nuclei with doubly closed major
shells. The latter are either proton-particle–neutron-hole (pn−1) or neutron-
particle–proton-hole (np−1) excitations, which describe the ground and ex-
cited states of odd–odd nuclei at doubly closed major shells.

The wave functions of the particle–hole nuclei can be written as follows.
The excited states of the even–even closed-shell nuclei are

|a b−1 ; J M〉 =
[
c†ah
†
b

]
JM
|HF〉 =

[
c†ac̃b

]
JM
|HF〉 . (5.44)

with the orthogonality and normalization relation

〈a b−1 ; J M |c d−1 ; J ′M ′〉 = δacδbdδJJ ′δMM ′ . (5.45)

In the particle–hole picture the ground and excited states of odd–odd nuclei
at closed major shells can be generated by starting from the particle–hole
vacuum. The wave functions of the proton-particle–neutron-hole nuclei are

|p n−1 ; J M〉 =
[
c†ph
†
n

]
JM
|HF〉 =

[
c†pc̃n

]
JM
|HF〉 (5.46)

with the orthonormality condition

〈p n−1 ; J M |p′ n′−1 ; J ′M ′〉 = δpp′δnn′δJJ ′δMM ′ . (5.47)

For the neutron-particle–proton-hole we have

|np−1 ; J M〉 =
[
c†nh
†
p

]
JM
|HF〉 =

[
c†nc̃p

]
JM
|HF〉 (5.48)

with the orthonormality condition

〈np−1 ; J M |n′ p′−1 ; J ′M ′〉 = δpp′δnn′δJJ ′δMM ′ . (5.49)

The particle-creation and hole-creation operators in (5.44), (5.46) and
(5.48) always anticommute because they refer to different single-particle or-
bitals, one below and one above the Fermi surface. Using the symmetry prop-
erties of the Clebsch–Gordan coefficients we then find
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Fig. 5.9. All experimentally known energy levels, except the ground state of 4He,
below the highest 1− states shown in the isobars 4H, 4He and 4Li. The Coulomb
energy has been subtracted and the isospin quantum numbers of the relevant states
are displayed

|b−1 a ; J M〉 = (−1)ja+jb+J+1|a b−1 ; J M〉 , (5.50)

|n−1 p ; J M〉 = (−1)jp+jn+J+1|p n−1 ; J M〉 , (5.51)

|p−1 n ; J M〉 = (−1)jp+jn+J+1|np−1 ; J M〉 . (5.52)

As examples of typical particle–hole nuclei we present triplets in the mass
chains A = 4 (Fig. 5.9), A = 16 (Fig. 5.10) and A = 40 (Fig. 5.11). For the
A = 4 nuclei a proton or a neutron can be excited from the 0s shell into
the 0p3/2 orbital in the 0p major shell. The corresponding charge-changing
excitations produce the odd–odd nuclei 4H and 4Li. Their wave functions are

|4H ; 1−, 2−〉 =
[
c†ν0p3/2h

†
π0s1/2

]
1−,2− |HF〉 , (5.53)

|4Li ; 1−, 2−〉 =
[
c†π0p3/2h

†
ν0s1/2

]
1−,2− |HF〉 , (5.54)

with the particle–hole vacuum

|HF〉 = |HF(Z = 2)〉π|HF(N = 2)〉ν . (5.55)
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Fig. 5.10. Experimental energy levels of the isobars 16N, 16O and 16F. For 16O the
ground state and the states between 0−(T = 0) and 0−(T = 1) have been omitted.
The Coulomb energy has been subtracted and the isospin quantum numbers of the
relevant states are displayed

These states are seen in the experimental spectra of the A = 4 nuclei in
Fig. 5.9. Higher-lying excited 0− and 1− states can be built by exciting the
0s1/2 nucleon up to the 0p1/2 orbital, giving the wave functions

|4H ; 0−, 1−〉 =
[
c†ν0p1/2h

†
π0s1/2

]
0−,1− |HF〉 , (5.56)

|4Li ; 0−, 1−〉 =
[
c†π0p1/2h

†
ν0s1/2

]
0−,1− |HF〉 . (5.57)

For the even–even 4He nucleus we have charge-conserving particle–hole
excitations, of both the proton–proton and the neutron–neutron type, across
the Z = 2 and N = 2 magic gaps. The basic excitations are[

c†π0p3/2h
†
π0s1/2

]
1−,2− |HF〉 ,

[
c†ν0p3/2h

†
ν0s1/2

]
1−,2− |HF〉 . (5.58)

One can form two orthogonal and normalized linear combinations of these,

|4He ; 1−, 1−, 2−, 2−〉 = 1√
2

([
c†π0p3/2h

†
π0s1/2

]
1−,2− |HF〉

±
[
c†ν0p3/2h

†
ν0s1/2

]
1−,2− |HF〉

)
, (5.59)
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Fig. 5.11. Experimental energy levels of the isobars 40K, 40Ca and 40Sc. For 40Ca
the ground state and the states between 2−(T = 0) and 4−(T = 1) have been
omitted. The Coulomb energy has been subtracted and the isospin quantum numbers
of the relevant states are displayed

leading to two 1− and two 2− states. These states are seen in the spectrum of
4He in Fig. 5.9. In our simple theory the four states are degenerate at a com-
mon energy, due to the assumption of the same relative energies for protons
and neutrons. The residual interaction will lift the degeneracy, as discussed in
Chap. 8. The two linear combinations in (5.59) can be conveniently labelled
by the isospin quantum number T discussed in the next section.

The discussion of the A = 16 isobars, 16N, 16O and 16F, follows the lines
of the discussion of the A = 4 nuclei. The charge-changing particle–hole exci-
tations yield for the odd–odd nuclei 167N9 and

16
9F7 the following low-energy

states:

|16N ; 2−, 3−〉 =
[
c†ν0d5/2h

†
π0p1/2

]
2−,3− |HF〉 , (5.60)

|16N ; 0−, 1−〉 =
[
c†ν1s1/2h

†
π0p1/2

]
0−,1− |HF〉 , (5.61)

|16F ; 2−, 3−〉 =
[
c†π0d5/2h

†
ν0p1/2

]
2−,3− |HF〉 , (5.62)

|16F ; 0−, 1−〉 =
[
c†π1s1/2h

†
ν0p1/2

]
0−,1− |HF〉 , (5.63)

where the particle–hole vacuum is
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|HF〉 = |HF(Z = 8)〉π|HF(N = 8)〉ν . (5.64)

The 0−–3− states predicted are seen to be present closely bunched in Fig. 5.10.
Within our simple scheme, the 0− and 1− levels should lie above the 2− and
3− levels by an energy of ε1s1/2 − ε0d5/2 ≈ 0.7MeV, as obtained from the
analysis of the one-particle spectra in Sect. 5.2. The width of the bunches is
of this order but there is no further agreement.

The states of the even–even nucleus 16O are given by

|16O ; 2−, 2−, 3−, 3−〉 = 1√
2

([
c†π0d5/2h

†
π0p1/2

]
2−,3− |HF〉

±
[
c†ν0d5/2h

†
ν0p1/2

]
2−,3− |HF〉

)
, (5.65)

|16O ; 0−, 0−, 1−, 1−〉 = 1√
2

([
c†π1s1/2h

†
π0p1/2

]
0−,1− |HF〉

±
[
c†ν1s1/2h

†
ν0p1/2

]
0−,1− |HF〉

)
. (5.66)

These states are identified in Fig. 5.10. However, the residual interaction is
seen to cause wide splittings of the degeneracies, up to 7MeV for the 3−

states.
Finally, for the A = 40 nuclei 40K, 40Ca and 40Sc, the experimental situa-

tion is depicted in Fig. 5.11. In this case the particle–hole excitations proceed
across the Z = 20 and N = 20 magic gaps, those of lowest energy from the
0d3/2 orbital below the gap to the 0f7/2 orbital above. The resulting states
are [

c†0f7/2h
†
0d3/2

]
2−,3−,4−,5− |HF〉 , (5.67)

where |HF〉 closes at the magic numbers Z = 20 and N = 20. As can be seen
from Fig. 5.11, our simple description is rather good since the relevant states,
labelled T = 1, are very similarly spaced and within 1MeV. Contrariwise, the
states labelled by T = 0 in the spectrum of 40Ca appear strongly perturbed
by the residual interaction.

Further interesting cases of particle–hole nuclei are the A = 48 isobars
48
19K29,

48
20Ca28 and

48
21Sc27, with the particle–hole vacuum

|HF〉 = |HF(Z = 20)〉π|HF(N = 28)〉ν . (5.68)

Anticipating the following section, we note that in the previous examples we
have witnessed good isospin symmetry. It shows up in the similarity among
the isobars of the group of T = 1 states with negative parity and is due to the
proton and neutron Fermi surfaces occurring at the same nucleon number. For
the A = 48 nuclei this parallel is lost because the Fermi levels are at Z = 20
and N = 28. The active single-particle orbitals are π0d3/2, π0f7/2, ν0f7/2 and
ν1p3/2. They give rise to particle–hole states of both parities. Also for the
A = 56 mass chain, 5627Co29,

56
28Ni28 and

56
29Cu27, some experimental data are

available to enable a discussion in terms of simple particle–hole excitations
across the magic gaps.
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5.5 Isospin Representation of Few-Nucleon Systems

5.5.1 General Isospin Formalism

So far we have considered the proton and the neutron as two different par-
ticle species, labelled π = (p,mπ) and ν = (n,mν). An alternative to this
proton–neutron formalism (representation), without any difference in physical
content, is the isospin formalism (representation). There the π and ν labels
are abandoned, and protons and neutrons are considered to form just two
isospin states of a generic nuclear particle, the nucleon. The states ‘neutron’
and ‘proton’ are denoted in various ways as follows3:

|n〉 = |t = 1
2 , mt = +1

2 〉 = χT
1
2 ,+

1
2
=

(
1
0

)
,

|p〉 = |t = 1
2 , mt = − 1

2 〉 = χT
1
2 ,− 1

2
=

(
0
1

)
.

(5.69)

The matrix representation is equated to the abstract state, consistent with
the convention noted in connection with the Pauli spin matrices (2.38). The
isospin ‘length’ quantum number is t, and mt is its projection quantum num-
ber. Isospin t = 1

2 is completely analogous to mechanical spin s = 1
2� except

that isospin is not measured in units of � since it has nothing to do with
angular momentum.

The isospinors χT
1
2mt

are analogous to the spinors χ 1
2ms

of (3.65) and
(3.66). The isospin vector operator t is defined in analogy to the definition
(1.1) of the angular momentum:

t†k = tk , k = 1, 2, 3, [ti, tj ] = i
∑
k

εijktk . (5.70)

The isospin components are often labelled x, y, z, but we use 1, 2, 3 to empha-
size that isospin space (isospace) is distinct from the usual coordinate space.
In the pattern of the general eigenvalue equations (1.2) and (1.3), we have for
isospin 1

2

t2|n〉 = 3
4 |n〉 , t3|n〉 = + 1

2 |n〉 , (5.71)

t2|p〉 = 3
4 |p〉 , t3|p〉 = − 1

2 |p〉 . (5.72)

Exploiting the general analogy to angular momentum, and specifically the
relations (1.5)–(1.7), we have the isospin raising and lowering operators

3 The convention of denoting the neutron by ‘isospin up’ and the proton by ‘isospin
down’ is normal in nuclear physics. It leads to a positive total isospin projection
MT = 1

2
(N − Z) for most nuclei. The opposite convention is used in particle

physics.
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t± = t1 ± it2 (5.73)

with the commutation relations

[t+, t−] = 2t3 , [t±, t3] = ∓t± . (5.74)

The effect of t± on the proton and neutron is given by

t+|p〉 = |n〉 , t+|n〉 = 0 , t−|p〉 = 0 , t−|n〉 = |p〉 . (5.75)

Denoting τ ≡ 2t we have the isospin analogues of the Pauli spin matrices
(2.38):

τ1 =
(
0 1
1 0

)
, τ2 =

(
0 −i
i 0

)
, τ3 =

(
1 0
0 −1

)
. (5.76)

The total isospin operator is

T =
A∑
i=1

t(i) (5.77)

just like the total angular momentum J =
∑

i s(i) of spin-
1
2 vectors s(i) for

some particles i. For the total isospin quantum number T and its projection
MT we have

T 2|T MT 〉 = T (T + 1)|T MT 〉 , T3|T MT 〉 =MT |T MT 〉 (5.78)

withMT = −T,−T+1, . . . , T−1, T . The total isospin is integer of half-integer
depending on whether A is even or odd. The operators

T± =
A∑
i=1

t±(i) , T3 =
A∑
i=1

t3(i) (5.79)

have the properties

T±|T MT 〉 =
√

T (T + 1)−MT (MT ± 1) |T MT ± 1〉 , (5.80)

T3|T MT 〉 = [N × (+1
2 ) + Z × (−1

2 )]|T MT 〉 = 1
2 (N − Z)|T MT 〉 , (5.81)

so that
MT = 1

2 (N − Z) . (5.82)

Before proceeding to further technical details of isospin, let us briefly ex-
amine isospin symmetry in nuclei. From experimental data it is known that
to a good approximation the energy levels of light nuclei are characterized by
a unique isospin quantum number T , i.e. T is a good quantum number. This
is equivalent to the commutation condition

[H,T 2] ≈ 0 . (5.83)
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For complete rotation invariance in isospace we would require not only an
equality sign in (5.83) but commutation of H with each component of T
separately,

[H,T±] = 0 , [H,T3] = 0 . (5.84)

These conditions are not satisfied because of the proton–neutron mass differ-
ence and the Coulomb interaction between protons. The former leads to an
isovector term and the latter to both an isovector and an isotensor term in H.
Neglecting them leads to complete isospin symmetry, where all the substates
MT = −T,−T+1, . . . , T−1, T are degenerate. This situation is approximately
realized in the examples of this chapter, Figs. 5.4–5.11, where the Coulomb
energy has been subtracted.

5.5.2 Tensor Operators in Isospin Representation

Single-particle states are written in the Baranger notation (3.62) as α =
(a,mα), where a = nalaja. In the proton–neutron formalism the distinction
between proton and neutron occupation of this orbital was indicated by writ-
ing π = (p,mπ) for protons and ν = (n,mν) for neutrons. In the isospin
formalism we have to add an extra quantum number, namely the isospin pro-
jection mtα, to fully specify a single-particle state:

α = (a,mα,mtα) . (5.85)

It also understood that the quantum number t = 1
2 is now carried by a just

as is s = 1
2 . With the new quantum number mt present the Kronecker delta

of (3.72) is generalized to

δab = δnanbδlalbδjajb , (5.86)
δαβ = δabδmαmβδmtαmtβ . (5.87)

Isospins are coupled by Clebsch–Gordan coefficients the same way as an-
gular momenta. The only difference is that the isospin of a single particle has
t = 1

2 as its only value whereas the angular momentum of a single particle
can be any of j = 1

2 ,
3
2 ,

5
2 , . . . (in units of �). Two isospins can thus be coupled

to T = 0 and T = 1 only, according to

|a b ; J M ; T MT 〉 = N
∑

mαmβ
mtαmtβ

(ja mα jb mβ |J M)( 12 mtα
1
2 mtβ |T MT )|α〉|β〉 .

(5.88)
Tensor operators exist in isospace as they do in coordinate space. Consider

a one-body operator OTMT

λμ . It is the component MT of a spherical tensor of
rank T in isospace. Equation (4.22) gives its expression in occupation number
representation as

OTMT

λμ = λ̂−1
∑
ab

mtαmtβ

(amtα‖OTMT

λ ‖bmtβ)
[
c†amtα c̃bmtβ

]
λμ

. (5.89)
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We wish to bring this into an isospin-reduced form by performing the sums
over mtα andmtβ . The double-barred matrix element is reduced in coordinate
space only. To reduce it in isospace too, we apply the Wigner–Eckart theorem
(2.27) to it:

(amtα‖OTMT

λ ‖bmtβ) = (−1)
1
2−mtα

(
1
2 T 1

2
−mtα MT mtβ

)
(a |||OT

λ ||| b) . (5.90)

The triple-barred matrix element is reduced both in coordinate space and in
isospace.

The next step is to address the isospin-tensorial character of the creation
and annihilation operators. The creation operator c†amtα is immediately the
component mtα of an isotensor of rank 1

2 . The annihilation operator is defined
in (4.23): c̃amα = (−1)ja+mαca,−mα . It is a tensor in coordinate space but not
in isospace. By analogy, we define the isotensor annihilation operator by

ĉamtα ≡ (−1)
1
2+mtα c̃a,−mtα . (5.91)

The operator ĉa is a rank-ja tensor in coordinate space and a rank-12 tensor
in isospace.

Substituting (5.90) and (5.91) into (5.89) and applying relations of Sect. 1.2
finally gives

OTMT

λμ = λ̂−1T̂−1
∑
ab

(a |||OT
λ ||| b)

[
c†aĉb

]TMT

λμ
, (5.92)

where the superscripts MTM denote isospin coupling as detailed in (5.88).
The only possible values of T are 0 (MT = 0) and 1 (MT = 0,±1), represent-
ing isoscalar and isovector operators respectively. With the values of the 3j
symbols taken from Sect. 1.2, equation (5.90) gives

(a |||O0
λ||| b) =

√
2(a 1

2‖O
00
λ ‖b 12 ) , (5.93)

(a |||O1
λ||| b) =

√
6(a 1

2‖O
10
λ ‖b 12 ) . (5.94)

The doubly reduced nuclear matrix element can now be written as

(ξf Jf Tf |||OT
λ ||| ξi Ji Ti) = λ̂−1T̂−1

∑
ab

(a |||OT
λ ||| b)

×
(
ξf Jf Tf |||

[
c†aĉb

]T
λ
||| ξi Ji Ti

)
.

(5.95)

The last factor on the right is the doubly reduced one-body transition density.
It contains the nuclear structure part of an electromagnetic or beta transi-
tion matrix element. Isospin-reduced nuclear matrix elements are used in the
shell model literature (see, e.g. [28]). The isospin formalism is often favoured
because it reduces computational work as compared with the proton–neutron
formalism. The differences in computational effort are discussed in Chap. 8 in
connection with the two-body interaction.
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5.5.3 Isospin Representation of Two-Particle and Two-Hole Nuclei

Wave functions of two-particle nuclei with coupled angular momenta were
discussed in Subsect. 5.3.1. We now include isospin coupling and write the
wave function in occupation number representation:

|a b ; J M ; T MT 〉 = Nab(JT )
[
c†ac
†
b

]TMT

JM
|CORE〉 ,

Nab(JT ) =

√
1− δab(−1)J+T

1 + δab
.

(5.96)

The normalization constant Nab has two possible non-zero values: Nab = 1
for a 	= b and Naa(J + T = odd) = 1/

√
2. In the a = b case we have the

important result that only certain (J, T ) pairs are possible: for T = 0 only
J = odd, and for T = 1 only J = even.

Two-hole wave functions with coupled angular momentum and coupled
isospin can be written down immediately following the pattern of (5.96):

|a−1 b−1 ; J M ; T MT 〉 = Nab(JT )
[
h†ah

†
b

]TMT

JM
|HF〉 . (5.97)

The hole creation operator h†α appearing here is like the one defined in (4.46),
h†α = c̃α, but now generalized to include isospin. Following (5.91), we thus
have

h†amαmtα = ĉamαmtα = (−1)
1
2+mtα c̃amα,−mtα

= (−1)ja+mα+
1
2+mtαca,−mα,−mtα , (5.98)

where we can use the abbreviation (5.85) and

−α ≡ (a,−mα,−mtα) (5.99)

when it is clear that we are in the isospin formalism. It follows that

h†
αmα,± 1

2
= ∓c̃amα,∓ 1

2
. (5.100)

Let us form a one-hole state using a detailed notation as in (5.97):

|a−1 ; J mα ; 1
2 ±

1
2 〉 = h†

amα,± 1
2
|HF〉 = ∓c̃amα,∓ 1

2
|HF〉 . (5.101)

With the upper signs we have annihilated a proton (mtα = − 1
2 ), with the

lower signs a neutron (mtα = +1
2 ). We thus have a one-proton-hole state with

T = 1
2 , MT = +1

2 and a one-neutron-hole state with T = 1
2 , MT = − 1

2 ,

|a−1 ; J mα ; 1
2 +

1
2 〉 = −|p

−1 ; J mα〉 , (5.102)

|a−1 ; J mα ; 1
2 −

1
2 〉 = |n

−1 ; J mα〉 . (5.103)
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The relation (5.100) is important in handling states with holes.
The two creation operators in (5.96) and (5.97) always anticommute. Tak-

ing into account the symmetry properties of the Clebsch–Gordan coefficients,
both for angular momentum and for isospin, we can write the symmetry re-
lations

|b a ; J M ; T MT 〉 = (−1)ja+jb+J+T |a b ; J M ; T MT 〉 , (5.104)

|b−1 a−1 ; J M ; T MT 〉 = (−1)ja+jb+J+T |a−1 b−1 ; J M ; T MT 〉 . (5.105)

Example 5.1
Taking a = b = 0f7/2 leads to the following possible two-particle and two-hole
states:

T = 0 , J = 1, 3, 5, 7 ,

T = 1 , J = 0, 2, 4, 6 .

So we have altogether 4 + 3 × 4 = 16 states (MT = 0,±1). In the proton–
neutron representation we have

J = 0, 2, 4, 6 (proton–proton and neutron–neutron states),
J = 0, 1, 2, 3, 4, 5, 6, 7 (proton–neutron states),

altogether 2×4+8 = 16 J states. So we have the same number of states, and
indeed the same J states, in both representations. This meets the expectations.

All the 16 states are seen in the spectra of theMT = +1, 0,−1 triplet 42Ca,
42Sc and 42Ti in Fig. 5.6, where there are two particles in the 0f7/2 shell. A
similar, though incomplete, pattern is seen in the spectra of the triplet 54Fe,
54Co and 54Ni in Fig. 5.8, where there are two holes in the 0f7/2 shell.

In the A = 42 triplet the MT = +1, 0,−1 states for each J are almost
degenerate. This means that the Hamiltonian is a very good isospin scalar
if its Coulomb term is discarded. Similar observations can be made of the
two-particle nuclei A = 6 in Fig. 5.4 and A = 18 in Fig. 5.5. Also the A = 38
triplet of two-hole nuclei in Fig. 5.7 seems to conserve isospin very well.

Let us analyse the isospin structure of two-particle states and deduce
its correspondence with the proton–neutron structure. Equation (5.96) and
Clebsch–Gordan coefficients from Chap. 1 give

|a1 a2 ; J M ; 1 ±1〉 = Na1a2(J1)
[
c†a1c

†
a2

]1,±1
JM
|CORE〉

= Na1a2(J1)
[
c†
a1,± 1

2
c†
a2,± 1

2

]
JM
|CORE〉 . (5.106)

This means that

|a1 a2 ; J M ; 1 +1〉 = |n1 n2 ; J M〉 , (5.107)
|a1 a2 ; J M ; 1 −1〉 = |p1 p2 ; J M〉 . (5.108)
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Thus two-neutron nuclei areMT = +1 nuclei and two-proton nuclei areMT =
−1 nuclei, as indicated in Figs. 5.4–5.6. Thinking of the neutron as ‘isospin
up’ and of the proton as ‘isospin down’ gives this result immediately in an
elementary way.

Similarly we find for MT = 0

|a1 a2 ; J M ; T 0〉 = Na1a2(JT )√
2

([
c†
a1,

1
2
c†
a2,− 1

2

]
JM

+ (−1)T+1
[
c†
a1,− 1

2
c†
a2,

1
2

]
JM

)
|CORE〉 . (5.109)

In terms of protons and neutrons this means

|a1 a2 ; J M ; 0 0〉 = Na1a2(J0)√
2

(
|n1 p2 ; JM〉 − |p1 n2 ; JM〉

)
, (5.110)

|a1 a2 ; J M ; 1 0〉 = Na1a2(J1)√
2

(
|n1 p2 ; JM〉+ |p1 n2 ; JM〉

)
. (5.111)

These proton–neutron mixtures are the T = 0 and T = 1 states in an MT = 0
(N = Z) two-particle nucleus. We note that in structure they and the other
two T = 1 states (5.107) and (5.108) are the same as the familiar spin S = 0
singlet and S = 1 triplet. From Figs. 5.4–5.6 one can see that, evidently as a
result of the residual interaction, the T = 0 states of the np− pn type tend to
lie lower in energy than the T = 1 states of the np+pn type in the two-particle
proton–neutron N = Z nuclei.

Finally, to complete the two-particle picture, we invert (5.110) and (5.111)
to express the proton–neutron states in terms of the isospin states. In the case
a1 	= a2 all values of J occur for both values of T , and we can solve the pair
of equations straightforwardly for |n1 p2 ; JM〉 and |p1 n2 ; JM〉. In the case
a1 = a2, states of a given T exist only for even J (T = 1) or for odd J (T = 0).
Then the non-vanishing states are

|a a ; J even,M ; 1 0〉 = |np ; J M〉 = |p n ; J M〉 , (5.112)
|a a ; J odd,M ; 0 0〉 = |np ; J M〉 = −|p n ; J M〉 , (5.113)

where we have used the symmetry relation (5.25). We can now write the
proton–neutron states in terms of the isospin states for unrestricted a1, a2
and for all J as

|n1 p2 ; J M〉 = 1√
2

(√
1 + δa1a2(−1)J |a1 a2 ; J M ; 1 0〉

+
√
1− δa1a2(−1)J |a1 a2 ; J M ; 0 0〉

)
, (5.114)

|p1 n2 ; J M〉 = 1√
2

(√
1 + δa1a2(−1)J |a1 a2 ; J M ; 1 0〉

−
√
1− δa1a2(−1)J |a1 a2 ; J M ; 0 0〉

)
. (5.115)
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It is to be noted that for a1 	= a2 these states do not have good isospin and
do not occur in the examples of this chapter. However, they will be needed
for technical purposes later in the book.

Two-hole states are derived starting from their definition (5.97) and pro-
ceeding as above. Additionally we need the relations (5.100). The results are

|a−11 a−12 ; J M ; 1 +1〉 = |p−11 p−12 ; J M〉 , (5.116)

|a−11 a−12 ; J M ; 1 −1〉 = |n−11 n−12 ; J M〉 , (5.117)

|a−11 a−12 ; J M ; 0 0〉 = Na1a2(J0)√
2

(
|n−11 p−12 ; JM〉 − |p−11 n−12 ; JM〉

)
,

(5.118)

|a−11 a−12 ; J M ; 1 0〉 = −Na1a2(J1)√
2

(
|n−11 p−12 ; JM〉+ |p−11 n−12 ; JM〉

)
.

(5.119)

Thus two-proton-hole nuclei are MT = +1 nuclei and two-neutron-hole nuclei
are MT = −1 nuclei, as indicated in Figs. 5.7 and 5.8. Proceeding as in the
derivation of (5.114) and (5.115), we may invert the last two equations. The
result is

|p−11 n−12 ; JM〉 = − 1√
2

(√
1 + δa1a2(−1)J |a−11 a−12 ; J M ; 1 0〉

+
√
1− δa1a2(−1)J |a−11 a−12 ; J M ; 0 0〉

)
,

(5.120)

|n−11 p−12 ; JM〉 = − 1√
2

(√
1 + δa1a2(−1)J |a−11 a−12 ; J M ; 1 0〉

−
√
1− δa1a2(−1)J |a−11 a−12 ; J M ; 0 0〉

)
.

(5.121)

5.5.4 Isospin Representation of Particle–Hole Nuclei

Angular-momentum-coupled wave functions of particle–hole nuclei were writ-
ten down in Sect. 5.4. Similarly to the two-particle and two-hole cases we now
include isospin in the description of particle–hole nuclei. Using (5.98) we write
the general wave function as

|a b−1 ; J M ; T MT 〉 =
[
c†ah
†
b

]TMT

JM
|HF〉 =

[
c†aĉb

]TMT

JM
|HF〉 . (5.122)

As before, a and b carry the orbital labels but no information about particle
species. As noted in Sect. 5.4, we have necessarily a 	= b, which makes the
normalization simple. The orthonormality condition is
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〈a b−1 ; J M ; T MT |c d−1 ; J ′M ′ ; T ′M ′T 〉 = δacδbdδJJ ′δMM ′δTT ′δMTM ′
T

.
(5.123)

Because a 	= b, the operators in (5.120) anticommute. With the Clebsch–
Gordan symmetry properties it follows that

|b−1 a ; J M ; T MT 〉 = (−1)ja+jb+J+T |a b−1 ; J M ; T MT 〉 . (5.124)

By expanding the isospin tensor products and inserting the Clebsch–
Gordan coefficients we obtain

|a1 a−12 ; J M ; T 0〉

=
1√
2

([
c†
a1,

1
2
h†
a2,− 1

2

]
JM

+ (−1)T+1
[
c†
a1,− 1

2
h†
a2,

1
2

]
JM

)
|HF〉 . (5.125)

This gives the MT = 0 particle–hole states

|a1 a−12 ; J M ; 0 0〉 = 1√
2

(
|n1 n−12 ; J M〉+ |p1 p−12 ; J M〉

)
, (5.126)

|a1 a−12 ; J M ; 1 0〉 = 1√
2

(
|n1 n−12 ; J M〉 − |p1 p−12 ; J M〉

)
, (5.127)

where the sign changes from (5.125) are due to the relation (5.100), as dis-
played for a single-proton-hole state in (5.102). The MT = ±1 particle–hole
states are easily found to be

|a1 a−12 ; J M ; 1 +1〉 = −|n1 p−12 ; J M〉 , (5.128)

|a1 a−12 ; J M ; 1 −1〉 = |p1 n−12 ; J M〉 . (5.129)

Inverting (5.126) and (5.127) leads to

|n1 n−12 ; J M〉 = 1√
2

(
|a1 a−12 ; J M ; 0 0〉+ |a1 a−12 ; J M ; 1 0〉

)
, (5.130)

|p1 p−12 ; J M〉 = 1√
2

(
|a1 a−12 ; J M ; 0 0〉 − |a1 a−12 ; J M ; 1 0〉

)
. (5.131)

These expressions for the neutron particle–hole and proton particle–hole states
are important in later work.

Figures 5.9–5.11 illustrate the experimental situation for light particle–
hole nuclei. Let us examine the spectra of the A = 4 triplet of nuclei in
Fig. 5.9. The nucleus 4

1H3 is a neutron-particle–proton-hole nucleus, so it is
described by (5.128). This equation gives T = 1, MT = +1 as the isospin
quantum numbers for the particle–hole states. The nucleus 4

3Li1 is a proton-
particle–neutron-hole nucleus. Equation (5.129) gives T = 1, MT = −1 for its
particle–hole states.

The ground state of 4
2He2, the MT = 0 member of the triplet, is the

particle–hole vacuum |HF〉. The excited states consist of charge-conserving
proton-particle–proton-hole and neutron-particle–neutron-hole excitations,
governed by (5.126) and (5.127). The T = 0 states are of the nn−1 + pp−1

type, the T = 1 states of the nn−1 − pp−1 type.
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Epilogue

In this chapter we have discussed many examples of the structure of simple
nuclei. These nuclei are either magic or have one or two particles or holes, or a
particle–hole pair, in their valence space. The description of these nuclei was
kept as simple as possible, without including any configuration mixing. In the
next two chapters the simple wave functions are tested against experimental
data by using the electromagentic and beta decays as probes. After this, from
Chap. 8 on, these simple excitations are allowed to mix among each other
through the residual interaction so far neglected.

Exercises

5.1.Write down the wave functions of the low-energy states of the nuclei 47K
and 57Ni in the mean-field approximation and compare the resulting energy
spectra with experimental data. Discuss the successes and failures of the model
in these particular cases.

5.2. Show that the overlap of two wave functions of the form (5.21) is

〈a b ; J M |a′ b′ ; J ′M ′〉 = δJJ ′δMM ′Nab(J)2[δaa′δbb′ − (−1)ja+jb+Jδab′δba′ ] .
(5.132)

This overlap leads trivially to the following overlap between proton–neutron
two-particle wave functions:

〈p n ; J M |p′ n′ ; J ′M ′〉 = δJJ ′δMM ′δpp′δnn′ . (5.133)

5.3. Derive the normalization constant in (5.21) by exploiting the overlap
(5.132).

5.4. Derive the symmetry properties (5.24) and (5.25) of two-particle wave
functions.

5.5.Write down the wave functions of the low-energy states of 50Ca, 50Sc
and 50Ti in the mean-field approximation and compare the resulting energy
spectra with experimental data. Discuss the quality of the mean-field shell
model in the description of these nuclei.

5.6.Write down the wave functions of the low-energy states of 58Ni and 58Cu
in the mean-field approximation. Compare with experimental data and com-
ment.

5.7. Show that the overlap between two two-hole wave functions of the form
(5.35) is

〈a−1 b−1 ; J M |a′−1 b′−1 ; J ′M ′〉
= δJJ ′δMM ′Nab(J)2[δaa′δbb′ − (−1)ja+jb+Jδab′δba′ ] . (5.134)
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This overlap leads trivially to the following overlap between proton–neutron
two-hole wave functions:

〈p−1 n−1 ; J M |p′−1 n′−1 ; J ′M ′〉 = δJJ ′δMM ′δpp′δnn′ . (5.135)

5.8.Write down the wave functions of the low-energy states of 14C, 14N and
14O in the mean-field approximation. Compare with experimental data and
comment.

5.9.Write down the wave functions of the low-energy states of 46K and 46Ca
in the mean-field approximation and compare the resulting energy spectra
with experimental data. Discuss the successes and failures of the mean-field
description.

5.10.Write down the wave functions of the low-energy states of 54Fe and 54Co
in the mean-field approximation and compare the resulting energy spectra
with experimental data. Discuss the successes and failures of the mean-field
description.

5.11. Derive the overlap (5.45).

5.12.Write down the wave functions of the low-energy states of 48K, 48Ca
and 48Sc in the mean-field approximation and compare the resulting energy
spectra with experimental data. Discuss the quality of the mean-field shell
model in the description of these nuclei.

5.13.Write down the wave functions of the low-energy states of 56Co, 56Ni
and 56Cu in the mean-field approximation. Compare with experimental data
and comment.

5.14. Derive the commutators (5.74) from the basic commutators (5.70).

5.15. Complete the details in the derivation of (5.92).

5.16. Show that the overlap between two two-particle wave functions of the
form (5.96) is

〈a b ; J M ; T MT |a′ b′ ; J ′M ′; T ′M ′T 〉 = δJJ ′δTT ′δMM ′δMTM ′
T
Nab(JT )2

× [δaa′δbb′ + (−1)ja+jb+J+T δab′δba′ ] . (5.136)

5.17. Derive the normalization constant in (5.96) by exploiting the overlap
(5.136).

5.18. Show that the overlap of two states of the form (5.97) is

〈a−1 b−1 ; J M ; T MT |a′−1 b′−1 ; J ′M ′; T ′M ′T 〉
= δJJ ′δTT ′δMM ′δMTM ′

T
Nab(JT )2[δaa′δbb′ + (−1)ja+jb+J+T δab′δba′ ] .

(5.137)
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5.19. Derive the symmetry properties (5.104) and (5.105).

5.20. Derive the wave functions (5.116) and (5.117).

5.21. Derive the wave functions (5.118) and (5.119).

5.22. Based on the material of Subsect. 5.5.3, how would you classify the
states of 10Be, 10B and 10C? Form the isospin singlet and triplet states and
compare with experimental data.

5.23. Derive the overlap (5.123).

5.24. Derive the expression (5.125).

5.25. Derive the wave functions (5.126) and (5.127).

5.26. Derive the wave functions (5.128) and (5.129).

5.27. Based on the material of Subsect. 5.5.4, how would you classify the
states of 12B, 12C and 12N? Form the isospin singlet and triplet states and
compare with experimental data.

5.28. Classify the states of 4H, 4He and 4Li according to isospin. Form the
isospin singlet and triplet states and compare with experimental data.
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Electromagnetic Multipole Moments
and Transitions

Prologue

In the preceding chapter we constructed and discussed the simplest possible
nuclear wave functions. This construction was done at the mean-field level.
No account was taken of configuration mixing caused by the nuclear resid-
ual interaction. These simple wave functions produce degeneracies in energy
spectra. This is contrary to experimental data, so improved wave functions
are called for.

In this chapter we introduce various electromagnetic observables. They
probe the structure of the wave functions involved through multipole moments
and gamma decays. The elecromagnetic processes are excellent tests of the
validity of various assumptions underlying the structure of nuclear states. In
particular, the decay properties produced by the simple wave functions of
Chap. 5 are good indicators of the degree of validity of the plain mean-field
picture.

6.1 General Properties of Electromagnetic Observables

The electromagnetic decay processes of nuclei are described as resulting from
the interaction of the nucleus with an external electromagnetic field. The com-
plete field consists of the electric field E and magnetic field B. The energy
density of the electromagnetic field1 is proportional to E2 + c2B2. The in-
teraction between the nucleus and the field is mediated by the four-potential
(φ,A). The scalar potential φ couples to the nuclear charge density ρ and the
vector potential A to the nuclear current density j. The nuclear current den-
sity consists of two parts, namely the orbital part due to the moving charges of
protons and the spin part due to the spin magnetism of protons and neutrons.
1 SI units are used throughout the book. Footnotes are inserted to indicate differ-
ences when quantities are expressed in Gaussian units. Thus the energy density
in Gaussian units is proportional to E2 +B2.



www.manaraa.com

118 6 Electromagnetic Multipole Moments and Transitions

The electromagnetic radiation field can be expanded in multipoles contain-
ing spherical harmonics. The field is quantized in terms of photons. Creation
and annihilation of photons is described in occupation number representation.
The complete system is nucleus plus field. Its two parts interact weakly, so that
the interaction can be treated as a perturbation. Consider the electromagnetic
decay of an excited nucleus to its ground state. The unperturbed initial state
of the system is the excited nuclear state and the electromagnetic field in its
ground state, i.e. no photons. The final state is the nuclear ground state and
the electromagnetic field with one photon created into it. The transition from
the initial to the final state has been mediated by one of the multipole terms
in the expansion of the radiation field. For further discussion and for filling
in details see e.g. [16] or [39]. Below we cite the important results without
getting involved in the heavy calculations needed to obtain them.

6.1.1 Transition Probability and Half-Life

Consider the transition probability per unit time, usually called just transition
probability, of gamma decay from an initial nuclear state i to a final nuclear
state f , denoted Tfi. The lifetime of the transition is 1/Tfi and its half-life is

t1/2 =
ln 2
Tfi

. (6.1)

Gamma transitions proceed by multipole components λμ of the radiation
field. The sources of the field are either of electric ormagnetic type, designated
by an index σ such that σ = E or σ = M. The σλμ transition probability,
calculated by the ‘golden rule’ of time-dependent perturbation theory, is2

T
(σλμ)
fi =

2
ε0�

λ+ 1
λ[(2λ+ 1)!!]2

(
Eγ

�c

)2λ+1 ∣∣〈ξf Jf mf |Mσλμ|ξi Ji mi〉
∣∣2 , (6.2)

where Eγ is the energy of the transition and Mσλμ is the nuclear operator
associated with the multipole radiation field σλμ.

Magnetic substates are normally not observed separately. Averaging (6.2)
over the initial substates and summing over the final substates and all μ yields
the transition probability3

T
(σλ)
fi =

1
2Ji + 1

∑
miμmf

T
(σλμ)
fi

=
2

ε0�

λ+ 1
λ[(2λ+ 1)!!]2

(
Eγ

�c

)2λ+1

B(σλ ; ξiJi → ξfJf ) ,

(6.3)

2 In Gaussian units the constant factor in front is 8π/�.
3 See Exercise 2.25.
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where we have the reduced transition probability

B(σλ ; ξiJi → ξfJf ) ≡
1

2Ji + 1

∣∣(ξf Jf‖Mσλ‖ξi Ji)
∣∣2 . (6.4)

The usual notation is

MEλ = Qλ , MMλ =Mλ . (6.5)

Written out in detail the components of the electric and magnetic tensor
operators are

Qλμ = ζ(Eλ)
A∑
j=1

e(j)rλj Yλμ(Ωj) , (6.6)

Mλμ =
μN

�c
ζ(Mλ)

A∑
j=1

[
2

λ+ 1
g
(j)
l l(j) + g(j)s s(j)

]
·∇j [rλj Yλμ(Ωj)] . (6.7)

Here e(j) is the electric charge, and l(j) and s(j) are the orbital and spin
angular momenta, of nucleon j. Below we write just e for the charge, with the
understanding that it is the fundmental unit of charge for protons and zero
for neutrons. However, effective charges can replace these values as discussed
in Subsect. 6.1.3.

From (2.17) we can see that the gradient factor in the magnetic dipole
operator M1μ is ∇(rY1μ) ∝ êμ, so that the operator simply consists of the
angular momentum components lμ and sμ. For λ > 1 the gradient factor is
more complicated. However, it commutes with the l and s operators, which
simplifies matters.4 The g factors,5 or gyromagnetic ratios, are g

(j)
s = gp for

the proton spin and g
(j)
s = gn for the neutron spin. Their values are

gp = 5.586 , gn = −3.826 . (6.8)

The orbital g factors are g
(j)
l = 1 for protons and g

(j)
l = 0 for neutrons. These

free-nucleon values are used normally in nuclear structure calculations. The
nuclear magneton is

μN =
e�

2mp
= 0.10515 ce fm , (6.9)

where mp = 938.27MeV/c2 is the proton mass.6

The phase factors ζ(Eλ) and ζ(Mλ) are different for the CS and BR phase
conventions, introduced in (3.67):
4 For the l term this follows from the fact that (r × ∇) · ∇f = 0 for a general
function f(r).

5 In this work the g factors are taken to be bare numbers, contrary to e.g. [17].
6 In Gaussian units the nuclear magneton is μN = e�/2mpc. Then there appears
no c in (6.7) or on the right-hand side of (6.9).



www.manaraa.com

120 6 Electromagnetic Multipole Moments and Transitions

ζ(Eλ) =

{
1 Condon–Shortley phase convention ,

iλ Biedenharn–Rose phase convention ,
(6.10)

ζ(Mλ) =

{
1 Condon–Shortley phase convention ,

iλ−1 Biedenharn–Rose phase convention .
(6.11)

The Biedenharn–Rose complex phases are needed to obtain real single-particle
matrix elements for the electromagnetic transition amplitudes, i.e. reduced
matrix elements ofMσλ.

From (6.4) to (6.7) we see that the units of the reduced transition proba-
bilities are

[B(Eλ)] = e2fm2λ , [B(Mλ)] = (μN/c)2fm2λ−2 . (6.12)

We note the handy relations for physical constants

1
4πε0

e2

�c
≡ α = 1/137.04 , �c = 197.33 MeV fm . (6.13)

With use of these relations we can put the transition probabilities (6.3) into
useful numerical forms:

TEλ
fi = 5.498× 1022f(λ)

(
Eγ [MeV]
197.33

)2λ+1

B(Eλ) [e2fm2λ] 1/s ,

TMλ
fi = 6.080× 1020f(λ)

(
Eγ [MeV]
197.33

)2λ+1

B(Mλ) [(μN/c)2fm2λ−2] 1/s ,

f(λ) ≡ λ+ 1
λ[(2λ+ 1)!!]2

.

(6.14)
Reduced transition probabilities B(E2) are sometimes expressed in the

literature in units of e2barn2. The conversion, from 1barn = 100 fm2, is

e2barn2 = 104 e2fm4 . (6.15)

This unit brings numerical values for collective nuclear excitations close to
unity. In this sense it is a ‘natural’ unit for collective decays.

Equation (6.1) can be immediately generalized to the case where there
are several final states available. The transition probabilities Tfi are additive,
so we sum them over the final states f , and (6.1) then gives for the (total)
half-life of the initial state

1
t1/2

=
∑
f

1

t
(f)
1/2

. (6.16)

Here t
(f)
1/2 is the partial decay half-life for decay to the final state f .
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6.1.2 Selection Rules for Electromagnetic Transitions

The first selection rule is that there are no E0 or M0 gamma transitions.
This is seen from the operators (6.6) and (6.7). With λ = 0 the first is a
constant and the second vanishes. A constant cannot connect two different
nuclear states. However, electromagnetic E0 transitions are possible via inter-
nal conversion, where the nucleus de-excites by ejecting an atomic electron;
internal conversion is not discussed further in this book. The absence of all
M0 transitions results fundamentally from the absence of magnetic monopoles
in nature.

Electromagnetic transitions are classified according to their multipoles. To
accomplish the classification let us look at the structure of the electric and
magnetic λ-pole7 operators in (6.6) and (6.7). We see that, for each j, the
λ-pole operators have the structure

Qλμ ∝ rλYλμ , Mλμ ∝
l
s

}
·∇(rλYλμ) . (6.17)

The parity of the spherical harmonic Yλμ is (−1)λ and that of the scalar
rλ is +1. Hence the electric λ-pole operator has parity π = (−1)λ. In the
magnetic λ-pole operator the factors l and s are axial vectors, so their parity
is +1. The parity of the vector operator ∇ is −1, and the parity of rλYλμ is
(−1)λ. It follows that the parity of the magnetic λ-pole term can be written
as π = (−1)λ−1. Denoting the parity of the initial state by πi and that of the
final state by πf we then have the parity conservation selection rule

πiπf =

{
(−1)λ for Eλ ,

(−1)λ−1 for Mλ .
(6.18)

The transition probability decreases drastically with increasing multipo-
larity. Therefore the likeliest transition is the one of the lowest multipolarity
allowed by the angular momentum and parity selection rules. For a λ-pole
transition between nuclear states of angular momenta Ji and Jf the angu-
lar momentum selection rule is the triangular condition Δ(JfλJi) and the
parity selection rule is (6.18). This leads to the hierarchical classification of
electromagnetic decay transitions presented in Table 6.1.

The classification of Table 6.1 helps to track the leading electromagnetic
multipole λ responsible for the decay transition in question. Note that only
the lowest multipoles are included. For example, for a 2+ → 2+ transition the
table only gives M1. However, the selection rules allow all of M1, E2, M3 and
E4. While M3 and E4 are without practical significance in this example, E2

7 Traditionally the low multipoles are named according to Greek numbers for 2λ.
Thus we have dipole, quadrupole, octupole, hexadecapole. This terminology was
introduced in Subsect. 2.1.2.
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Table 6.1. Lowest multipolarities for gamma transitions

ΔJ = |Jf − Ji| 0a 1 2 3 4 5

πiπf = −1 E1 E1 M2 E3 M4 E5
πiπf = +1 M1 M1 E2 M3 E4 M5

aNot 0→ 0.

often competes with M1. In certain collective transitions E2 in fact dominates
over M1.

The ratio of the E2 and M1 reduced matrix elements is called the E2/M1
mixing ratio

Δ(E2/M1) =
(ξf Jf‖Q2‖ξi Ji)
(ξf Jf‖M1‖ξi Ji)

. (6.19)

Its units are given by (6.12) as

[Δ(E2/M1)] =
e fm2

μN/c
. (6.20)

The mixing ratio, including its sign, is a measurable quantity. It serves as a
sensitive test of nuclear models. A related, dimensionless quantity δ(E2/M1) is
commonly used in experimental reports. It is related to Δ(E2/M1) according
to

δ(E2/M1) = 0.835Eγ [MeV]Δ(E2/M1)
[
ebarn
μN/c

]
. (6.21)

6.1.3 Single-Particle Matrix Elements of the Multipole Operators

As discussed in Chap. 4, the characteristics of operators are hidden inside
their single-particle matrix elements. From (4.22) we can write the reduced
matrix element of the electromagnetic operator as

(ξf Jf‖Mσλ‖ξi Ji) = λ̂−1
∑
ab

(a‖Mσλ‖b)(ξf Jf‖
[
c†ac̃b

]
λ
‖ξi Ji) . (6.22)

The reduced single-particle matrix element (a‖Mσλ‖b) can be easily writ-
ten for electric transitions, σ = E, by using (6.6) and the reduced matrix
element of the spherical harmonic Yλ given in (2.57). The result is
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(a‖Qλ‖b) = ζ
(Eλ)
ab

e√
4π
(−1)jb+λ− 1

2
1 + (−1)la+lb+λ

2
λ̂ĵaĵb

(
ja jb λ
1
2 −

1
2 0

)
R(λ)

ab ,

R(λ)
ab =

∫ ∞
0

gnala(r)r
λgnblb(r)r

2dr ,

ζ
(Eλ)
ab =

{
1 Condon–Shortley phase convention ,

(−1) 12 (lb−la+λ) Biedenharn–Rose phase convention .

(6.23)
The fourth factor takes care of parity conservation according to (6.18): it is
unity for allowed transitions and zero for forbidden ones. For the radial wave
functions gnl(r) we choose to use the harmonic oscillator functions discussed
in Subsect. 3.2.1.

The single-particle matrix element for magnetic transitions, σ = M, is (see
e.g. [16])8

(a‖Mλ‖b) = ζ
(Mλ)
ab

μN/c√
4π
(−1)jb+λ− 1

2
1− (−1)la+lb+λ

2
λ̂ĵaĵb

(
ja jb λ
1
2 −

1
2 0

)
× (λ− κ)

[
gl

(
1 +

κ

λ+ 1

)
− 1

2gs

]
R(λ−1)

ab ,

κ ≡ (−1)la+ja+
1
2 (ja + 1

2 ) + (−1)
lb+jb+

1
2 (jb + 1

2 ) ,

ζ
(Mλ)
ab =

{
1 Condon–Shortley phase convention ,

(−1) 12 (lb−la+λ+1) Biedenharn–Rose phase convention .

(6.24)
Again we note the fourth factor as the ‘parity factor’.

The phase factors ζ in (6.23) and (6.24) are real, always +1 in the CS
convention and ±1 in the BR convention. These phases arise from the defin-
ition of the single-particle wave functions in (3.63) and (3.67) and from the
additional phase factors (6.10) and (6.11) defined in the operators (6.6) and
(6.7).

The charges and g factors in the single-particle matrix elements (6.23) and
(6.24) are

e(p) = e , e(n) = 0 , gl(p) = 1 , gl(n) = 0 , gs(p) = gp , gs(n) = gn
(6.25)

with gp and gn given in (6.8). These free-particle values are known as bare
values. Instead of them, one can use effective values for one or more of them.
Such effective values represent a summary way of taking into account effects
not explicitly included in the description. Thus particle–hole excitations of
the core cause effective charges. They can be represented as (see e.g. [12])

8 One has to be careful when citing results from the literature: in [16] the coupling
order for the single-particle states is sl, instead of our ls, which introduces a phase
difference between our result and theirs.
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epeff = (1 + χ)e , eneff = χe , (6.26)

where χ is the electric polarization constant. The simplest example is that
for electric dipole (E1) transitions it is customary to take χ = −Z/A. This
value relates to the spurious centre-of-mass motion discussed at the end of
Sect. 6.4.1. The effective charges of (6.26) are adopted in this work. Also for
the g factors one can use effective values. They result from the inert core and
meson exchange contributions. For a further discussion of the effects in the
valence space induced by the chosen core, see [17].

We note the following symmetry properties of the reduced single-particle
matrix elements, for both the Condon–Shortley (CS) and Biedenharn–Rose
(BR) phases:

(b‖Qλ‖a)CS = (−1)ja+jb+1(a‖Qλ‖b)CS , (6.27)

(b‖Mλ‖a)CS = (−1)ja+jb+1(a‖Mλ‖b)CS , (6.28)

(b‖Qλ‖a)BR = (−1)ja+jb+λ+1(a‖Qλ‖b)BR , (6.29)

(b‖Mλ‖a)BR = (−1)ja+jb+λ(a‖Mλ‖b)BR . (6.30)

These symmetries reduce the effort when calculating single-particle matrix
elements. A host of their numerical values are given in Sect. 6.1.5. We note
that (6.27) and (6.28) are consistent with the general relation (2.32).

6.1.4 Properties of the Radial Integrals

To calculate numerical values of the reduced single-particle matrix elements
(6.23) and (6.24) we need to evaluate the radial integralsR(λ)

ab stated in (6.23).
This can be done either by numerical integration or analytically by exploiting
the properties of the radial harmonic oscillator eigenfunctions gnl(r).

The functions gnl(r) are scaled by the oscillator length b given by (3.43).
To obtain a table of universal values of the radial integrals we adopt a dimen-
sionless variable x ≡ r/b and include the parameter b in the statement of the
function, gnl(r, b). From (3.42) we see that

gnl(r, b) = b−
3
2 gnl(x, b = 1) ≡ b−

3
2 g̃nl(x) , x =

r

b
. (6.31)

The radial integral can then be written as

R(λ)
ab = bλ

∫ ∞
0

dx g̃nala(x)x
λ+2g̃nblb(x) ≡ bλR̃(λ)

ab , (6.32)

where R̃(λ)
ab is independent of the oscillator length b. Values of the integrals

R̃(λ)
ab are given in Table 6.2. We note that R(λ)

ab = R
(λ)
ba and R(0)

ab = R̃
(0)
ab .

For the analytical evaluation of radial integrals one can use the follow-
ing mathematical expressions, which also provide for values beyond those in
Table 6.2. The basic relations are
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Table 6.2. Values of the radial integral R̃(λ)
ab = R̃(λ)

ba given in (6.32) for λ = 0, 1, 2, 3
and for the 0s, 0p, 1s, 0d, 1p and 0f shells

a b λ = 0 λ = 1 λ = 2 λ = 3

0s 0s 1 2√
π
= 1.128 3

2
= 1.500 4√

π
= 2.257

0s 0p 2
√

2
3π
= 0.921

√
3
2
= 1.225 4

√
2
3π
= 1.843 5

2

√
3
2
= 3.062

0s 1s 0 −
√

2
3π
= −0.461 −

√
3
2
= −1.225 −2

√
6
π
= −2.764

0s 0d
√

3
5
= 0.775 8√

15π
= 1.165

√
15
2
= 1.936 8

√
3
5π
= 3.496

0s 0f 8
√

2
105π

= 0.623
√

15
14
= 1.035 8

√
6

35π
= 1.869 1

2

√
105
2
= 3.623

0s 1p 2√
15π

= 0.291 0 − 4√
15π

= −0.583 −
√
15
2
= −1.936

0p 0p 1 8
3
√
π
= 1.505 5

2
= 2.500 8√

π
= 4.514

0p 1s − 2
3
√
π
= −0.376 −1 − 4√

π
= −2.257 −5

0p 0d 8
3

√
2
5π
= 0.951

√
5
2
= 1.581 8

√
2
5π
= 2.855 7

2

√
5
2
= 5.534

0p 0f
√

5
7
= 0.845 16√

35π
= 1.526

√
35
2
= 2.958 64√

35π
= 6.103

0p 1p 0 − 4
3

√
2
5π
= −0.476 −

√
5
2
= −1.581 −12

√
2
5π
= −4.282

1s 1s 1 3√
π
= 1.693 7

2
= 3.500 14√

π
= 7.899

1s 0d −
√

2
5
= −0.632 −4

√
2
5π
= −1.427 −√10 = −3.162 −4

√
10
π
= −7.136

1s 0f − 8√
35π

= −0.763 −2
√

5
7
= −1.690 −8

√
5
7π
= −3.815 − 3

2

√
35 = −8.874

1s 1p 7
3

√
2
5π
= 0.833

√
5
2
= 1.581 2

√
10
π
= 3.568 11

2

√
5
2
= 8.696

0d 0d 1 16
5
√
π
= 1.805 7

2
= 3.500 64

5
√
π
= 7.222

0d 0f 16
5

√
2
7π
= 0.965

√
7
2
= 1.871 64

5

√
2
7π
= 3.860 9

2

√
7
2
= 8.419

0d 1p − 8
15

√
π
= −0.301 −1 − 24

5
√
π
= −2.708 −7

0f 0f 1 128
35

√
π
= 2.063 9

2
= 4.500 128

7
√
π
= 10.317

0f 1p −
√

2
7
= −0.534 − 24

5

√
2
7π
= −1.448 −√14 = −3.742 −32

√
2
7π
= −9.650

1p 1p 1 52
15

√
π
= 1.956 9

2
= 4.500 20√

π
= 11.284

∫ ∞
0

rme−ar
2
dr =

Γ
(
m+1
2

)
2a

m+1
2

, a > 0 , (6.33)

and

Γ (n+ 1
2 ) =

√
π
(2n− 1)!!

2n
, n = integer , (6.34)

together with the expression (3.42) for the harmonic oscillator radial wave
function. These lead to the useful formulas∫ ∞

0

g0l(r)g0l′(r)r2dr =
(
2
π

)p/2 (l + l′ + 1)!!√
(2l + 1)!!(2l′ + 1)!!

, (6.35)
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0

g1l(r)g1l′(r)r2dr =
(
2
π

)p/2 (l + l′ + 1)!![3 + l + l′ − 1
2 (l − l′)2]√

(2l + 3)!!(2l′ + 3)!!
, (6.36)

∫ ∞
0

g0l(r)g1l′(r)r2dr =
(
2
π

)p/2 (l′ − l)(l + l′ + 1)!!√
2(2l + 1)!!(2l′ + 3)!!

, (6.37)

where

p =

{
0 , l + l′ = even ,

1 , l + l′ = odd .
(6.38)

Substituting the recursion relation (3.52) for associated Laguerre polynomials
into the radial function (3.42) yields

rgnl(r) = b
√

n+ l + 3
2 gn,l+1(r)− b

√
n gn−1,l+1(r) . (6.39)

Substituting this into (6.32) yields a relation for evaluating integrals with
higher values of λ:

R̃(λ)
nalanblb

=
√

nb + lb + 3
2 R̃

(λ−1)
nalanb,lb+1 −

√
nb R̃(λ−1)

nala,nb−1,lb+1 . (6.40)

The exact values in Table 6.2 were generated by using the relations (6.35)–
(6.40).

As for numerical computing of the radial integrals, there is an elegant
method [40] applicable to the case la+ lb+λ = even, which is just the case for
the electric and magnetic operators under discussion; see (6.23) and (6.24).
The method is contained in the following general expression for the radial
integral:

R̃(λ)
ab = (−1)na+nb

√
na!nb!

Γ (na + la + 3
2 )Γ (nb + lb + 3

2 )
τa!τb!

×
σmax∑

σ=σmin

Γ [ 12 (la + lb + λ) + σ + 3
2 ]

σ!(na − σ)!(nb − σ)!(σ + τa − na)!(σ + τb − nb)!
, (6.41)

where
τa ≡ 1

2 (lb − la + λ) ≥ 0 , τb ≡ 1
2 (la − lb + λ) ≥ 0 , (6.42)

σmin = max{0, na − τa, nb − τb} , σmax = min{na, nb} . (6.43)

The Γ functions can be computed easily by starting from the initial value

Γ (32 ) =
1
2

√
π (6.44)

and using recursively the basic relation

Γ (m+ 1) = mΓ (m) . (6.45)



www.manaraa.com

6.1 General Properties of Electromagnetic Observables 127

6.1.5 Tables of Numerical Values of Single-Particle Matrix
Elements

Tables 6.3–6.5 list numerical values of the electric single-particle reduced ma-
trix elements in the CS phase convention. The tables include λ = 1, 2, 3 and
the 0s, 0p, 0d-1s and 0f-1p major shells, which comprise the 10 lowest single-
particle orbitals. The radial integral used in the tabulated matrix elements
is the b-independent quantity R̃(λ)

ab defined in (6.32). The charge e is omitted
from the tables. Thus, if we call the tabulated matrix elements (a‖Qλ‖b)CS,
we obtain the physical matrix elements (6.23) according to

Table 6.3. Electric dipole (E1) reduced matrix elements (a‖Q1‖b)CS for the 10
lowest single-particle orbitals

a�b 0s1/2 0p3/2 0p1/2 0d5/2 1s1/2 0d3/2 0f7/2 1p3/2 1p1/2 0f5/2

0s1/2 0 −0.691 −0.489 0 0 0 0 0 0 0
0p3/2 0.691 0 0 −1.197 −0.564 −0.399 0 0 0 0
0p1/2 −0.489 0 0 0 0.399 −0.892 0 0 0 0
0d5/2 0 1.197 0 0 0 0 −1.693 −0.757 0 −0.379
1s1/2 0 0.564 0.399 0 0 0 0 −0.892 −0.631 0
0d3/2 0 −0.399 0.892 0 0 0 0 0.252 −0.564 −1.416
0f7/2 0 0 0 1.693 0 0 0 0 0 0
1p3/2 0 0 0 0.757 0.892 0.252 0 0 0 0
1p1/2 0 0 0 0 −0.631 0.564 0 0 0 0
0f5/2 0 0 0 −0.379 0 1.416 0 0 0 0

The physical matrix elements (6.23) are obtained by multiplying the tabulated
numbers by eb

Table 6.4. Electric quadrupole (E2) reduced matrix elements (a‖Q2‖b)CS for the
10 lowest single-particle orbitals

a�b 0s1/2 0p3/2 0p1/2 0d5/2 1s1/2 0d3/2 0f7/2 1p3/2 1p1/2 0f5/2

0s1/2 0 0 0 1.338 0 1.092 0 0 0 0
0p3/2 0 −1.410 −1.410 0 0 0 2.676 0.892 0.892 1.093
0p1/2 0 1.410 0 0 0 0 0 −0.892 0 2.044
0d5/2 1.338 0 0 −2.585 −2.185 −1.293 0 0 0 0
1s1/2 0 0 0 −2.185 0 −1.784 0 0 0 0
0d3/2 −1.092 0 0 1.293 1.784 −1.975 0 0 0 0
0f7/2 0 2.676 0 0 0 0 −3.918 −3.385 0 −1.357
1p3/2 0 0.892 0.892 0 0 0 −3.385 −2.539 −2.539 −1.382
1p1/2 0 −0.892 0 0 0 0 0 2.539 0 −2.586
0f5/2 0 −1.093 2.044 0 0 0 1.357 1.382 −2.586 −3.324
The physical matrix elements (6.23) are obtained by multiplying the tabulated
numbers by eb2
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Table 6.5. Electric octupole (E3) reduced matrix elements (a‖Q3‖b)CS for the 10
lowest single-particle orbitals

a�b 0s1/2 0p3/2 0p1/2 0d5/2 1s1/2 0d3/2 0f7/2 1p3/2 1p1/2 0f5/2

0s1/2 0 0 0 0 0 0 −2.891 0 0 −2.503
0p3/2 0 0 0 3.420 0 4.189 0 0 0 0
0p1/2 0 0 0 −3.824 0 0 0 0 0 0
0d5/2 0 −3.420 −3.824 0 0 0 6.717 4.326 4.837 4.248
1s1/2 0 0 0 0 0 0 7.080 0 0 6.132
0d3/2 0 4.189 0 0 0 0 −3.878 −5.299 0 5.203
0f7/2 2.891 0 0 −6.717 −7.080 −3.878 0 0 0 0
1p3/2 0 0 0 −4.326 0 −5.299 0 0 0 0
1p1/2 0 0 0 4.837 0 0 0 0 0 0
0f5/2 −2.503 0 0 4.248 6.132 −5.203 0 0 0 0

The physical matrix elements (6.23) are obtained by multiplying the tabulated
numbers by eb3.

(a‖Qλ‖b)CS = ebλ(a‖Qλ‖b)CS . (6.46)

The proper value of the oscillator length b can be read from (3.43), combined
with the Blomqvist–Molinari formula (3.45). The Biedenharn–Rose single-
particle matrix elements can be obtained from our tabulated ones by inserting
the phase factors given in (6.23).

Of the magnetic single-particle matrix elements (6.24) we only tabulate
the most important multipolarity λ = 1. Because the orbital and spin parts
are separate it is conveninent to tabulate the two terms separately,

(a‖M1‖b)CS = glD(l)
ab + gsD(s)

ab . (6.47)

Tables 6.6 and 6.7 give the orbital-dipole term D(l)
ab and the spin-dipole term

D(s)
ab in units of μN/c for the 0s, 0p, 0d-1s and 0f-1p major shells. The radial

integral R(0)
ab entering the calculation is independent of the oscillator length

b. The Biedenharn–Rose matrix elements can be obtained by attaching the
phase factors given in (6.24) to the table entries.

6.1.6 Electromagnetic Multipole Moments

The static electric and magnetic multipole moments are important observ-
ables of nuclear structure. These moments are sensitive to details of the wave
function used to compute them. Comparison of computed multipole moments
with measured ones is one of the tests of a nuclear model. Apart from con-
ventional constant factors to be introduced below, the 2λ-pole moment of a
nucleus in a certain state is defined as

M(σλ) ≡ 〈ξ J M = J |Mσλ0|ξ J M = J〉 , (6.48)
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Table 6.6. Magnetic dipole (M1) reduced matrix elements, orbital term D(l)
ab , for

the 10 lowest single-particle orbitals in units of μN/c

a�b 0s1/2 0p3/2 0p1/2 0d5/2 1s1/2 0d3/2 0f7/2 1p3/2 1p1/2 0f5/2

0s1/2 0 0 0 0 0 0 0 0 0 0
0p3/2 0 1.262 0.564 0 0 0 0 0 0 0
0p1/2 0 −0.564 0.798 0 0 0 0 0 0 0
0d5/2 0 0 0 2.832 0 0.757 0 0 0 0
1s1/2 0 0 0 0 0 0 0 0 0 0
0d3/2 0 0 0 −0.757 0 2.271 0 0 0 0
0f7/2 0 0 0 0 0 0 4.701 0 0 0.905
1p3/2 0 0 0 0 0 0 0 1.262 0.564 0
1p1/2 0 0 0 0 0 0 0 −0.564 0.798 0
0f5/2 0 0 0 0 0 0 −0.905 0 0 4.046

Table 6.7. Magnetic dipole (M1) reduced matrix elements, spin term D(s)
ab , for the

10 lowest single-particle orbitals in units of μN/c

a�b 0s1/2 0p3/2 0p1/2 0d5/2 1s1/2 0d3/2 0f7/2 1p3/2 1p1/2 0f5/2

0s1/2 0.598 0 0 0 0 0 0 0 0 0
0p3/2 0 0.631 −0.564 0 0 0 0 0 0 0
0p1/2 0 0.564 −0.199 0 0 0 0 0 0 0
0d5/2 0 0 0 0.708 0 −0.757 0 0 0 0
1s1/2 0 0 0 0 0.598 0 0 0 0 0
0d3/2 0 0 0 0.757 0 −0.378 0 0 0 0
0f7/2 0 0 0 0 0 0 0.784 0 0 −0.905
1p3/2 0 0 0 0 0 0 0 0.631 −0.564 0
1p1/2 0 0 0 0 0 0 0 0.564 −0.199 0
0f5/2 0 0 0 0 0 0 0.905 0 0 −0.506

where ξ carries all other quantum numbers than the angular momentum J and
its z projection M and the operator is the μ = 0 component of the multipole
tensor operatorMσλ in (6.4). Applying the Wigner–Eckart theorem (2.27)
yields

M(σλ) =
(

J λ J
−J 0 J

)
(ξ J‖Mσλ‖ξ J) . (6.49)

For the dipole (λ = 1) and quadrupole (λ = 2) cases the 3j symbol is given
by (1.49) and (1.50) resulting in

M(σ1) =

√
J

(J + 1)(2J + 1)
(ξ J‖Mσ1‖ξ J) , (6.50)

M(σ2) =

√
J(2J − 1)

(J + 1)(2J + 1)(2J + 3)
(ξ J‖Mσ2‖ξ J) . (6.51)
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The conventional magnetic dipole moment μ and electric quadrupole moment
Q are defined by the equations9

μ

c
≡ ζ

√
4π
3
M(M1) = ζ

√
4π
3

√
J

(J + 1)(2J + 1)
(ξ J‖M1‖ξ J) , (6.52)

eQ ≡ ζ

√
16π
5
M(E2) = ζ

√
16π
5

√
J(2J − 1)

(J + 1)(2J + 1)(2J + 3)
(ξ J‖Q2‖ξ J) ,

(6.53)
where the operators are expressed in the conventional notation (6.5). These
moments are defined so as to coincide with their classical analogues. The phase
factors for both reduced matrix elements, given in (6.23) and (6.24), are ζ =
+1 for the Condon–Shortley convention and ζ = −1 for the Biedenharn–Rose
convention. These phase factors are included in (6.52) and (6.53) to cancel
those in the matrix elements so that a given moment has the same sign in both
conventions. The defining equations show explicitly the necessary conditions
for a non-vanishing M1 and E2 moment, J ≥ 1

2 and J ≥ 1, respectively. These
conditions can already be read from the 3j symbol in (6.49).

The single-particle values of the magnetic dipole and electric quadrupole
moments can be obtained from the single-particle matrix elements (6.24) and
(6.23) respectively. The results are

μ = μN
1− (−1)l+j+ 1

2 (2j + 1)
4(j + 1)

{
gs − gl

[
2 + (−1)l+j+ 1

2 (2j + 1)
]}

, (6.54)

Q =
3− 4j(j + 1)
2(j + 1)(2j + 3)

R(2)
nlnl . (6.55)

Equation (6.54) shows directly that single-particle s states, l = 0, have no
orbital magnetic moment, which is also clear from basic physics. Equation
(6.55) shows that a non-vanishing single-particle quadrupole moment is always
negative. This corresponds to the qualitative notion that in the defining state,
with M = J , particles move around the nuclear equator and thus produce an
oblate shape. The quadrupole moment has the unit of area, the oscillator
length squared b2, as is seen from the integral R(2)

nlnl.

6.1.7 Weisskopf Units and Transition Rates

There is a convenient simple estimate for the reduced transition probabilities
B(σλ) defined in (6.4). It is derived by making some simplifying approxima-
tions in (6.23) and (6.24). To begin with, the radial wave function is assumed
to be constant inside the nucleus and zero outside. Normalization then yields
9 In Gaussian units there is no c in (6.52). In both systems, SI and Gaussian, the
unit of the magnetic dipole moment is the nuclear magneton; see (6.9).



www.manaraa.com

6.1 General Properties of Electromagnetic Observables 131

gnl(r) ≈
{√

3/R3 , r ≤ R ,

0 , r > R ,
(6.56)

where R is the nuclear radius. Then the radial integral becomes

R(λ)
ab ≈

3
R3

∫ R

0

rλ+2dr =
3

λ+ 3
Rλ . (6.57)

For the angular momenta we take the ‘stretched case’ ja = 1
2 and jb = λ +

1
2 , and assume such la and lb that the parity factor in (6.23) and (6.24) is
unity, i.e. that the transitions are parity allowed. Equation (1.45) gives the
appropriate 3j symbol, leading to

λ̂ĵaĵb

(
ja jb λ
1
2 −

1
2 0

)
= (−1)λ

√
2λ+ 2 . (6.58)

Collecting the various factors in (6.23) and applying (6.4) we obtain

B(Eλ) ≈ e2

4π

(
3

λ+ 3

)2

R2λ . (6.59)

Finally, by using the relation R = r0A
1/3 = 1.2A1/3 fm, we have the so-called

Weisskopf single-particle estimate [41] or Weisskopf unit (W.u.)

BW(Eλ) =
1.22λ

4π

(
3

λ+ 3

)2

A2λ/3 e2fm2λ . (6.60)

For magnetic transitions one traditionally takes10 [41]

BW(Mλ) =
10
π
1.22λ−2

(
3

λ+ 3

)2

A(2λ−2)/3 (μN/c)2fm2λ−2 . (6.61)

By substituting the Weisskopf estimates for B(Eλ) and B(Mλ) in (6.14)
we get Weisskopf estimates TW(Eλ) and TW(Mλ) for transition probabilities
per unit time. Tables 6.8 and 6.9 list the relevant numerical expressions. The
second columns of the tables are universally true, while the third columns
contain the Weisskopf single-particle estimates for reduced transition proba-
bilities. The fourth columns then restate the information in the third columns
via the relations in the first coulumns. In all cases decay half-lives can be
computed from the transition probabilities according to (6.1). The Weisskopf
estimates BW(σλ) are very easy to compute since they only depend on the nu-
clear mass number A. However, one should be aware that they are essentially
only order-of-magnitude approximations.

10 There is no c present in Gaussian units.
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Table 6.8. Transition probabilities for Eλ transitions

Eλ T (Eλ) (s−1) BW(Eλ) (e
2fm2λ) TW(Eλ) (s

−1)

E1 1.587× 1015E3B(E1) 6.446× 10−2A2/3 1.023× 1014E3A2/3

E2 1.223× 109E5B(E2) 5.940× 10−2A4/3 7.265× 107E5A4/3

E3 5.698× 102E7B(E3) 5.940× 10−2A2 3.385× 101E7A2

E4 1.694× 10−4E9B(E4) 6.285× 10−2A8/3 1.065× 10−5E9A8/3

E5 3.451× 10−11E11B(E5) 6.928× 10−2A10/3 2.391× 10−12E11A10/3

The transition energies E are to be given in MeV and the reduced

transition probabilities B(Eλ) in e2fm2λ.

Table 6.9. Transition probabilities for Mλ transitions

Mλ T (Mλ) (s−1) BW(Mλ)
(
(μN/c)2fm2λ−2

)
TW(Mλ) (s−1)

M1 1.779× 1013E3B(M1) 1.790 3.184× 1013E3

M2 1.371× 107E5B(M2) 1.650A2/3 2.262× 107E5A2/3

M3 6.387× 100E7B(M3) 1.650A4/3 1.054× 101E7A4/3

M4 1.899× 10−6E9B(M4) 1.746A2 3.316× 10−6E9A2

M5 3.868× 10−13E11B(M5) 1.924A8/3 7.442× 10−13E11A8/3

The transition energies E are to be given in MeV and the reduced transition

probabilities B(Mλ) in (μN/c)2fm2λ−2.

6.2 Electromagnetic Transitions in One-Particle
and One-Hole Nuclei

The simplest possible nuclei are the one-particle and one-hole nuclei. Their
states were discussed in Sect. 5.2. The simple wave functions of these states
can be tested efficiently on electromagnetic observables.

6.2.1 Reduced Transition Probabilities

Wave functions of one-particle and one-hole nuclei were written down in
Sect. 5.2. Let us now consider a one-particle nucleus and denote its initial
and final states as

|Ψi〉 = |ni li ji mi〉 = c†i |CORE〉 , (6.62)

|Ψf 〉 = |nf lf jf mf 〉 = c†f |CORE〉 . (6.63)

We calculate the reduced one-body transition density for insertion into (6.22).
With use of (4.23) and (4.42) the one-body transition density becomes

〈Ψf |
[
c†ac̃b

]
λμ
|Ψi〉 =

∑
mαmβ

(ja mα jb mβ |λμ)〈CORE|cfc†αc̃βc
†
i |CORE〉

= δafδbi(−1)ji−mi(jf mf ji−mi|λμ) . (6.64)
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Application of (1.38) and the Wigner–Eckart theorem (2.27) gives the reduced
one-body transition density

(Ψf‖
[
c†ac̃b

]
λ
‖Ψi) = δafδbiλ̂ . (6.65)

From (6.22) we now have the reduced matrix element

(Ψf‖Mσλ‖Ψi) = (f‖Mσλ‖i) , (6.66)

and (6.4) gives the reduced transition probability

B(σλ ; Ψi → Ψf ) =
1

2ji + 1

∣∣(f‖Mσλ‖i)
∣∣2 , σ = E , M . (6.67)

It should be noted that the reduced matrix element in (6.67) is between the
single-particle states |i〉 and |f〉 whereas the physical states |Ψi〉 and |Ψf 〉
include the core.

One-hole nuclei are treated similarly to one-particle nuclei. The initial and
final states are

|Φi〉 = |(ni li ji mi)−1〉 = h†i |HF〉 , (6.68)

|Φf 〉 = |(nf lf jf mf )−1〉 = h†f |HF〉 . (6.69)

The one-body transition density is

〈Φf |
[
c†ac̃b

]
λμ
|Φi〉 = −

∑
mαmβ

(ja mα jb mβ |λμ)〈HF|hf h̃αh†βh
†
i |HF〉

= −δfi
∑
mα

(−1)ja+mα(ja mα ja−mα|λμ)

+ δaiδbf (−1)ji−mi(ji−mi jf mf |λμ) , (6.70)

where we have used the conversion formulas (4.46) and (4.48) and the con-
tractions (4.52). To perform the mα summation in the first term, we note
that

(−1)ja+mα = −ĵa(ja mα ja−mα|0 0) . (6.71)

Then the first term yields δfiδλ0δμ0ĵa, which can be omitted since for the
electromagnetic operators always λ ≥ 1. So we are left with

〈Φf |
[
c†ac̃b

]
λμ
|Φi〉 = δaiδbf (−1)ji−mi(ji−mi jf mf |λμ) , (6.72)

which via Wigner–Eckart leads to

(Φf‖
[
c†ac̃b

]
λ
‖Φi) = δaiδbf (−1)ji+jf+λλ̂ . (6.73)

Substituting this into (6.22) yields
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(Φf‖Mσλ‖Φi) = (−1)ji+jf+λ(f‖Mσλ‖i) . (6.74)

The reduced transition probability becomes

B(σλ ; Φi → Φf ) =
1

2ji + 1

∣∣(f‖Mσλ‖i)
∣∣2 , σ = E , M . (6.75)

The right-hand side is exactly the same as that of (6.67). The reduced matrix
element is between the single-particle states |i〉 and |f〉 whereas the physical
one-hole states |Φi〉 and |Φf 〉 involve the Hartree–Fock vacuum |HF〉. We have
thus established that the reduced transition probability for a one-hole nucleus
is the same as for the corresponding one-particle nucleus.

6.2.2 Example: Transitions in One-Hole Nuclei 15N and 15O

Let us now discuss exhaustively an example of electromagnetic transitions in
a pair of one-hole nuclei.

The lowest-lying one-hole states of the one-hole nuclei 157N8 and
15
8O7 are

stated in (5.10)–(5.13) and depicted in Fig. 5.2. For both nuclei the states are
Jπ
i = 3

2

− and Jπ
f = 1

2

−, so ΔJ = 1 and πiπf = +1. Table 6.1 then gives
M1 as the leading decay mode of the 3/2− state. The triangular condition
Δ(JfλJi) = Δ( 12λ

3
2 ) also allows λ = 2, i.e. E2.

For the E2 transition equation (6.75) and Table 6.4 give

B
(
E2 ; (0p3/2)

−1 → (0p1/2)
−1) = 1

4
(0p1/2‖Q2‖0p3/2)2

= 1
4 (1.410eb

2)2 = 4.270 e2fm4 . (6.76)

The last equality results from (3.43) and (3.45), which give b = 1.712 fm for
the oscillator length. It is of interest to express the result also in Weisskopf
units. From Table 6.8 we calculate BW(E2) = 2.197 e2fm4. So our result (6.76)
is 1.943 W.u. Unless e is replaced by a non-zero effective neutron charge, (6.76)
applies only to the proton-hole nucleus 15

7N8.
For the M1 transition equations (6.47) and (6.75) and Tables 6.6 and 6.7

give

B
(
M1 ; (0p3/2)

−1 → (0p1/2)
−1) = 1

4
(0p1/2‖M1‖0p3/2)2

= 1
4 (−0.564gl + 0.564gs)2 (μN/c)2 . (6.77)

Inserting the g factors (6.8) we have for the proton-hole nucleus 15
7N8

B(M1 ; 15N) = 1
4 (−0.564× 1 + 0.564× 5.586)2 (μN/c)2

= 1.673 (μN/c)2 = 0.934W.u. (6.78)

with the Weisskopf unit 1.790 (μN/c)2 taken from Table 6.9. For the neutron-
hole nucleus 15

8O7 we have similarly
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B(M1 ; 15O) = 1
4 [−0.564× 0 + 0.564× (−3.826)]2 (μN/c)2

= 1.164 (μN/c)2 = 0.650W.u. (6.79)

With the bare charges for the nucleons (ep = e, en = 0) the E2 transition
vanishes for 158O7, so that M1 is the only possible decay mode. The formula in
Table 6.9 with the experimental decay energy from Fig. 5.2 gives the transition
probability

T (M1 ; 15O) = 1.779× 1013 × 6.1763 × 1.164 1/s = 4.878× 1015 1/s , (6.80)

leading to the decay half-life (6.1)

t1/2(M1 ; 15O) =
ln 2

T (M1)
= 1.421× 10−16 s = 0.14 fs . (6.81)

For the proton-hole nucleus 157N8 the situation is more complicated because
both E2 and M1 transitions are present. Using Tables 6.8 and 6.9 and taking
the decay energy from Fig. 5.2, we obtain for the transition probabilities

T (E2 ; 15N) = 1.223× 109 × 6.3245 × 4.270 1/s = 5.282× 1013 1/s , (6.82)

T (M1 ; 15N) = 1.779× 1013 × 6.3243 × 1.673 1/s = 7.527× 1015 1/s . (6.83)

The decay is seen to be dominated by the M1 transition.
Transition probabilities are additive, so the total transition probability is

T (15N) = T (E2 +M1) = T (E2) + T (M1) = 7.580× 1015 1/s . (6.84)

This gives the decay half-life

t1/2(E2 +M1 ; 15N) =
ln 2

T (E2 +M1)
= 9.145× 10−17 s = 0.09 fs . (6.85)

This calculated value compares very well with the experimental result

texp1/2(
15N ; 3/2− → 1/2−) = 0.15 fs . (6.86)

Since both M1 and E2 occur in the 3/2− → 1/2− transition in 15N, one
can calculate and measure their mixing ratio Δ(E2/M1), defined in (6.19).
From (6.76) and (6.78) we have

Δ(E2/M1) =
+1.410 eb2

+2.587μN/c
=
4.133 e fm2

2.587μN/c
= +0.01597

ebarn
μN/c

. (6.87)

In terms of the alternative quantity (6.21) we have

δ(E2/M1) = 0.835× 6.324× 0.01597 = +0.084 . (6.88)

This small value reflects the M1 dominance noted above. The sign of δ is
important to note because it is measurable.
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6.2.3 Magnetic Dipole Moments: Schmidt Lines

Equation (6.54) gives the magnetic moment of a single-particle state as

μsp = μN
1− (−1)l+j+ 1

2 (2j + 1)
4(j + 1)

{
gs − gl

[
2 + (−1)l+j+ 1

2 (2j + 1)
]}

. (6.89)

We note that an equivalent expression can be derived by starting from the
elementary definition of the single-particle magnetic moment operator, stated
as (2.71) in Exercise 2.26,

μsp =
μN

�
(gss+ gll) =

μN

�

[
glj + (gs − gl)s

]
. (6.90)

By means of (2.56) or the Landé formula (2.62) this yields

μsp = μN

[
glj + (gs − gl)

j(j + 1)− l(l + 1) + 3
4

2j + 2

]
. (6.91)

Written out explictly as a function of j for j = l ± 1
2 , either expression,

(6.89) or (6.91), becomes a pair of simple equations,

μsp = μN

[
glj + 1

2 (gs − gl)
]

for j = l + 1
2 ,

μsp = μN

[
glj − (gs − gl)

j

2j + 2

]
for j = l − 1

2 .
(6.92)

The two equations (6.92) can be plotted as functions of j. The plots with the
bare g factors (6.25) are called the Schmidt lines.

Table 6.10. Theoretical and experimental proton and neutron single-particle mag-
netic dipole moments

Nucleus Active orbital μsp (μN) μexp (μN)

15N (π0p1/2)
−1 −0.26 −0.28

15O (ν0p1/2)
−1 0.64 0.72

17O ν0d5/2 −1.91 −1.89
17F π0d5/2 4.79 4.72
39K (π0d3/2)

−1 0.12 0.39
41Ca ν0f7/2 −1.91 −1.59
The theoretical results are from the Schmidt formulas (6.92).

It follows from (6.66) and (6.74) that the theoretical magnetic moment of
a one-particle or one-hole nucleus is precisely the single-particle quantity μsp.
The experimental dipole moments11 of such nuclei are close to the Schmidt
11 magnetic dipole and electric quadrupole moments of nuclei are tabulated in a
compilation by Stone [42].
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values. This is demonstrated in Table 6.10, which gives a sample of theoretical
and experimental magnetic dipole moments of one-particle and one-hole nuclei
discussed in Sect. 5.2.

When experimental dipole moments of all odd-A nuclei, not only those
of the one-particle and one-hole type, are placed in a Schmidt diagram, most
points are found to lie between the lines. This can be reproduced theoretically
by using effective g factors, which reflect many-body effects. For compilations
of data, see e.g. [9, 16].

6.3 Electromagnetic Transitions in Two-Particle
and Two-Hole Nuclei

Two-particle and two-hole nuclei were discussed in Sect. 5.3. Consider a two-
proton or two-neutron nucleus. Its initial and final states in an electromagnetic
decay process can be written as

|Ψi〉 = |ai bi ; Ji Mi〉 = Naibi(Ji)
[
c†aic

†
bi

]
JiMi
|CORE〉 , (6.93)

|Ψf 〉 = |af bf ; Jf Mf 〉 = Naf bf (Jf )
[
c†af c

†
bf

]
JfMf

|CORE〉 , (6.94)

where ai, bi as well as af , bf are all proton or neutron labels. The normaliza-
tion factor is given in (5.21). We now derive in detail the amplitude for an
electromagnetic transition from (6.93) to (6.94).

Using the Wigner–Eckart theorem (2.27), we can write the reduced one-
body transition density as

(Ψf‖
[
c†ac̃b

]
λ
‖Ψi) = (−1)Jf−Mf

(
Jf λ Ji
−Mf μ Mi

)−1
Naf bf (Jf )Naibi(Ji)

× 〈CORE|
[
c†af c

†
bf

]†
JfMf

[
c†ac̃b

]
λμ

[
c†aic

†
bi

]
JiMi
|CORE〉

= (−1)Jf−Mf

(
Jf λ Ji
−Mf μ Mi

)−1
Naf bf (Jf )Naibi(Ji)

×
∑

mαfmβf
mαmβ
mαimβi

(jaf mαf jbf mβf |Jf Mf )(ja mα jb mβ |λμ)

× (jai mαi jbi mβi |Ji Mi)〈CORE|cβf cαf c†αc̃βc†αic
†
βi
|CORE〉 . (6.95)

Performing the contractions in the core expectation value yields

〈CORE|cβf cαf c†αc̃βc†αic
†
βi
|CORE〉 = (−1)jb+mβ (δβiβf δαfαδ−βαi

− δβfαiδαfαδ−ββi + δβfαδαiαf δ−ββi − δβfαδβiαf δ−βαi) . (6.96)

This leads to
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(Ψf‖
[
c†ac̃b

]
λ
‖Ψi) = (−1)Jf−Mf

(
Jf λ Ji
−Mf μ Mi

)−1
Naf bf (Jf )Naibi(Ji)

×
[
δbibf δaaf δbai

∑
mαfmβfmαi

(−1)jai−mαi (jaf mαf jbf mβf |Jf Mf )

× (jaf mαf jai −mαi |λμ)(jai mαi jbf mβf |Ji Mi)

+ three similar terms
]
. (6.97)

The Clebsch–Gordan coefficients are converted into 3j symbols. The three 3j
symbols can be summed into a 3j symbol times a 6j symbol. This sum can
be obtained from (1.59) and is given in e.g. [2,7,22]. The resulting expression
reads

(Ψf‖
[
c†ac̃b

]
λ
‖Ψi) = (−1)Jf−Mf

(
Jf λ Ji
−Mf μ Mi

)−1
Naf bf (Jf )Naibi(Ji)

×
[
δbibf δaaf δbai λ̂ĴiĴf (−1)

jaf+jbf−Mi−μ
(

Jf Ji λ
−Mf Mi μ

){
Jf Ji λ
jai jaf jbf

}
+ three similar terms

]
. (6.98)

When this reduced transition density is substituted into (6.22) we finally
obtain the reduced matrix element for two-proton and two-neutron nuclei:

(af bf ; Jf‖Mσλ‖ai bi ; Ji) = ĴiĴfNaibi(Ji)Naf bf (Jf )

×
[
δbibf (−1)

jaf+jbf+Ji+λ

{
Jf Ji λ
jai jaf jbf

}
(af‖Mσλ‖ai)

+ δaibf (−1)
jaf+jbi+λ

{
Jf Ji λ
jbi jaf jbf

}
(af‖Mσλ‖bi)

+ δaiaf (−1)jai+jbi+Jf+λ

{
Jf Ji λ
jbi jbf jaf

}
(bf‖Mσλ‖bi)

+ δbiaf (−1)Ji+Jf+λ+1

{
Jf Ji λ
jai jbf jaf

}
(bf‖Mσλ‖ai)

]
.

(6.99)

The operators Mσλ are MEλ = Qλ and MMλ = Mλ, and their single-
particle matrix elements are given by (6.23) and (6.24) respectively.

Consider next a proton–neutron nucleus. The initial and final states are

|pi ni ; Ji Mi〉 =
[
c†pic

†
ni

]
JiMi
|CORE〉 , (6.100)

|pf nf ; Jf Mf 〉 =
[
c†pf c

†
nf

]
JfMf

|CORE〉 . (6.101)

The decay amplitude for these states is obtained directly from (6.99) by setting
ai = pi, bi = ni, af = pf , bf = nf and recognizing that δpn = 0. Thus, with
only the first and third terms contributing, the result is
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(pf nf ; Jf‖Mσλ‖pi ni ; Ji)

= ĴiĴf

[
δninf (−1)

jpf+jnf+Ji+λ

{
Jf Ji λ
jpi jpf jnf

}
(pf‖Mσλ‖pi)

+ δpipf (−1)jpi+jni+Jf+λ

{
Jf Ji λ
jni jnf jpf

}
(nf‖Mσλ‖ni)

]
.

(6.102)
A simple special case of the proton–proton or neutron–neutron formula

(6.99) occurs when Jπ
f = 0

+; this requires that af = bf . The decay amplitude
becomes

(af af ; 0+‖Mσλ‖ai bi ; Ji) =
√
2 δλJi ĵaf

−1
Naibi(Ji)

× [δaiaf (af‖Mσλ‖bi)− δbiaf (−1)
jai+jaf+Ji(af‖Mσλ‖ai)] . (6.103)

A similar special case occurs for proton–neutron nuclei when Jf = 0 in (6.102):

(pf nf ; 0‖Mσλ‖pi ni ; Ji) = δλJiδjpf jnf (−1)
jpi+jpf+1ĵpf

−1

× [δninf (−1)Ji(pf‖Mσλ‖pi) + δpipf (nf‖Mσλ‖ni)] . (6.104)

For two-hole nuclei one has to replace c† with h† in the wave functions
(6.93), (6.94), (6.100) and (6.101). Calculations similar to those above give
the results

(a−1f b−1f ; Jf‖Mσλ‖a−1i b−1i ; Ji) = (−1)λ+1(af bf ; Jf‖Mσλ‖ai bi ; Ji) ,
(p−1f n−1f ; Jf‖Mσλ‖p−1i n−1i ; Ji) = (−1)λ+1(pf nf ; Jf‖Mσλ‖pi ni ; Ji) .

(6.105)
It follows that a two-hole nucleus has the same B(σλ) value as the correspond-
ing two-particle nucleus. This extends the principle established for one-hole
and one-particle nuclei.

6.3.1 Example: Transitions in Two-Particle Nuclei 18O and 18Ne

Consider the electromagnetic decay of the first excited 2+ state in the two-
particle nuclei 18

8O10 and
18
10Ne8. Their spectra are shown in Fig. 5.5. The

2+1 → 0+gs decay is a pure E2 transition. The wave functions of the relevant
states are, from (5.30) and (5.32),

|18O ; 0+, 2+〉 = 1√
2

[
c†ν0d5/2c

†
ν0d5/2

]
0+,2+

|CORE〉 , (6.106)

|18Ne ; 0+, 2+〉 = 1√
2

[
c†π0d5/2c

†
π0d5/2

]
0+,2+

|CORE〉 . (6.107)
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Because the final state is Jπ = 0+, we use (6.103) to compute the E2 decay am-
plitude. Equations (3.43) and (3.45) give an oscillator length of b = 1.750 fm.
We adopt the effective charges (6.26). Substitution into (6.103) and use of
Table 6.4 give

(0d5/2 0d5/2 ; 0+‖Q2‖0d5/2 0d5/2 ; 2+)

=

√
2
6
1√
2

[
(0d5/2‖Q2‖0d5/2)− (−1)7(0d5/2‖Q2‖0d5/2)

]
=

√
2
3 (0d5/2‖Q2‖0d5/2) =

√
2
3 (−2.585)eeffb

2 = −6.464eeff fm2 . (6.108)

The reduced transition probabilities are

B(E2 ; 18O) =
1
5
(−6.464χe fm2)

2
= 8.357χ2e2fm4 = 2.982χ2W.u. , (6.109)

B(E2 ; 18Ne) =
1
5
[−6.464(1 + χ)e fm2]

2
= 8.357(1 + χ)2e2fm4

= 2.982(1 + χ)2W.u. , (6.110)

where we have used the Weisskopf unit from Table 6.8.
The experimental decay half-lives are 2.0 ps for 18O, and 0.46 ps for 18Ne.

Using the formula in Table 6.8 with the energies from Fig. 5.5, we find

B(E2 ; 18O)exp = 9.3 e2fm4 , (6.111)

B(E2 ; 18Ne)exp = 51.5 e2fm4 . (6.112)

We deduce the following polarization constants χ:

χ = 1.1 for 18O , (6.113)

χ = 1.5 for 18Ne . (6.114)

Two conclusions emerge. The first one is that the concept of effective charge
is meaningful because the two nuclei are fitted with similar values of χ; to a
fair approximation we have for both nuclei

χ ≈ 1.3 , epeff ≈ 2.3e , eneff ≈ 1.3e . (6.115)

The second conclusion is that the present value of χ is very large, as one would
expect it to be only a minor correction, χ � 1. This means that configura-
tion mixing in the 0d-1s shell is a significant effect. The present example is
recalculated with configuration mixing in Subsect. 8.5.3.

6.4 Electromagnetic Transitions in Particle–Hole Nuclei

As discussed in Chap. 5, the particle–hole vacuum is the mean-field ground
state of a doubly magic nucleus. On this ground state one can build excitations
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by lifting a nucleon across the Fermi surface. In a doubly magic nucleus excited
states can be created through charge-concerving particle–hole excitations,
which are proton-particle–proton-hole and neutron-particle–neutron-hole ex-
citations. On the other hand, the ground and excited states of an odd–odd
nucleus at a doubly magic shell closure are obtained through charge-changing
particle–hole excitations of the particle–hole vacuum, namely proton-particle–
neutron-hole and neutron-particle–proton-hole excitations. In the first kind a
proton jumps from below the proton Fermi surface ending up a neutron above
the neutron Fermi surface, and vice versa for the second kind. All these modes
of particle–hole excitation are discussed below in the context of electromag-
netic decay.

6.4.1 Transitions Involving Charge-Conserving Particle–Hole
Excitations

Charge-conserving particle–hole excitations are excitations of even–even dou-
bly magic nuclei. Electromagnetic transitions can operate either from a
particle–hole excitation to the particle–hole vacuum or between two particle–
hole excitations. In the first case the transition is to the ground state and in
the second it is between two excited states.

Decays to Particle–hole Vacuum

In the case of decays to the particle–hole vacuum the initial state is a charge-
conserving particle–hole excitation, either of the proton or neutron type. Its
wave function is

|ai b−1i ; Ji Mi〉 =
[
c†aih

†
bi

]
JiMi
|HF〉 , ai, bi are both π or ν labels . (6.116)

The final state is the particle–hole vacuum |HF〉. We use (4.46), (4.47), (4.53)
and properties of the Clebsch–Gordan coefficients to calculate the transition
density:

〈HF|
[
c†ac̃b

]
λμ
|ai b−1i ; Ji Mi〉

=
∑

mαmβ
mαimβi

(ja mα jb mβ |λμ)(jai mαi jbi mβi |Ji Mi)

× (−1)jb+mβ 〈HF|c†αc−βc†αih
†
βi
|HF〉

= δabiδbai
∑

mαimβi

(−1)jai−mαi (−1)jbi+mβi (jbi −mβi jai −mαi |λμ)

× (jai mαi jbi mβi |Ji Mi) = δabiδbai(−1)jai−jbi+MiδλJiδ−μMi
. (6.117)

We put λ = Ji and μ = −Mi in this equation and apply the Wigner–Eckart
theorem (2.27) to the left-hand side. Inserting the simple 3j symbol (1.42)



www.manaraa.com

142 6 Electromagnetic Multipole Moments and Transitions

gives the reduced transition density immediately. However, we want to dis-
play the multipole degree λ. Its only value allowed by angular momentum
conservation is λ = Ji, and we indicate this by including δλJi in the result:

(HF‖
[
c†ac̃b

]
λ
‖ai b−1i ; Ji) = δλJiδabiδbai(−1)jai−jbi+Ji Ĵi . (6.118)

Equation (6.22) gives finally for the decay amplitude

(HF‖Mσλ‖ai b−1i ; Ji) = δλJi(−1)Ji(ai‖Mσλ‖bi) , (6.119)

where we have used the symmetry relations (6.27) and (6.28) applicable to
the CS phase convention. The single-particle matrix element needed on the
right-hand side is given by (6.23) or (6.24).

Transitions between Two Particle–hole States

Consider next electromagnetic transitions between two charge-conserving
particle–hole states. These are always excited states of even–even doubly
magic nuclei. The initial and final states are

|ai b−1i ; Ji Mi〉 =
[
c†aih

†
bi

]
JiMi
|HF〉 , ai, bi are both π or ν labels ,

(6.120)

|af b−1f ; Jf Mf 〉 =
[
c†afh

†
bf

]
JfMf

|HF〉 , af , bf are both π or ν labels .

(6.121)

Similarly to (6.95) in the treatment of two-particle nuclei we now have

(af b−1f ; Jf‖
[
c†ac̃b

]
λ
‖ai b−1i ; Ji) = (−1)Jf−Mf

(
Jf λ Ji
−Mf μ Mi

)−1
×

∑
mαfmβf
mαmβ
mαimβi

(jaf mαf jbf mβf |Jf Mf )(ja mα jb mβ |λμ)(jai mαi jbi mβi |Ji Mi)

× (−1)jb+mβ 〈HF|hβf cαf c†αc−βc†αih
†
βi
|HF〉 . (6.122)

The contractions are done using (4.46), (4.47), (4.52) and (4.53), with the
result

〈HF|hβf cαf c†αc−βc†αih
†
βi
|HF〉 = δβfβiδαfαiδα,−β + δβfβiδαfαδ−βαi

− (−1)jbf+mβf+jbi+mβi δβfβδαfαiδα,−βi . (6.123)

When we use (6.71), sum over mα and mβ , and use (1.26), we obtain a factor
δλ0δμ0. This term is omitted because there is no λ = 0 multipole. Completing
the derivation similarly to that of (6.99), we finally obtain
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(af b−1f ; Jf‖Mσλ‖ai b−1i ; Ji) = (−1)jai+jbf ĴiĴf

×
[
δbibf (−1)Ji+λ

{
Ji Jf λ
jaf jai jbi

}
(ai‖Mσλ‖af )

+ δaiaf (−1)Jf+1

{
Ji Jf λ
jbf jbi jai

}
(bi‖Mσλ‖bf )

]
,

ai, af , bi, bf are all either π or ν labels.

(6.124)

For the special case Jf = 0 we obtain the simplified expression

(af b−1f ; 0‖Mσλ‖ai b−1i ; Ji) = δλJi(−1)
jbi+jbf+λ

×
[
δbibf δjbijaf (−1)

Ji+λ+1ĵaf
−1
(ai‖Mσλ‖af )

+ δaiaf δjaijbf ĵbf
−1
(bi‖Mσλ‖bf )

]
.

(6.125)

6.4.2 Example: Doubly Magic Nucleus 16O

The doubly magic nucleus 16
8O8 provides an example of the application of the

preceding formalism. The spectrum is shown in Fig. 5.10. Let us study the
decays of the two lowest-lying T = 0 states, namely 3−1 and 1−1 . The leading
decay modes, from Table 6.1, are depicted in Fig. 6.1. The ground state is
the particle–hole vacuum |HF〉. The 3−1 and 1−1 states are given by (5.65) and
(5.66), with the sign determined by (5.126), as

|16O ; 3−1 〉 =
1√
2

([
c†π0d5/2h

†
π0p1/2

]
3− |HF〉+

[
c†ν0d5/2h

†
ν0p1/2

]
3− |HF〉

)
,

(6.126)

|16O ; 1−1 〉 =
1√
2

([
c†π1s1/2h

†
π0p1/2

]
1− |HF〉+

[
c†ν1s1/2h

†
ν0p1/2

]
1− |HF〉

)
.

(6.127)

For the decays to the ground state the single-particle matrix elements in
(6.119) are

(0d5/2‖Q3‖0p1/2) = −3.824eeffb3 , (1s1/2‖Q1‖0p1/2) = 0.399eeffb (6.128)

with the numerical values taken from Tables 6.3 and 6.5. This leads to

(HF‖Q3‖3−1 ) =
1√
2
(−1)3(−3.824)(epeff + eneff)b

3 = 13.88(1 + 2χ)e fm3 ,

(6.129)(
HF‖Q1‖1−1

)
=

1√
2
(−1)1(0.399)(epeff + eneff)b = −0.487(1 + 2χ)e fm ,

(6.130)
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Fig. 6.1. The lowest 3− and 1− excited states and their decays in the nucleus 16O.
The energies and decay half-lives are experimental data

where b = 1.725 fm from (3.43) and (3.45). The reduced transition probabili-
ties become

B(E3) = 27.52(1 + 2χ)2 e2fm6 , (6.131)

B(E1) = 0.079(1 + 2χ)2 e2fm2 . (6.132)

For the E2 transition 1−1 → 3−1 , which is between two excited states,
(6.124) gives(

0d5/2 (0p1/2)
−1 ; 3−‖Q2‖1s1/2 (0p1/2)−1 ; 1−

)
= (−1) 12+ 1

2
√
3
√
7
[
(−1)1+2

{
1 3 2
5
2

1
2

1
2

}
(1s1/2‖Q2‖0d5/2) + 0

]
=
√
21× 1

3
√
2
(−2.185eeffb2) = −2.360eeffb2 = −7.022eeff fm2 , (6.133)

where we have used Table 6.4 and (1.76). This leads to the reduced transition
probability

B(E2 ; 1−1 → 3−1 ) =
1
3

(
1√
2
× 1√

2

)2

(epeff + eneff)
2(−7.022)2 fm4

= 4.109(1 + 2χ)2 e2fm4 . (6.134)

Figure 6.1 contains the experimental half-lives and energies of the states
under study. Using (6.1) and Table 6.8 we find

B(E3 ; 3−1 → 0+gs)exp = 208 e
2fm6 . (6.135)

Comparing this with the theoretical result (6.131) gives

χ = 0.87 (6.136)
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for the polarization constant. With this value of χ the other theoretical re-
duced transition probabilities become

B(E2) = 30.85 e2fm4 , (6.137)

B(E1) = 0.593 e2fm2 , (6.138)

which lead to the decay probabilities

T (E2) = 1.223× 109 × 0.9875 × 30.85 1/s = 3.53× 1010 1/s , (6.139)

T (E1) = 1.587× 1015 × 7.1173 × 0.593 1/s = 3.39× 1017 1/s . (6.140)

The E2 transition probability is negligible in comparison with the E1 transi-
tion probability, so the half-life of the 1−1 state becomes

t1/2 = t1/2(E1) =
ln 2

T (E1)
≈ 2× 10−3 fs . (6.141)

This is much too short compared with the experimental value of 8 fs. In this
case our simplified approach is not sufficient to explain the very retarded
experimental E1 transition.

The large χ value deduced from the E3 transition indicates that the tran-
sition is collective, i.e. many particle–hole pairs contribute to it. This can be
described by means of the Tamm–Dancoff approximation (TDA) or random
phase approximation (RPA), to be introduced later.

E1 Transitions and Spurious Centre-of-mass Motion

The wide discrepancy between the calculated and experimental E1 decay rates
in our 16O example arises from a kinematic source. The harmonic oscillator
single-particle wave functions are not defined relative to the centre of mass of
the nucleus, as they should be, but rather from the origin of a fixed external
coordinate system. This gives rise to unphysical, or spurious, centre-of-mass
contributions to computed nuclear observables. The consequences are particu-
larly serious for the electric dipole operator. The simplest recipe to remove the
spurious centre-of-mass contributions, on the average, is to adopt the effective
charges

epeff =
N

A
e , eneff = −

Z

A
e (6.142)

for the E1 operator, as described in e.g. [16].
In our present example of a doubly magic nucleus the effective charges

(6.142) would lead to a complete vanishing of the E1 decay probability of
the lowest isoscalar 1− excitation. This happens because the decay amplitude
(6.130) is proportional to the sum of the proton and neutron effective charges
and this sum is zero for N = Z.
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One could think that the decay rate is determined by the E2 mode (6.134).
However, (6.139) gives a half-life of 20 ps, which is far in excess of the experi-
mental value of 8 fs. The E2 mode is thus no explanation, and the experimental
decay rate must be understood in terms of E1. It has been concluded that in-
completeness of isospin symmetry enables such E1 transitions to proceed [9].
This isospin breaking stems from the Coulomb energy between the protons.
The Coulomb effect can be simulated by choosing slightly different relative
single-particle energies for protons and neutrons.

This matter will be elaborated in Subsect. 9.4.6, where configuration mix-
ing of particle–hole excitations is discussed in the Tamm–Dancoff approxima-
tion.

6.4.3 Transitions Between Charge-Changing Particle–Hole
Excitations

Charge-changing particle–hole excitations of the particle–hole vacuum, either
proton-to-neutron or neutron-to-proton, create states in odd–odd nuclei at
doubly magic shells. The initial and final wave functions are

|pi n−1i ; Ji Mi〉 =
[
c†pih

†
ni

]
JiMi
|HF〉 , (6.143)

|pf n−1f ; Jf Mf 〉 =
[
c†pfh

†
nf

]
JfMf

|HF〉 (6.144)

for the proton-particle–neutron-hole states and

|ni p−1i ; Ji Mi〉 =
[
c†nih

†
pi

]
JiMi
|HF〉 , (6.145)

|nf p−1f ; Jf Mf 〉 =
[
c†nfh

†
pf

]
JfMf

|HF〉 (6.146)

for the neutron-particle–proton-hole states.
By methods similar to those used in the previous sections one can derive

the following expressions for electromagnetic transition amplitudes involving
charge-changing particle–hole excitations:

(pf n−1f ; Jf‖Mσλ‖pi n−1i ; Ji) = (−1)jpi+jnf ĴiĴf

×
[
δninf (−1)Ji+λ

{
Ji Jf λ
jpf jpi jni

}
(pi‖Mσλ‖pf )

+ δpipf (−1)Jf+1

{
Ji Jf λ
jnf jni jpi

}
(ni‖Mσλ‖nf )

] (6.147)

for proton-particle–neutron-hole transitions and

(nf p−1f ; Jf‖Mσλ‖ni p−1i ; Ji) = (−1)jni+jpf ĴiĴf

×
[
δpipf (−1)Ji+λ

{
Ji Jf λ
jnf jni jpi

}
(ni‖Mσλ‖nf )

+ δninf (−1)Jf+1

{
Ji Jf λ
jpf jpi jni

}
(pi‖Mσλ‖pf )

] (6.148)
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for neutron-particle–proton-hole transitions.
Equations (6.147) and (6.148) can be further simplified when the final

state is 0+:

(pf n−1f ; 0‖Mσλ‖pi n−1i ; Ji) = δλJiδjnf jpf (−1)
jni+jnf+λ ĵpf

−1

× [δpipf (ni‖Mσλ‖nf )− δninf (pi‖Mσλ‖pf )] (6.149)

for proton-particle–neutron-hole transitions and

(nf p−1f ; 0‖Mσλ‖ni p−1i ; Ji) = δλJiδjnf jpf (−1)
jpi+jpf+λ ĵpf

−1

× [δninf (pi‖Mσλ‖pf )− δpipf (ni‖Mσλ‖nf )] (6.150)

for neutron-particle–proton-hole transitions.

6.4.4 Example: Odd–Odd Nucleus 16N

The energy levels of the odd–odd nucleus 167N9 are shown in Fig. 5.10. Consider
the decay of the first excited state 0− to the 2− ground state. These states
are, from (5.60) and (5.61),

|16N ; 2−gs〉 =
[
c†ν0d5/2h

†
π0p1/2

]
2− |HF〉 , (6.151)

|16N ; 0−1 〉 =
[
c†ν1s1/2h

†
π0p1/2

]
0− |HF〉 . (6.152)

We first evaluate the E2 transition amplitude 2−gs → 0−1 using (6.150). The
result is(

ν1s1/2 (π0p1/2)
−1 ; 0−‖Q2‖ν0d5/2 (π0p1/2)−1 ; 2−

)
= (−1) 12+ 1

2+2 1√
2
[0− (ν0d5/2‖Q2‖ν1s1/2)]

=
1√
2
(ν0d5/2‖Q2‖ν1s1/2) =

1√
2
(−2.185eneffb2) (6.153)

with the numerical value taken from Table 6.4 and the neutron effective charge
inserted.

The reduced matrix element (6.153) is for the transition 2− → 0−, yet the
transition concerned is 0− → 2−. By the symmetry relation (2.32) the matrix
elements are the same, so (6.153) can be directly substituted into (6.4). We
have b = 1.725 fm for A = 16 from Subsect. 6.4.2, which gives the reduced
transition probability

B(E2 ; 0−1 → 2−gs) =
1
2
× 2.1852b4χ2 e2 = 21.14χ2 e2fm4 . (6.154)

The experimental half-life of the 0− state is 5.3μs, and Table 6.8 gives
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B(E2 ; 0−1 → 2−gs)exp = 4.3 e
2fm4 , (6.155)

leading to
χ = 0.45 . (6.156)

This value of χ is not very large, so no major modifications are expected
through configuration mixing as discussed in Sect. 10.2.

6.5 Isoscalar and Isovector Transitions

Sometimes it is convenient to decompose the electromagnetic operators into
isoscalar and isovector parts. This decomposition leads to transparent selec-
tion rules for the electric and magnetic transitions in particle–hole and two–
particle and two–hole nuclei.

6.5.1 Isospin Decomposition of the Electromagnetic
Decay Operator

In this section we discuss the decomposition of the electric and magnetic oper-
ators and the associated transitions into isoscalar and isovector components.
The key in the discussion is the isospin representation of the particle and hole
operators introduced in Subsect. 5.5.3.

Consider the double-tensor operators c†a and ĉa. Equation (5.91) relates ĉa
to the spatial-only tensor operator c̃a as

ĉamtα = (−1)
1
2+mtα c̃a,−mtα . (6.157)

We thus identify

c†
a 1
2
= c†a(ν) , c†

a,− 1
2
= c†a(π) , (6.158)

ĉa 1
2
= −c̃a(π) , ĉa,− 1

2
= c̃a(ν) . (6.159)

Applying (1.29) in isospace gives[
c†amtα ĉbmtβ

]
JM

=
∑
TMT

( 12 mtα
1
2 mtβ |T MT )

[
c†aĉb

]TMT

JM
. (6.160)

We can now write for neutrons[
c†a(ν)c̃b(ν)

]
JM

=
[
c†
a 1
2
ĉa,− 1

2

]
JM

=
∑
T

( 12
1
2

1
2 −

1
2 |T 0)

[
c†aĉb

]T0
JM

=
1√
2

([
c†aĉb

]00
JM

+
[
c†aĉb

]10
JM

)
(6.161)

and for protons
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c†a(π)c̃b(π)

]
JM

= −
[
c†
a,− 1

2
ĉa 1

2

]
JM

= −
∑
T

( 12 −
1
2

1
2

1
2 |T 0)

[
c†aĉb

]T0
JM

=
1√
2

(
[c†aĉb]

00
JM −

[
c†aĉb

]10
JM

)
. (6.162)

Separating (6.22) into sums over neutrons and protons we can write the
electromagnetic operator as

Mσλμ = λ̂−1
∑
ab

(a‖Mσλ‖b)
[
c†ac̃b

]
λμ

= λ̂−1
{ ∑

ab
neutrons

(a‖Mσλ‖b)ν
[
c†a(ν)c̃b(ν)

]
λμ

+
∑
ab

protons

(a‖Mσλ‖b)π
[
c†a(π)c̃b(π)

]
λμ

}
. (6.163)

Substituting from (6.161) and (6.162) gives the final result

Mσλμ =
1√
2
λ̂−1

∑
ab

{
[(a‖Mσλ‖b)ν + (a‖Mσλ‖b)π]

[
c†aĉb

]00
λμ

+ [(a‖Mσλ‖b)ν − (a‖Mσλ‖b)π]
[
c†aĉb

]10
λμ

}
.

(6.164)

This result means that the electromagnetic operator Mσλμ, and in fact any
one-body tensor operator, can be decomposed into an isoscalar and an isovec-
tor part. Furthermore, the coupling toMT = 0 shows that the operator cannot
change the isospin projection, which in turn means that the electromagnetic
operator cannot connect two different nuclei. As a special case of (6.164) the
electric transition operator Qλμ can be expressed as

Qλμ =
1√
2
λ̂−1

∑
ab

(a‖Qλ‖b)
e

{
(eneff + epeff)

[
c†aĉb

]00
λμ

+ (eneff − epeff)
[
c†aĉb

]10
λμ

}
. (6.165)

6.5.2 Example: 3− States in 16O

For charge-conserving particle–hole excitations in doubly magic nuclei the low-
est states, including the ground state, are T = 0 states and the higher-lying
states are mostly T = 1 states. An example is provided by the 3− states in
16O as displayed in Fig. 5.10 and schematically represented in Fig. 6.2.

The transitions divide into isoscalar transitions (ΔT = 0) and isovector
transitions (ΔT = 1). From (6.165) we see that
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Fig. 6.2. The two lowest 3− states and their electric decays via isoscalar and isovec-
tor E3 transitions in 16O. The energies are experimental data

(0+gs‖Qλ‖λπ ; T = 0) ∝ eneff + epeff , (6.166)

(0+gs‖Qλ‖λπ ; T = 1) ∝ eneff − epeff . (6.167)

This form of the transition amplitudes can also be directly read from the
structure of a T = 0 and a T = 1 state given in (5.126) and (5.127). All
electric transitions, of various multipolarities, between low-lying T = 0 states,
like the three transitions in Fig. 6.1, are of isoscalar nature. From (6.165)
we see that their amplitudes are proportional to the sum eneff + epeff. This is
displayed explicitly in the results of Subsect. 6.4.2.

6.5.3 Isospin Selection Rules in Two-Particle and Two-Hole Nuclei

Let us discuss electromagnetic transitions in two-particle and two-hole nuclei
from the isospin point of view. We start by examining transitions between two
T = 1 states in two-particle nuclei. One can show that (Exercise 6.50)∑

mtimtfmt

(−1) 12−mti( 12 mtf
1
2 mt|Tf mTf )

× (12 mtf
1
2 −mti|T mT )(12 mti

1
2 mt|Ti mTi)

= (−1)1+T+mTi T̂iT̂f (Tf mTf Ti−mTi |T mT )
{

Tf T Ti
1
2

1
2

1
2

}
. (6.168)

By means of this result one can show that(
af bf ; Jf ; Tf mTf ‖

[
c†aĉb

]TMT

λ
‖ai bi ; Ji ; Ti mTi

)
= (−1)1+T+mTi T̂iT̂f (Tf mTf Ti−mTi |T mT )

{
Tf T Ti
1
2

1
2

1
2

}
× (af bf ; Jf‖

[
c†ac̃b

]
λ
‖ai bi ; Ji) .

(6.169)
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For Ti = Tf = 1 this gives(
af bf ; Jf ; 1mTf ‖

[
c†aĉb

]00
λ
‖ai bi ; Ji ; 1mTi

)
=

1√
2
δmTimTf (af bf ; Jf‖

[
c†ac̃b

]
λ
‖ai bi ; Ji) , (6.170)(

af bf ; Jf ; 1mTf ‖
[
c†aĉb

]10
λ
‖ai bi ; Ji ; 1mTi

)
=

1√
2
(1− δmTi0)δmTimTf (−1)

1
2 (3+mTi )(af bf ; Jf‖

[
c†ac̃b

]
λ
‖ai bi ; Ji) .

(6.171)

Consider the states with mTi = 0 = mTf , i.e. the states of proton–neutron
two-particle nuclei. When we form the reduced matrix element of the opera-
tor (6.164) between these states, we see that only the isoscalar term (6.170)
contributes, so that the result is

(pf nf ; Jf ; 1 0‖Mσλ‖pi ni ; Ji ; 1 0)

= 1
2 λ̂
−1 ∑

ab

[(a‖Mσλ‖b)ν + (a‖Mσλ‖b)π](pf nf ; Jf‖
[
c†ac̃b

]
λ
‖pi ni ; Ji) .

(6.172)
For electric transitions this becomes

(pf nf ; Jf ; 1 0‖Qλ‖pi ni ; Ji ; 1 0)

= 1
2 λ̂
−1(epeff + eneff)

∑
ab

(a‖Qλ‖b)
e

(pf nf ; Jf‖
[
c†ac̃b

]
λ
‖pi ni ; Ji) , (6.173)

as can be seen also directly from (6.165). Equation (6.172) contains the
selection rule ΔT = 0, valid for all electromagnetic transitions between T = 1
states in proton–neutron nuclei. Note that this is a special selection rule that
transcends the general requirements of vector addition of isospin, which would
also allow ΔT = 1.

For two-neutron and two-proton nuclei, with mTi = ±1 respectively, we
find similarly

(af bf ; Jf ; 1±1‖Mσλ‖ai bi ; Ji ; 1±1)

= 1
2 λ̂
−1 ∑

ab

{
[(a‖Mσλ‖b)ν + (a‖Mσλ‖b)π]

± [(a‖Mσλ‖b)ν − (a‖Mσλ‖b)π]
}

× (af bf ; Jf‖
[
c†ac̃b

]
λ
‖ai bi ; Ji) ,

(6.174)

where the upper signs apply to neutron–neutron nuclei and the lower signs
to proton–proton nuclei. Now the isoscalar term (6.170) and the isovector
term (6.171) both contribute equal amounts to the transition amplitude. The
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corresponding selection rule is ΔT = 0, 1. Again we state the special case of
electric transitions:

(af bf ; Jf ; 1±1‖Qλ‖ai bi ; Ji ; 1±1) = 1
2 λ̂
−1[(eneff + epeff)± (eneff − epeff)]

×
∑
ab

(a‖Qλ‖b)
e

(af bf ; Jf‖
[
c†ac̃b

]
λ
‖ai bi ; Ji) . (6.175)

We thus have for a two-neutron (or two-neutron-hole) nucleus

(af bf ; Jf ; 1+1‖Qλ‖ai bi ; Ji ; 1+1)

= λ̂−1eneff
∑
ab

(a‖Qλ‖b)
e

(af bf ; Jf‖
[
c†ac̃b

]
λ
‖ai bi ; Ji) (6.176)

and for a two-proton (or two-proton-hole) nucleus

(af bf ; Jf ; 1−1‖Qλ‖ai bi ; Ji ; 1−1)

= λ̂−1epeff
∑
ab

(a‖Qλ‖b)
e

(af bf ; Jf‖
[
c†ac̃b

]
λ
‖ai bi ; Ji) . (6.177)

Figure 6.3 shows an example of the operation of the isospin selection rules.
In transitions between T = 1 states in particle–hole nuclei (with charge-

conserving or charge-changing excitations) generally both the isoscalar (ΔT =
0) and isovector (ΔT = 1) parts of the electromagnetic operator contribute.
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Ca20

42

22
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22 20
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T=1
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T=1
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0.00

T=1

T=1

Fig. 6.3. Lowest-lying 2+ and 1+ excited states and their decays via isoscalar and
isovector transitions in the A = 42 two-particle nuclei 42Ca, 42Sc and 42Ti. The
experimental excitation energies (in MeV) and the isospin labels of the states are
displayed. The transition governed by the special selection rule ΔT = 0 is shown by
a shaded arrow
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Epilogue

The most relevant features of the electromagnetic observables in nuclei were
discussed in this chapter. The formalism developed concurrently was applied
to describe the decay properties of nuclear systems with one or two active
valence nucleons and simple mean-field wave functions. Having reached the
end of this chapter, one should have become aware of the great sensitivity of
electromagnetic processes to the details of the nuclear wave functions. The
sensitivity was demonstrated by the inadequacy of effective charges as minor
corrections to the bare charges. The necessity to go beyond the mean-field
level became apparent. The quality of computed electromagnetic observables
is decisively improved when allowing for the action of the residual nucleon–
nucleon interaction, a subject to be discussed from Chap. 8 onwards.

Exercises

6.1. Verify the values of the following useful quantities:

�c = 197.33MeV fm , (6.178)

e2

4πε0
= 1.440MeV fm , (6.179)

1
4πε0

(μN

c

)2
= 0.0159MeV fm3 . (6.180)

What are the corresponding relations in Gaussian units?

6.2. Derive (6.23).

6.3. Derive the symmetry properties of the reduced single-particle matrix el-
ements of the electric and magnetic operators in (6.27)–(6.30).

6.4. Derive (6.35).

6.5. Derive (6.36).

6.6. Derive (6.37).

6.7. Derive (6.40) from the recursion relation (6.39).

6.8. By using the formulas (6.35)–(6.40) derive some of the values of the radial
integral R̃(λ)

ab given in Table 6.2.

6.9. By using (6.23) and Table 6.2 derive some of the values of the scaled
single-particle matrix elements (a‖Qλ‖b)CS, defined by (6.46), shown in
Tables 6.3–6.5.
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6.10. By using (6.24) and Table 6.2 derive some of the values of the orbital-
dipole single-particle matrix elements D(l)

ab , defined by (6.47), shown in
Table 6.6.

6.11. By using (6.24) and Table 6.2 derive some of the values of the spin-
dipole single-particle matrix elements D(s)

ab , defined by (6.47), shown in
Table 6.7.

6.12. Derive (6.50) and (6.51) from the definition (6.49) of a multipole
moment.

6.13. Verify that √
16π
5

r2Y20 = 3z2 − r2 . (6.181)

This relation shows that the definition of the quantum-mechanical electric
quadrupole moment (6.53) coincides with the classical one represented by the
expression 3z2 − r2.

6.14. Derive (6.54) and (6.55).

6.15. Derive the expression (6.56) for a step-function-like wave function, i.e.
a wave function that is constant inside the nucleus and zero outside.

6.16. Give a detailed derivation of (6.67).

6.17. Give a detailed derivation of (6.75).

6.18. Show that the diagonal matrix element, with m = j, of the single-
particle magnetic moment operator (6.90) coincides with the expression (6.89).

6.19. Show that (6.89) gives rise to the Schmidt lines defined by (6.92).

6.20. Derive the single-particle magnetic dipole moments of Table 6.10.

6.21. Evaluate the magnetic dipole and electric quadrupole moments of the
ground states of 17F and 41Sc. Use the bare values (6.25) for the charges
and gyromagnetic ratios. Compare the results with experimental data and
comment.

6.22. Evaluate the effective charge eneff for
17O when experiment gives

B(E2 ; 1/2+ → 5/2+)exp = 6.3 e2fm4 (6.182)

for this nucleus.

6.23. Evaluate the effective charge epeff for
17F when experiment gives

B(E2 ; 1/2+ → 5/2+)exp = 64 e2fm4 (6.183)

for this nucleus.
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6.24. Evaluate the electric quadrupole moments of the ground states of 17O
and 17F by using the effective charges derived in Exercises 6.22 and 6.23.
Compare the results with experimental data and comment.

6.25. Consider the decay of the 1/2+ first excited state to the 3/2+ ground
state in 39K and 39Ca. Determine the values of the proton and neutron effec-
tive charges by comparing with experimental data.

6.26. Fill in the details for the derivation of (6.99).

6.27. Deduce (6.102) from (6.99).

6.28. Derive the special case (6.103) from (6.102).

6.29. Derive (6.104) starting from the very beginning, i.e. from (6.22).

6.30. Verify the symmetries (6.105).

6.31. Consider the decay of the first 2+ state in 38Ar and 38Ca. Compute the
reduced transition probability B(E2) for these decays. Determine the value of
the polarization constant χ by comparing with experimental data.

6.32. By using the polarization constant found in Exercise 6.31 compute the
value of B(E2 ; 2+1 → 0+1 ) for

38K.

6.33. Compute the E2/M1 mixing ratios Δ and δ for the transition 2+1 → 1+1
in 38K. Use the bare values (6.25) for the charges and gyromagnetic ratios.

6.34. Compute the value ofB(E2 ; 2+1 → 0+gs) for
42Ca and 42Ti and determine

the proton and neutron effective charges by comparison with experimental
data. Compute B(E2 ; 2+1 → 0+gs) for

42Sc by using the previously determined
effective charges.

6.35. Consider the decay of the first 1+ state in 38K. Use the bare values
(6.25) for the charges and gyromagnetic ratios.

(a) Compute the decay probability to the first 0+ state.
(b) Compute the decay probability to the 3+ ground state.
(c) Determine the total decay half-life of the 1+ state and compare it with

experimental data.

6.36. Compute B(E2 ; 2+1 → 0+gs) for
54Fe and determine the proton effective

charge by comparison with experimental data.

6.37. Compute the electric quadrupole moment of the lowest 2+ state in 54Fe
by using the proton effective charge extracted in Exercise 6.36. Compare with
experimental data and comment.

6.38. Compute the electric quadrupole moment of the lowest 5+ state in 18F
by using the electric polarization constant in (6.115). Compare with experi-
mental data and comment.
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6.39. The ground state of 18F is 1+.

(a) By using the electric polarization constant in (6.115) determine the half-
lives of the 3+1 and 5

+
1 states.

(b) By adopting the bare values for the gyromagnetic ratios determine the
half-life of the 0+1 state.

(c) Compare the above results with experimental data and comment.

6.40. Give a detailed derivation of (6.124).

6.41. Derive the special case (6.125) from (6.124).

6.42. Give a detailed derivation of (6.148).

6.43. Derive the special case (6.150) from (6.148).

6.44. Consider the decays of the first 3− and 5− states in 40Ca. Determine
the electric polarization constant χ from the available data. Compute the
resulting decay half-lives of these states.

6.45. Consider the decays of the first 2− and 5− excited states in 40K. Use
the polarization constant determined in Exercise 6.44 and the bare values of
the gyromagnetic ratios to compute the following:

(a) the decay half-life of the 2− state by considering its decay to the 3− and
4− states below it,

(b) the E2/M1 mixing ratio for the decay of the 5− state to the 4− state below
it,

(c) the decay half-life of the 5− state.

6.46. Compute B(E2 ; 2+1 → 0+gs) and B(E3 ; 3−1 → 0+gs) for
48Ca. Compare

the results with the experimental values

B(E2 ; 2+ → 0+gs)exp = 1.58W.u. , (6.184)

B(E3 ; 3− → 0+gs)exp = 6.8W.u. (6.185)

and determine the proton and neutron effective charges.

6.47. Compute B(E2 ; 2−1 → 0−gs) for
16F by using the polarization constant

(6.156).

6.48. Compute B(E2 ; 2+1 → 0+gs) for
56Ni by using the bare proton and neu-

tron charges.

6.49. Derive the relation (6.168).

6.50. Derive (6.169) by using (6.168).
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Beta Decay

Prologue

In the previous chapter a powerful method was introduced for probing the
structure of nuclear states: computing electromagnetic decays and multipole
moments, and comparing with experiment. In this chapter we introduce the
various modes of nuclear beta decay and associated transitions. The basic
theory of allowed beta decay is presented, but without a detailed derivation
from hadronic and leptonic weak-interaction currents. In addition, the less
frequently discussed forbidden unique beta-decay transitions are discussed in
detail.

Comparing computed beta-decay rates with experiment probes the wave
functions involved. Unlike electromagnetic decay, beta decay consists of charge-
changing transitions leading from one nucleus to another. Studying simultane-
ously the electromagnetic transition probabilities between states in a nucleus
and the beta-decay feeding of these states from the neighbouring nuclei offers
a truly stringent test of nuclear models. In this chapter we test the simple
wave functions of one- and two-particle and -hole nuclei of Chap. 5.

7.1 General Properties of Nuclear Beta Decay

In this section we discuss the general qualitative properties of beta decay
without deriving them from the underlying formal theory framework of the
standard model of electroweak interactions (Glashow, Weinberg and Salam
[43–45]). In the following we call this model just the ‘standard model’ for
brevity. In the standard model the possible beta-decay modes are determined
by conservation of electric charge, lepton number and baryon number.

The charge can be zero, +e, −e or some integral multiple of ±e. The lepton
number takes two values: +1 for leptons and −1 for antileptons. Each lepton
flavour, electron, muon and tau, has its own lepton number that is conserved
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Table 7.1. The electric charge q, baryon number B, lepton number L and mass m
for the fermions involved in the beta-decay processes of this book

Particle q B L m (MeV/c2)

electron (e−) −e 0 +1 0.511
positron (e+) +e 0 −1 0.511
electron neutrino (νe) 0 0 +1 0
electron antineutrino (νe) 0 0 −1 0
proton (p) +e +1 0 938.3
neutron (n) 0 +1 0 939.6

In the standard model the lepton number is considered to be conserved
separately for each lepton flavour: electron, muon and tau.

in the standard model.1 Finally, the baryon number is +1 for baryons and −1
for antibaryons. Examples of baryons are the nucleons, protons and neutrons,
that this book concentrates on.

The particles that take part in the beta-decay processes discussed in this
book are the electron (e−), the positron (e+), the proton (p), the neutron (n),
the electron neutrino (νe) and the electron antineutrino (νe). These particles,
along with their electric charge, baryon number, lepton number and rest-mass
energy are listed in Table 7.1.

It is worth noting that in the standard model the neutrino and its an-
tineutrino are considered to be different entities with zero mass; this is a
property of the so-called Dirac neutrino. In some more elaborate theoretical
particle-physics scenarios, such as grand-unified theories and supersymmetric
extensions of the standard model, neutrinos can have a non-zero mass and
the neutrino can be its own antiparticle (ν = ν); such a neutrino is a so-called
Majorana particle. In addition, lepton number conservation can be violated,
which leads to lepton-flavour oscillations.2

The breaking of lepton number conservation also leads to exotic new decay
modes, like neutrinoless double beta decay [51], which changes the electron
lepton number by two units. Another example is muon-to-electron conversion

1 Separate conservation of the electron, muon and tau lepton numbers guarantees
also the conservation of lepton flavour. Lepton flavour conservation implies that
one lepton flavour, say electron flavour, cannot convert into another one, say tau
flavour. Hence lepton number conservation excludes the possibility of the recently
discovered oscillations of neutrino flavour.

2 At present we know from the large-scale neutrino experiments Super-Kamiokande
[46], SNO [47], KamLAND [48] and CHOOZ [49] that lepton flavour conservation
is indeed violated. This appears in lepton-flavour oscillations, first introduced by
Pontecorvo [50]. In these oscillations the electron, muon and tau flavours convert
into one another. This can happen only if at least one of the neutrino mass
eigenstates describes a neutrino of non-zero mass. Thus we know now that the
neutrino actually possesses a tiny mass.
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[52], which violates lepton flavour conservation. Neither the lepton flavour
violation nor the character of the neutrino (Dirac vs. Majorana) affects in a
measurable way the results in this work.

The three processes of interest in this work, compatible with the conser-
vation laws, are the following:

• β− decay

n
β−
−→ p + e− + νe , (7.1)

which describes the decay of a free neutron into a free proton, both being
baryons. In addition, the final state contains a lepton and an antilepton,
both of electron flavour. This decay is allowed by the mass difference be-
tween the neutron and the proton. The associated decay energy, i.e. the
energy released as kinetic energy of the final-state particles, is

Qβ− = mnc
2 −mpc

2 −me−c2 > 0 . (7.2)

The decay energy Q is also called the Q value of the decay.

• β+ decay

p
β+−→ n + e+ + νe , (7.3)

which describes the decay of a proton into a neutron accompanied by
an antilepton and a lepton, both of electron flavour. This decay mode is
not allowed for a free proton. However, it is allowed in a nucleus, where
the extra energy needed to create the neutron–proton mass difference and
the positron mass me+ can be available. The quantity Q is in this case
negative,

Qβ+ = mpc
2 −mnc

2 −me+c2 < 0 . (7.4)

• Electron capture (EC)
p + e− EC−→ n + νe , (7.5)

where a proton captures an electron and converts into a neutron and an
electron neutrino. The Q value of this process is

QEC = mpc
2 +me−c2 −mnc

2 < 0 . (7.6)

Hence electron capture can occur only if extra energy is supplied in a
nuclear environment.

All these processes can occur in the many-body environment of a nucleus.
In particular, the nuclear environment enables the β+ and EC processes to
proceed, which is not possible in free space because Q < 0.

The nuclear processes corresponding to the free-space processes (7.1), (7.3)
and (7.5) are described below.
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• Nuclear β− decay : A process involving two isobars where the nuclear
charge number Z increases by one unit,

(Z,N)
β−
−→ (Z + 1, N − 1) + e− + νe . (7.7)

• Nuclear β+ decay : A process involving two isobars where the nuclear
charge number Z decreases by one unit,

(Z,N)
β+−→ (Z − 1, N + 1) + e+ + νe . (7.8)

• Nuclear electron-capture (EC) decay : A process involving two isobars
where the nuclear charge number Z decreases by one unit,

(Z,N) + e− EC−→ (Z − 1, N + 1) + νe . (7.9)

The electron is captured from an atomic orbital, usually the s orbital whose
wave function has its largest values in the region of the nucleus.

The Q value of each of the processes (7.7)–(7.9) is defined as the total kinetic
energy of the final-state leptons. The values depend on many-body aspects of
the nuclei involved as reflected in their mass differences. This topic will be
discussed in Subsect. 7.2.5.

The processes (7.7)–(7.9) are depicted by Feynman diagrams in Fig. 7.1.
Their meaning is explained in the figure caption and in the text below.

In our treatment of nuclear beta decay, at the very moment of decay
the decaying nucleon feels just the weak interaction and does not interact

Ψf Ψf Ψf

Ψi Ψi Ψi

β− β+

νe

e+

π

π

n

p

π

π

p

n

π

π

p

n

νe
νe

e−

GF GF
e−

GF

EC

A−1 A−1 A−1

Fig. 7.1. Nuclear β−, β+ and EC decay in the impulse approximation, where only
one nucleon takes part in the weak decay process and the remaining A− 1 nucleons
are spectators. The initial and final states Ψi and Ψf are nuclear A-body states with
strong two-nucleon interactions. At the weak-interaction vertices the antilepton lines
are drawn as going backwards in time. The strength of the pointlike effective weak-
interaction vertex is given by the Fermi constant GF.
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Ψf

Ψi

g NNπ
FG π0π−

e− νe

g NNπ

p

n

A−1

Fig. 7.2. A nuclear beta-decay process not included in the impulse approximation:
two nucleons interact via pion exchange at the moment of the weak decay, gπNN
being the coupling constant

via the strong force with the rest of the nucleons of the nucleus. Thus the
A − 1 nucleons act as spectators with respect to the weak decay process.
Only in the initial and final nuclear many-body states does the active nucleon
interact strongly with the other A− 1 nucleons. This approximation is called
the impulse approximation. A description of beta decay beyond the impulse
approximation includes processes such as shown in Fig. 7.2.

In Fig. 7.1 the flow line of the nucleons is called the nucleon current, or
more generally the weak hadronic current. Similarly, the flow line containing
the leptons is called the weak leptonic current. The hadronic and leptonic
currents interact at a weak-interaction vertex. The vertex can be described as
pointlike in the energy range of nuclear beta decay. It incorporates the effect
of the exchanged massive vector bosons W± into an effective decay strength
constant GF named after Fermi.

A closer look at weak decay reveals, however, a more involved mechanism.
This mechanism is shown in Fig. 7.3 for β− decay. The decay of a neutron to a
proton proceeds via emission of a negatively charged W boson of mass mW ≈
80GeV/c2. The strength of interaction at this vertex is given by the weak-
interaction coupling constant gW. Due to its large mass the W− propagates a
very short distance and then decays to an electron and its antineutrino with
the coupling strength gW.

This process is called the current–current interaction, where the interac-
tion between the two currents is mediated by a massive charged vector boson.
Since the bosons that mediate the interaction are charged, the associated weak
currents are called charged weak currents. They are distinguished from neutral
weak currents, where the mediator is the neutral massive Z0 boson. Processes
that proceed by charged weak currents involve exchange of charge, whereas
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gW

gW

−e
νe

n

W−

p

Fig. 7.3. Beta-minus decay of a neutron via W− boson coupling to the baryon and
lepton vertices with weak-interaction coupling strength gW

those proceeding by neutral weak currents do not. All modes of nuclear beta
decay as depicted in Fig. 7.1 are charged-current processes.

It turns out that due to the large mass of the W boson and the small energy
of nuclear beta decay the effective coupling constant GF can be written as (see
e.g. [53])

GF√
2
=

g2W
8(mWc2)2

. (7.10)

To a good approximation one can replace the complicated decay pattern of
Fig. 7.3 with the simple one occurring in Fig. 7.1. The two decay vertices
of Fig. 7.3 are then replaced by one effective vertex with the effective cou-
pling constant GF. The effective vertex describes a pointlike current–current
interaction.

7.2 Allowed Beta Decay

In this section we discuss the basic properties of so-called allowed beta decay.
By definition, in allowed β± decay the final-state leptons are emitted in an
s (l = 0) state relative to the nucleus. Similarly, in allowed electron capture,
the initial electron is from an s shell and the final neutrino is in an s state
relative to the nucleus. Thus the orbital angular momentum of the leptons
cannot change the nuclear total angular momentum.

Other beta-decay processes involve higher values of lepton orbital angular
momenta and are traditionally called forbidden beta transitions. This histori-
cal term is misleading since the transitions are not completely forbidden, only
greatly hindered relative to allowed beta decays. Forbidden transitions will be
discussed in Sect. 7.6.

In addition to any orbital angular momentum, each of the leptons involved
has spin s = 1

2 . Thus in β± decay the final-state leptons can couple to total
spin S = 0 or S = 1. In electron capture the initial proton and electron can
couple to j± 1

2 and the final neutron and neutrino can couple to j± 1
2 or j∓

1
2 ,
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Table 7.2. Selection rules for allowed beta-decay transitions

Type of transition ΔJ = |Jf − Ji| πiπf

Fermi 0 +1
Gamow–Teller 1 (Ji = 0 or Jf = 0) +1
Gamow–Teller 0, 1 (Ji > 0, Jf > 0) +1

Here Ji (Jf ) is the angular momentum of the initial (final)
nuclear state and correspondingly for the parity π.

with coherent signs. Thus in all cases the lepton spins can change the nuclear
total angular momentum J by 0 or 1. In allowed beta decay, transitions with
no angular momentum change are called Fermi transitions and those with an
angular momentum change of one unit are called Gamow–Teller transitions.
Note also that there is no source for a parity change in an allowed transition.
The selection rules for allowed beta decay are collected in Table 7.2.

Derivation of beta-decay transition amplitudes from the interaction of lep-
tonic and hadronic weak charged currents is far from trivial, as can be seen
from e.g. [54, 55]. The relativistic quantum mechanics required is outside the
scope of this book, and we cite various results without derivation.

7.2.1 Half-Lives, Reduced Transition Probabilities and ft Values

As in the case of gamma decay in Subsect. 6.1.1, the transition probability
Tfi for beta decay is calculated by the ‘golden rule’ of time-dependent per-
turbation theory. It is related to the half-life as in (6.1),

t1/2 =
ln 2
Tfi

. (7.11)

The resulting expression is

t1/2 =
κ

f0(BF +BGT)
, (7.12)

where the constant is [56]

κ ≡ 2π3�7 ln 2
m5

ec
4G2

F

= 6147 s , (7.13)

f0 is a phase-space integral that contains the lepton kinematics, and BF and
BGT are the Fermi and Gamow–Teller reduced transition probabilities. They
are conventionally broken up into factors as

BF ≡
g2V

2Ji + 1
|MF|2 , BGT ≡

g2A
2Ji + 1

|MGT|2 , (7.14)



www.manaraa.com

164 7 Beta Decay

where Ji is the angular momentum of the initial nuclear state, the g quantities
are coupling constants to be discussed below, and theM quantities are matrix
elements to be discussed in Subsect. 7.2.2.

The quantity f0t1/2 is called the ft value of an allowed beta-decay tran-
sition.3 It depends exclusively on nuclear structure, which is contained in the
reduced matrix elements. In the literature it has also been called the com-
parative half-life [15] or the reduced half-life [54,55].

The factor gV = 1.0 is the vector coupling constant of the weak inter-
actions, and its value is determined by the CVC (conserved vector current)
hypothesis of the standard model. The factor gA = 1.25 is the axial-vector
coupling constant of the weak interactions, and its value is determined by the
PCAC (partially conserved axial-vector current) hypothesis of the standard
model. In nuclei, the value of gA is affected by many-nucleon correlations; a
value reduced by 20–30% is sometimes used. For our purposes the free-nucleon
value is accurate enough. Thus the values to be used throughout this book
are

gV = 1.0 , gA = 1.25 . (7.15)

The presence of both the vector and axial-vector coupling constants in the
half-life expression (7.12) reflects the parity non-conserving nature of the weak
interactions. The vector and axial-vector parts have opposite space inversion
symmetry, namely V (−r) = −V (r) for the vector part and A(−r) = +A(r)
for the axial-vector part. For the lepton current the violation of parity con-
servation is maximal, and the weak-interaction amplitudes for the leptonic
contribution contain the combination V −A, an equal division between vec-
tor and axial-vector contributions. The same happens at the quark level
for hadrons. In the hadronic current the axial-vector contribution renor-
malizes due to the colour forces between the quarks, and a combination
V − (gA/gV)A = V − 1.25A is recovered. This ‘vector-minus-axial-vector’
structure of the weak charged currents is an indication of the ‘left-handedness’
of the weak interactions. For more discussion on this subject see e.g. [53].

Because the ft values are usually large, it is normal to express them in
terms of ‘log ft values’. The log ft value is defined as

log ft ≡ log10(f0t1/2[s]) . (7.16)

For the logarithm it is essential that the half-life on the right-hand side is
expressed as a dimensionless quantity because f0 is dimensionless. Given the
log ft value, the half-life is

t1/2 = 10log ft−log f0 s . (7.17)

3 Modifications of the concept of ft value are introduced for forbidden beta decay
in Sect. 7.6.
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7.2.2 Fermi and Gamow–Teller Matrix Elements

The reduced transition probabilities (7.14) contain the Fermi matrix element
MF [57] and the Gamow–Teller matrix element MGT [58]. The initial and
final nuclear wave functions in them carry the nuclear structure information.
The Fermi operator is simply the unit operator 1 and the Gamow–Teller
operator is the Pauli spin operator σ. These operators are the simplest scalar
and axial-vector operators that can be constructed, and they produce the
selection rules of Table 7.2. Theoretically the operators can be derived as
limiting expressions of a proper relativistic treatment.

In occupation number representation, following (4.25), the Fermi and
Gamow–Teller nuclear matrix elements can be written as

MF ≡ (ξf Jf‖1‖ξi Ji) = δJiJf
∑
ab

MF(ab)(ξf Jf‖
[
c†ac̃b

]
0
‖ξi Ji) , (7.18)

MGT ≡ (ξf Jf‖σ‖ξi Ji) =
∑
ab

MGT(ab)(ξf Jf‖
[
c†ac̃b

]
1
‖ξi Ji) , (7.19)

where the reduced single-particle matrix elements are, from (2.33) and (2.56),4

MF(ab) = (a‖1‖b) = δabĵa

= (na la ja‖1‖nb lb jb) = δnanbδlalbδjajb ĵa ,
(7.20)

MGT(ab) =
1√
3
(a‖σ‖b) = 1√

3
(na la ja‖σ‖nb lb jb)

=
√
2 δnanbδlalb ĵaĵb(−1)la+ja+

3
2

{
1
2

1
2 1

jb ja la

}
.

(7.21)

Note that for β− decay a is a proton index and b is a neutron index, whereas
for β+ decay and electron capture a is a neutron index and b is a proton index.

The Fermi and Gamow–Teller single-particle matrix elements are the same
in the CS and BR phase conventions, introduced in Sect. 3.3, since no orbital
degrees of freedom are present in the transition operators. The symmetry
properties of the single-particle matrix elements are

MF(ba) =MF(ab) , (7.22)

MGT(ba) = (−1)ja+jb+1MGT(ab) . (7.23)

The Gamow–Teller single-particle matrix elements for the lowest lj combina-
tions are tabulated in Table 7.3. As required by (7.21), they are independent
of n as long as Δn = 0 and they obey the selection rule Δl = 0.
4 Following a convention in the literature, the right-hand side of (7.19) is defined
differently from the general formula (4.25) in that the factor 1/

√
3 is included

in the single-particle matrix element (7.19). This convention is used also for the
matrix elements of forbidden beta decay.
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Table 7.3. Gamow–Teller single-particle matrix elementsMGT(ab)

a�b s1/2 p3/2 p1/2 d5/2 d3/2 f7/2 f5/2 g9/2

s1/2
√
2 0 0 0 0 0 0 0

p3/2 0 2
√
5

3
− 4

3
0 0 0 0 0

p1/2 0 4
3

−
√
2
3

0 0 0 0 0

d5/2 0 0 0
√

14
5

− 4√
5

0 0 0

d3/2 0 0 0 4√
5

− 2√
5

0 0 0

f7/2 0 0 0 0 0 2
√

6
7
−4

√
2
7

0

f5/2 0 0 0 0 0 4
√

2
7
−
√

10
7

0

g9/2 0 0 0 0 0 0 0 1
3

√
110
3

7.2.3 Phase-Space Factors

The half-life (7.12) contains the integrated leptonic phase space in the form of
a phase-space factor, sometimes called the Fermi integral. For β∓ decay the
phase-space factor is

f
(∓)
0 =

∫ E0

1

F0(±Zf , ε)pε(E0 − ε)2dε , (7.24)

where F0 is the so-called Fermi function to be discussed below and

ε ≡ Ee

mec2
, E0 ≡

Ei −Ef

mec2
, p ≡

√
ε2 − 1 , (7.25)

with Ee the total energy of the emitted electron or positron, and Ei and Ef

the energies of the initial and final nuclear states. For electron capture the
phase-space factor is

f
(EC)
0 = 2π(αZi)3(ε0 + E0)2 , (7.26)

where

ε0 ≡
mec

2 − B
mec2

≈ 1− 1
2 (αZi)2 , (7.27)

where B is the binding energy of an electron in an atomic 1s orbital and α is
the fine-structure constant, α ≈ 1

137 .
Note that (7.27) is generally not a good approximation because it as-

sumes the simple non-relativistic s-electron wave function. The approxima-
tion is valid when αZi � 1, which occurs for light nuclei; Zi < 40 is a rule of
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thumb. For small decay energies additional corrections arise from the screen-
ing of the nuclear charge by atomic electrons and from the finite nuclear size.
For the cases discussed in this work the decay energies are so large that the
electron-capture branch is tiny relative to the β+ branch, and the problems
with the electron-capture phase-space factor do not affect our results. Accu-
rate phase-space factors for electron capture are tabulated e.g. in [59].

The phase-space factors (7.24) and (7.26) are functions of the nuclear
energy difference E0. The final state of β∓ decay is a three-body state. Its
complicated kinematics is reflected in the complicated E0 dependence of f∓,
explicitly displayed in (7.30). In electron capture the final state is a two-body
state, and energy and momentum conservation result in a definite energy for
the emitted neutrino. This is reflected in the simple phase-space factor f (EC)

with parabolic dependence on E0.
The Fermi function is a correction factor which approximately takes into

account the Coulomb interaction between the emitted lepton and the final
nucleus. It is the ratio of the absolute squares of the relativistic Coulomb
wave function and the free lepton wave function at the nuclear radius R. In β−

and β+ decay the final state contains two leptons and the daughter nucleus.
Because this is a three-body state, energy and momentum conservation do
not uniquely determine the energy and momentum of the final-state leptons.
The number dne of electrons in an energy interval [ε, ε+ dε] divided by dε is
plotted as a function of the electron energy ε. This function is given by

dne
dε

= F0(±Zf , ε)pε(E0 − ε)2 , (7.28)

and is called the shape function of allowed beta decay; it is the integrand of
(7.24). The maximum energy E0 of an electron in beta decay is called the
endpoint energy.

Figure 7.4 shows the shape function for E0 = 6 in three cases. In the case
labelled as Z = 0 the Fermi function F0 is omitted from (7.28). The other
cases depict β− and β+ decay for Zf = 20. As can be seen, the charge of the
final nucleus has an appreciable influence on the energy distribution of the
emitted electrons and hence on the phase-space factor (7.24). In β− decay
the positive nuclear charge decelerates the outgoing negative electrons thus
shifting their energy distribution towards smaller energies, and oppositely in
β+ decay.

The Fermi function F0 in (7.24) can be written analytically in a non-
relativistic approximation known as the Primakoff–Rosen approximation [60]:

F0(Zf , ε) ≈
ε

p
F
(PR)
0 (Zf ) , F

(PR)
0 (Zf ) =

2παZf

1− e−2παZf . (7.29)

The approximation, to be used throughout the book, is quite good unless the
decay Q value is very small. It leads to the phase-space factor

f
(∓)
0 ≈ 1

30
(E5

0 − 10E2
0 + 15E0 − 6)F (PR)

0 (±Zf ) . (7.30)
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β−

β+

E

dne
d

0

Z=0

1

Fig. 7.4. Number of emitted electrons as a function of the electron energy ε for
E0 = 6. For β∓ decay Z = 20; ‘Z = 0’ marks the case with the Fermi function
omitted

This expression is easy to use in pocket-calculator evaluations of beta-decay
half-lives. More accurate phase-space factors are tabulated e.g. in [59].

7.2.4 Combined β+ and Electron Capture Decays

Both β+ decay and electron capture decrease the nuclear charge number by
one. They can coexist and compete in the de-excitation of a nuclear state.
The combined effect of these modes can be derived from the additivity of the
decay rates Tfi (transition probability per unit time),

T
(+)
fi = T

(β+)
fi + T

(EC)
fi . (7.31)

From (7.10) and (7.11) then follows that the total decay half-life of a combined
β+ and electron-capture transition, denoted by β+/EC, is given by

f0t1/2 =
[
f
(+)
0 + f

(EC)
0

]
t1/2 =

κ

BF +BGT
. (7.32)

For energies E0 > 2 the relation f
(+)
0 � f

(EC)
0 is valid, and the half-life of

a β+/EC transition is determined by the β+ decay. For small decay energies
the electron-capture branch dominates, being even the only one possible for
nuclear mass differences less than the positron mass (see Subsect. 7.2.5).

In summary, we have a full account of all allowed beta-decay transitions
as follows:

f0t1/2 =
κ

BF +BGT
, f0 =

{
f
(−)
0 for β− decay ,

f
(+)
0 + f

(EC)
0 for β+/EC decay .

(7.33)
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7.2.5 Decay Q Values

The Q value of nuclear beta decay was defined in Sect. 1.1 as the total kinetic
energy of the final-state leptons. The following useful relations connect the Q
value to the energy difference ΔE = Ei−Ef = E0mec

2 of the initial and final
nuclear states:

E0 =
Qβ− +mec

2

mec2
, (7.34)

E0 =
Qβ+ +mec

2

mec2
=

QEC −mec
2

mec2
, (7.35)

E0 =
QEC −mec

2

mec2
. (7.36)

The Q values Qβ− and QEC are the ones tabulated in the Table of Isotopes [37]
and elsewhere. Therefore the β+ endpoint energy is here expressed also in
terms of QEC = Qβ+ + 2mec

2.
An endpoint energy E0 extracted from (7.34)–(7.36) can be used in (7.24),

(7.26) or (7.30) to compute the relevant phase-space factor. A beta-decay half-
life can then be calculated in a straightforward manner once the one-body
transition densities (ξf Jf‖

[
c†ac̃b

]
0,1
‖ξi Ji) are known. Computation of these

quantities is the subject of the following sections.

7.2.6 Partial and Total Decay Half-Lives; Decay Branchings

A nuclear state can generally beta decay to more than one final state. The
transition probabilities are additive, as they are in electromagnetic decay. The
beta-decay probability to a given final state k corresponds to a partial decay
half-life t

(k)
1/2. The total decay half-life t1/2 is then given by

1
t1/2

=
∑
k

1

t
(k)
1/2

. (7.37)

The partial half-life is obtained from the total half-life by using the so-
called branching probability. This probability can be obtained from the mea-
sured decay branching by using the relation

B(k) = (experimental decay branching to final state k in %)/100 . (7.38)

The partial half-life is now obtained by dividing the total half-life by the
branching probability, i.e.

t
(k)
1/2 =

t1/2

B(k)
. (7.39)

Examples of the use of (7.37)–(7.39) are given in the following sections.
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7.2.7 Classification of Beta Decays

So far we have looked in any detail only into allowed beta decay. We now
digress and consider the classification of all beta-decay transitions. The clas-
sification is done in terms of log ft values as shown in Table 7.4. For further
detail see [54,61].

Table 7.4. Classification of beta-decay transitions according to their log ft values

Type of transition log ft

superallowed 2.9–3.7
unfavoured allowed 3.8–6.0
l-forbidden allowed ≥5.0
first-forbidden unique 8–10
first-forbidden non-unique 6–9
second-forbidden 11–13
third-forbidden 17–19
fourth-forbidden >22

In this table the allowed transitions are subdivided into three categories.
We briefly discuss these categories in this subsection. The forbidden transi-
tions shown in the table are the subject of Sect. 7.6. Note that the log ft
boundaries are not sharp but rather enable a general grouping of transitions.

Superallowed transitions occur in light nuclei where the proton and neu-
tron Fermi surfaces are roughly at the same position. This allows maximal
overlap between the initial and final nuclear wave functions. The transitions
are of the single-particle type and yield maximum values for the Fermi and
Gamow–Teller matrix elements. The simplest transitions occur in light nuclei
of one-particle or one-hole type. Examples of these are given in Sect. 7.3, with
numerical values collected in Table 7.5.

Transitions of the l-forbidden allowed type occur in cases where the simple
single-particle transition in the mean-field shell-model picture of Chap. 5 is
forbidden by the Δl = 0 selection rule contained (7.20) and (7.21). The selec-
tion rules on nuclear angular momentum and parity, as stated in Table 7.2,
are satisfied. Hence the forbiddenness is just a property of having a single con-
figuration approximate each nuclear wave function. Introducing configuration
mixing via the residual interaction lifts this forbiddenness and yields a finite
magnitude for the computed log ft values. This mixing, however, is usually
not strong enough to bring the log ft values below log ft ≈ 5.

Unfavoured allowed transitions are defined as those not belonging to either
of the two types discussed above. They are allowed single-particle transitions
in that there is no l forbiddenness. However, the single-particle transitions
are not pure but diluted in the initial and final many-nucleon wave functions.
The contribution of the leading single-particle component is reduced by its
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redistribution among many nuclear states by the residual interaction. The
ratio of the measured decay rate to the computed single-particle rate is called
the hindrance factor. Its values range in the limits 0.004–0.01 in the 0d-1s
and 0f-1p-0g9/2 shells [9].

7.3 Beta-Decay Transitions in One-Particle and
One-Hole Nuclei

In this section we discuss the beta decays of the simplest possible nuclei,
namely the one-particle and one-hole nuclei. Examples of the application of
the formalism are also given.

7.3.1 Matrix Elements and Reduced Transition Probabilities

The wave functions of one-particle and one-hole nuclei were discussed in
Sects. 5.2 and 6.2. For the one-particle nuclei they were written as

|Ψi〉 = |ni li ji mi〉 = c†i |CORE〉 , (7.40)

|Ψf 〉 = |nf lf jf mf 〉 = c†f |CORE〉 , (7.41)

and for the one-hole nuclei as

|Φi〉 = |(ni li ji mi)−1〉 = h†i |HF〉 , (7.42)

|Φf 〉 = |(nf lf jf mf )−1〉 = h†f |HF〉 . (7.43)

The following one-body transition densities were derived in Sect. 6.2:

(Ψf‖
[
c†ac̃b

]
L
‖Ψi) = δafδbiL̂ , (7.44)

(Φf‖
[
c†ac̃b

]
L
‖Φi) = δaiδbf (−1)ji+jf+LL̂ . (7.45)

Subsituted in (7.18)–(7.20) these densities give the Fermi and Gamow–Teller
matrix elements

MF(Ψi → Ψf ) = −MF(Φi → Φf ) = δif ĵi , (7.46)

MGT(Ψi → Ψf ) =MGT(Φi → Φf ) =
√
3MGT(fi) , (7.47)

whereMGT(fi) is the single-particle matrix element (7.21). Substituted into
(7.14) these matrix elements lead to the reduced beta transition probabilities

BF = g2Vδif , BGT = g2A
3

2ji + 1
|MGT(fi)|2 . (7.48)

These reduced transition probabilities are valid for transitions between one-
particle states and for transitions between one-hole states.
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7.3.2 Application to Beta Decay of 15O; Other Examples

Consider the beta decay of 158O7 to
15
7N8 depicted in Fig. 7.5 with experimen-

tal data. In this case both β+ decay and electron capture are active. With an
experimental log ft value of 3.6 the transition is superallowed (see Table 7.4).
It occurs between the two ground states with a branching of 100%, i.e. all
the decays go to the final ground state. The one-hole structure of the ini-
tial and final states, (5.12) and (5.10) respectively, is indicated in the figure.
We proceed to calculate the reduced transition probabilities from these wave
functions and compare subsequent results with the measured values.

Equation (7.48) and Table 7.3, with the coupling constants from Sub-
sect. 7.2.1, give

BF = g2V = 1.0 , (7.49)

BGT = g2A
3
2
|MGT(p1/2 p1/2)|2 = 1.252 ×

3
2

(
−
√
2
3

)2

= 0.521 . (7.50)

From (7.32) we have

f0t1/2 =
6147 s

1.0 + 0.521
= 4041 s , (7.51)

which gives log ft = 3.61, in excellent agreement with experiment.

1/ 2−

N15
7 8 O15

8 7

EC
Q     = 2.754 MeV

1/ 2−
1/ 2(t     = 122 s)

h
1/ 2

h
1/ 2

HFπ 0p

HF0pν

100 % 3.6

Fig. 7.5. Superallowed beta decay of the 1/2− ground state of 15O to the 1/2−

ground state of 15N. The decay proceeds via the β+/EC decay mode. The experi-
mental half-life, Q value, branching and log ft value are given

We proceed to compute the half-life from (7.17). The phase-space factor
needed is f0 = f

(+)
0 + f

(EC)
0 , as is seen from (7.33). We calculate f

(+)
0 from

(7.30) with input from (7.35),

E0 =
QEC −mec

2

mec2
= 4.389 , (7.52)



www.manaraa.com

7.3 Beta-Decay Transitions in One-Particle and One-Hole Nuclei 173

and from (7.29) with Zf = 7,

F
(PR)
0 (−Zf ) =

2πα(−Zf )
1− e2παZf = 0.848 . (7.53)

Equation (7.30) now gives
f
(+)
0 = 42.3 . (7.54)

The phase-space factor f (EC)0 is calculated from (7.26) with input from (7.27),

ε0 = 1− 1
2 (α× 8)

2 = 0.998 . (7.55)

Equation (7.36) gives the same E0 as (7.52), so we have

f
(EC)
0 = 2π(α× 8)3(0.998 + 4.389)2 = 0.036 . (7.56)

Since f
(EC)
0 � f+0 the transition is dominated by β+ decay, so that

f0 ≈ f
(+)
0 = 42.3 . (7.57)

This gives log f0 = 1.63, and substitution into (7.17) yields finally the theo-
retical half-life

t1/2 = 103.61−1.63 s = 95.5 s , (7.58)

which is close to the experimental half-life of 122 s.
Other β+/EC decays of one-particle and one-hole nuclei are calculated

similarly. Table 7.5 summarizes the results of such calculations.

Table 7.5. Computed log f0 and log ft values, and resultant beta-decay half-lives,
for β+/EC transitions in one-particle and one-hole nuclei, together with experimen-
tal QEC values and half-lives

Beta decay Q
(exp)
EC (MeV) log f0 log ft t1/2 (s) t

(exp)

1/2 (s)

15O(1/2−)→ 15N(1/2−) 2.754 1.626 3.606 95.5 122
17F(5/2+)→ 17O(5/2+) 2.762 1.624 3.283 45.6 64.5

39Ca(3/2+)→ 39K(3/2+) 6.524 3.671 3.500 0.675 0.86
41Sc(7/2−)→ 41Ca(7/2−) 6.495 3.649 3.308 0.456 0.59

The computed half-lives agree well with the experimental ones. This means
that the actual nuclear states involved are indeed rather pure one-particle or
one-hole states. The transitions are thus single-particle transitions. According
to Subsect. 7.2.7 such beta decays are superallowed. This is borne out by the
log ft values which are in the range 2.9–3.7 stated in Table 7.4.
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7.4 Beta-Decay Transitions in Particle–Hole Nuclei

In the following we discuss beta-decay transitions in particle–hole nuclei. As
described in Sect. 5.4, there are two types of particle–hole excitation. The
first, charge-conserving type consists of excited states in an even–even nucleus
whose ground state is the vacuum of particle–hole excitations. Such an even–
even nucleus can be called the reference nucleus. The second, charge-changing
type consists of the ground and excited states in the odd–odd nuclei adjacent
to the reference nucleus. Let us first discuss decays to the particle–hole vacuum
of the reference nucleus. Depending on the energetics, the decay can also go
in the opposite direction.

7.4.1 Beta Decay to and from the Even–Even Ground State

Charge-changing excitations of particle–hole nuclei can beta decay to the ref-
erence nucleus. The initial state is a state of an odd–odd nucleus, generated
by making a charge-changing particle–hole excitation of the particle–hole vac-
uum. The final state is the particle–hole vacuum |HF〉, which is the ground
state of the reference nucleus. The beta-decay matrix elements are constructed
from the transition density (6.118),

(HF‖
[
c†ac̃b

]
L
‖ai b−1i ; Ji) = δLJiδabiδbai(−1)jai−jbi+Ji Ĵi . (7.59)

Inserting this transition density into (7.18) and (7.19) yields

MF(aib−1i ) = δJi0δaibi ĵai , (7.60)

MGT(aib−1i ) = −
√
3 δJi1MGT(aibi) , (7.61)

where the symmetry relation (7.23) has been used.
In the event the odd–odd nucleus has low-lying states below the particle–

hole vacuum of the reference nucleus, beta decay can occur from the vacuum
to the odd–odd nucleus. This is the situation in light nuclei. Equation (7.59)
is now replaced by

(af b−1f ; Jf‖
[
c†ac̃b

]
L
‖HF) = δLJf δaaf δbbf Ĵf . (7.62)

Substituting this into (7.18) and (7.19) results in

MF(afb−1f ) = δJf0δaf bf ĵaf , (7.63)

MGT(afb−1f ) =
√
3 δJf1MGT(afbf ) . (7.64)
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7.4.2 Application to Beta Decay of 56Ni

Consider the β+/EC decay depicted in Fig. 7.6, where 5628Ni28 decays to
56
27Co29.

This is a case described by (7.63) and (7.64). In our simple mean-field shell-
model scheme the low-energy states of 56Co have the structure

|56Co ; 1+, 2+, 3+, 4+, 5+, 6+〉
=

[
c†ν0f5/2h

†
π0f7/2

]
1+,2+,3+,4+,5+,6+

|56Ni ; 0+gs〉 , (7.65)

where 56Ni is the doubly magic particle–hole vacuum. Because of the angular
momentum conditions in (7.63) and (7.64) the Fermi matrix element vanishes
and the only possible final state for a Gamow–Teller matrix element is the 1+

state of 56Co.
With the single-particle matrix element from Table 7.3, the Gamow–Teller

matrix element (7.64) becomes

MGT =
√
3MGT(f5/2 f7/2) =

√
3× 4

√
2
7
= 3.703 , (7.66)

leading to the reduced transition probability

BGT = g2A|MGT|2 = 1.252 × 3.7032 = 21.43 . (7.67)

Substituting the matrix element (7.67) into (7.32) gives the calculated
log ft value

log ft = 2.46 . (7.68)

This is far short of the experimental value log ft = 4.4, which shows that
the simple particle–hole description fails here. The transition is unfavoured

EC
Q     = 2.135 MeV

Ni28
56

28

+0

Co56
27 29

+4

+3

+5

+4
+2

+1 1.720

0.830
0.970

0.576

0.158
0.0

100 % 4.4

6.10 d

Fig. 7.6. Beta decay of the ground state of 56Ni to an excited state of 56Co. The
decay proceeds via the β+/EC mode and is of the unfavoured allowed type, as seen
from Table 7.4. The experimental half-life, Q value, branching and log ft value are
given
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allowed, which means that the leading single-particle transition is diluted
among several initial and final states by the residual two-body interaction.
The hindrance factor is 102.46−4.4 = 0.011.

The coupling in (7.65) is the only way to produce a 1+ state by exciting a
proton from the 0f7/2 shell to the rest of the fp shell for neutrons. Therefore
the discrepancy suggests that more complicated configurations, two-particle–
two-hole, etc., excitations, play an active part in the low-lying states of 56Co.

7.4.3 Beta-Decay Transitions Between Two Particle–Hole States

The tool to be used in this subsection is the general expression (6.124) for
electromagnetic transitions between two arbitrary particle–hole states. The
structure is just the same for any, not only electromagnetic, multipole oper-
ators. In particular we propose to apply (6.124) to the Fermi (L = 0) and
Gamow–Teller (L = 1) operators. However, the results with a general value
of L turn out to be useful also for forbidden beta decay, where L = 2, 3, . . ..

Equation (6.124) carries the restriction that all single-particle orbitals in-
volved are either proton or neutron orbitals. This restriction applies to elec-
tromagnetic decays, which are charge conserving. However, the same formula
can be used for the charge-changing beta-decay transitions since no explicit
use of charge conservation was made in deriving it.

We start from an even–even reference nucleus (N,Z), which is the particle–
hole vacuum. Its excited states are proton particle–hole (pp−1) and neutron
particle–hole (nn−1) excitations. Consider β− decay of the neighbouring odd–
odd nucleus (N + 1, Z − 1). Its states are obtained from the (N,Z) nucleus
by neutron-particle–proton-hole (np−1) excitations.

As a modified case of (4.22) the β− decay operator is

β−LM = L̂−1
∑
pn

(p‖βL‖n)
[
c†pc̃n

]
LM

, (7.69)

where the single-particle tensor operator is β0 = 1 or β1 = σ, as introduced in
(7.18) and (7.19). In (4.22) the summation indices a and b are equivalent, but
here the proton index p is distinct from the neutron index n. The transition
amplitude for general states |Ψi〉 and |Ψf 〉 is

(Ψf‖β−L‖Ψi) = L̂−1
∑
pn

(p‖βL‖n)(Ψf‖
[
c†pc̃n

]
L
‖Ψi) . (7.70)

The initial state is a neutron-particle–proton-hole state, and let us first take
the final state to be a neutron particle–hole state:

|Ψi〉 =
[
c†nih

†
pi

]
JiMi
|HF〉 , |Ψf 〉 =

[
c†nfh

†
n′
f

]
JfMf

|HF〉 . (7.71)

Substituting these into (6.124) and taking account of the p, n distinction
(δpn = 0) we obtain
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(nf n′−1f ; Jf‖β−L‖ni p
−1
i ; Ji) = δninf (−1)

jni+jn′
f
+Jf+1

ĴiĴf L̂

×
{

Ji Jf L
jn′
f
jpi jni

}
ML(pin′f ) ,

(7.72)

where ML(pin′f ) is either the Fermi or the Gamow–Teller single-particle
matrix element, defined in (7.20) and (7.21),

M0(ab) ≡MF(ab) = (a‖β0‖b) = (a‖1‖b) , (7.73)

M1(ab) ≡MGT(ab) =
1√
3
(a‖β1‖b) =

1√
3
(a‖σ‖b) . (7.74)

In the single-particle matrix elementsML, proton and neutron labels are no
longer considered as distinct.

Consider secondly the case where the final state is a proton particle–hole
state,

|Ψf 〉 =
[
c†pfh

†
p′f

]
JfMf

|HF〉 , (7.75)

Application of (6.124) now gives the transition amplitude as

(pf p′−1f ; Jf‖β−L‖ni p
−1
i ; Ji) = δpip′f (−1)

jni+jp′
f
+Ji+L

ĴiĴf L̂

×
{

Ji Jf L
jpf jni jpi

}
ML(nipf ) .

(7.76)

Let us discuss next β+ decay. The initial state in the neighbouring odd–
odd (N − 1, Z + 1) nucleus is generated by a proton-particle–neutron-hole
(pn−1) excitation of the (N,Z) particle–hole vacuum. The final state is a
charge-conserving particle–hole excitation of the even–even reference nucleus
(N,Z). Similarly to (7.70) the transition amplitude is

(Ψf‖β+
L‖Ψi) = L̂−1

∑
np

(n‖βL‖p)(Ψf‖
[
c†nc̃p

]
L
‖Ψi) . (7.77)

The initial state is a proton-particle–neutron-hole state, and again we take
first the case where the final state is a neutron particle–hole state:

|Ψi〉 =
[
c†pih

†
ni

]
JiMi
|HF〉 , |Ψf 〉 =

[
c†nfh

†
n′
f

]
JfMf

|HF〉 . (7.78)

The transition amplitude now becomes

(nf n′−1f ; Jf‖β+
L‖pi n

−1
i ; Ji) = δnin′

f
(−1)jpi+jn′

f
+Ji+L

ĴiĴf L̂

×
{

Ji Jf L
jnf jpi jni

}
ML(pinf ) .

(7.79)

In the second case the final state is a proton particle–hole state, and we find
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(pf p′−1f ; Jf‖β+
L‖pi n

−1
i ; Ji) = δpipf (−1)

jpi+jp′
f
+Jf+1

ĴiĴf L̂

×
{

Ji Jf L
jp′f jni jpi

}
ML(nip′f ) .

(7.80)

For clear emphasis on the Fermi and Gamow–Teller types of allowed tran-
sitions, we adopt the notation

β∓0 ≡ β∓F , β∓1 ≡ β∓GT . (7.81)

For Fermi transitions (L = 0) the simple 6j symbol is given by (1.65) and the
transition amplitudes (7.72), (7.76), (7.79) and (7.80) reduce to

(nf n′−1f ; Jf‖β−F ‖ni p
−1
i ; Ji) = −δJiJf δninf δpin′

f
Δ(jnijn′

f
Ji)Ĵi , (7.82)

(pf p′−1f ; Jf‖β−F ‖ni p
−1
i ; Ji) = δJiJf δpip′f δnipfΔ(jpijpfJi)Ĵi , (7.83)

(nf n′−1f ; Jf‖β+
F‖pi n

−1
i ; Ji) = δJiJf δnin′

f
δpinfΔ(jnijnfJi)Ĵi , (7.84)

(pf p′−1f ; Jf‖β+
F‖pi n

−1
i ; Ji) = −δJiJf δpipf δnip′fΔ(jpijp′fJi)Ĵi , (7.85)

where the symbol δpn is understood so that the quantum numbers of the
proton and neutron orbitals have to be the same.

7.4.4 Application to Beta Decay of 16N

Consider the Gamow–Teller β− decays of Fig. 7.7 from the 2− ground state
of 16

7N9 to the lowest negative-parity states in
16
8O8. The initial-state wave

function, as given in (5.60), reads

|16N ; 2−gs〉 =
[
c†ν0d5/2h

†
π0p1/2

]
2− |HF〉 . (7.86)

The simple mean-field wave functions for the 1−1 , 2
−
1 and 3−1 states of 16O,

from (5.65) and (5.66), are

|16O ; 2−1 , 3−1 〉 =
1√
2

([
c†ν0d5/2h

†
ν0p1/2

]
2−,3− |HF〉

+
[
c†π0d5/2h

†
π0p1/2

]
2−,3− |HF〉

)
, (7.87)

|16O ; 1−1 〉 =
1√
2

([
c†ν1s1/2h

†
ν0p1/2

]
1− |HF〉+

[
c†π1s1/2h

†
π0p1/2

]
1− |HF〉

)
. (7.88)

These are the T = 0,MT = 0 states of the type (5.126).
These states are substituted into (7.72) and (7.76) to give the Gamow–

Teller matrix elements, with the single-particle matrix elements taken from
Table 7.3,
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O
16
8 87

16
9N

−2

β−Q     = 10.419 MeV

−2

−1
−3

+0

1.1 % 4.3

4.9 % 5.1
68 % 4.5

26 % 9.1

0.0
7.13 s

(T=0)

(T=0)
(T=0)

0.0

6.130

7.117

8.872

1

Fig. 7.7. Beta-minus decay of the 2− ground state of 16N to the ground and excited
states in 16O. The experimental half-life, Q value, branchings and log ft values are
shown. Gamow–Teller decay occurs to the 3−, 1− and 2− states. To the 2− final
state also Fermi decay is possible. The decay to the 0+ ground state is first-forbidden
unique. The use of the phase-space factor f1u in the log ft value, as given in (7.165),
is indicated by the superscript ‘1’

(
ν0d5/2 (ν0p1/2)

−1 ; Jf‖β−GT‖ν0d5/2 (π0p1/2)−1 ; 2−
)

=

√
10
3
(−1)Jf+1Ĵf

{
2 Jf 1
1
2

1
2

5
2

}
≡ A(Jf ) , (7.89)

(
π0d5/2 (π0p1/2)

−1 ; Jf‖β−GT‖ν0d5/2 (π0p1/2)−1 ; 2−
)

=
√
42 Ĵf

{
2 Jf 1
5
2

5
2

1
2

}
≡ B(Jf ) , (7.90)

(
ν1s1/2 (ν0p1/2)

−1 ; 1−‖β−GT‖ν0d5/2 (π0p1/2)−1 ; 2−
)
= 0 , (7.91)(

π1s1/2 (π0p1/2)
−1 ; 1−‖β−GT‖ν0d5/2 (π0p1/2)−1 ; 2−

)
= 0 . (7.92)

Equations (7.82) and (7.83) give the matrix elements of the Fermi operator.
The only non-zero ones are those for Jf = 2, namely(

ν0d5/2 (ν0p1/2)
−1 ; 2−‖β−F ‖ν0d5/2 (π0p1/2)−1 ; 2−

)
= −
√
5 , (7.93)(

π0d5/2 (π0p1/2)
−1 ; 2−‖β−F ‖ν0d5/2 (π0p1/2)−1 ; 2−

)
=
√
5 . (7.94)

With the wave functions (7.86)–(7.88) our results (7.89)–(7.94) give the tran-
sition amplitudes

(1−1 ‖β−GT‖2−gs) = 0 , (7.95)

(2−1 ‖β−GT‖2−gs) =
1√
2
[A(2) +B(2)] =

1√
2

(
1
3

√
10
3
+ 7

√
2
15

)
= 2.238 ,

(7.96)



www.manaraa.com

180 7 Beta Decay

(3−1 ‖β−GT‖2−gs) =
1√
2
[A(3) +B(3)] =

1√
2

(
1
3

√
35
3
+

√
7
15

)
= 1.288 ,

(7.97)

(2−1 ‖β−F ‖2−gs) =
1√
2

(√
5−
√
5
)
= 0 . (7.98)

For our simple wave functions with no configuration mixing the decay rate
to the 1−1 state is exactly zero. This is an example of an l-forbidden allowed
transition; see Subsect. 7.2.7. Also the 2− → 2− Fermi transition vanishes for
the simple wave functions.

Equation (7.14) gives the non-vanishing reduced transition probabilities
as

BGT(2−gs → 2−1 ) =
1.252

5
× 2.2382 = 1.565 , (7.99)

BGT(2−gs → 3−1 ) =
1.252

5
× 1.2882 = 0.518 , (7.100)

whence (7.12) yields

log ft(2−gs → 2−1 ) = 3.59 , (7.101)

log ft(2−gs → 3−1 ) = 4.07 . (7.102)

These log ft values represent appreciably faster transitions than the corre-
sponding experimental values 4.3 and 4.5. The partial half-lives, both theo-
retical and experimental, are stated in Table 10.1 relating to the example of
Subsect. 10.3.4. That example is a continuation of the present one with simple
configuration mixing included.

The preceding calculation can be repeated for the Gamow–Teller and
Fermi β+ decays of Fig. 7.12. In this case the 4− ground state of 40

21Sc19
decays to negative-parity states in 40

20Ca20. Equations (7.79) and (7.80) serve
to give the decay amplitudes.

7.5 Beta-Decay Transitions in Two-Particle and
Two-Hole Nuclei

In the following we discuss beta-decay transitions between a pair of two-
particle states and between a pair of two-hole states. The different combi-
nations of initial and final configurations are summarized in the following
subsection. Applications of the formalism are discussed in the subsequent
subsections.
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7.5.1 Transition Amplitudes

Equations (6.93), (6.94), (6.100) and (6.101) give the two-particle states
needed for describing beta decay between two-particle states. They can be
summarized as

|Ψi〉 = |ai bi ; Ji Mi〉 = Naibi(Ji)
[
c†aic

†
bi

]
JiMi
|CORE〉 , (7.103)

|Ψf 〉 = |af bf ; Jf Mf 〉 = Naf bf (Jf )
[
c†af c

†
bf

]
JfMf

|CORE〉 , (7.104)

where the labels ai and bi are either proton or neutron labels. The normaliza-
tion factor N is given by (5.21) for the proton–proton and neutron–neutron
states. For the proton–neutron states it is simply Npn = 1.

The method of Sect. 6.3 is used to derive the amplitudes for beta-decay
transitions between proton–proton and proton–neutron excitations and be-
tween neutron–neutron and proton–neutron excitations. The resulting com-
plete set is

M(−)
L (ni n′i ; Ji → pf nf ; Jf ) = L̂ĴiĴfNnin′

i
(Ji)

×
[
δn′
inf
(−1)jpf+jnf+Ji+L

{
Ji Jf L
jpf jni jnf

}
ML(pfni)

+ δninf (−1)
jpf+jn′

i
+L

{
Ji Jf L
jpf jn′

i
jnf

}
ML(pfn′i)

]
,

(7.105)

M(−)
L (pi ni ; Ji → pf p′f ; Jf ) = L̂ĴiĴfNpfp′f (Jf )

×
[
δpip′f (−1)

jpf+jni+L

{
Ji Jf L
jpf jni jp′f

}
ML(pfni)

+ δpipf (−1)
jpf+jni+Jf+L

{
Ji Jf L
jp′f jni jpf

}
ML(p′fni)

]
,

(7.106)

M(+)
L (pi p′i ; Ji → pf nf ; Jf ) = L̂ĴiĴfNpip′i(Ji)

×
[
δpipf (−1)

jnf+jpf+Jf+L

{
Ji Jf L
jnf jp′i jpf

}
ML(p′inf )

+ δp′ipf (−1)
jpi+jnf+Ji+Jf+L

{
Ji Jf L
jnf jpi jpf

}
ML(pinf )

]
= (−1)Ji+JfM(−)

L (pf nf ;Jf → pi p
′
i ; Ji) ,

(7.107)
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M(+)
L (pi ni ; Ji → nf n′f ; Jf ) = L̂ĴiĴfNnfn′

f
(Jf )

×
[
δnin′

f
(−1)jpi+jni+Ji+L

{
Ji Jf L
jnf jpi jn′

f

}
ML(pinf )

+ δninf (−1)
jpi+jn′

f
+Ji+Jf+L

{
Ji Jf L
jn′
f
jpi jnf

}
ML(pin′f )

]
= (−1)Ji+JfM(−)

L (ni n′i ; Ji → pf nf ; Jf ) .

(7.108)

Here the single-particle matrix elements are defined in (7.73) and (7.74).
In the important special cases Ji = 0 and Jf = 0, the expressions (7.105)–

(7.108) reduce to

M(−)
L (ni n′i ; Ji → pf nf ; Jf = 0) = δJiLδjpf jnf Ĵiĵpf

−1
Nnin′

i
(Ji)

×
[
δn′
inf
(−1)jni+jnf+Ji+1ML(pfni) + δninfML(pfn′i)

]
, (7.109)

M(−)
L (ni n′i ; Ji = 0→ pf nf ; Jf ) = δJfLδjni jn′i

Ĵf ĵni
−1
Nnin′

i
(0)

×
[
δn′
inf
ML(pfni) + δninfML(pfn′i)

]
, (7.110)

M(−)
L (pi ni ; Ji → pf p′f ; Jf = 0) = δJiLδjpf jp′f

Ĵiĵpf
−1
Npfp′f (0)

×
[
δpip′fML(pfni) + δpipfML(p′fni)

]
, (7.111)

M(−)
L (pi ni ; Ji = 0→ pf p′f ; Jf ) = δJfLδjni jpi Ĵf ĵni

−1
Npfp′f (Jf )

×
[
δpip′fML(pfni) + δpipf (−1)

jpf+jp′
f
+Jf+1ML(p′fni)

]
, (7.112)

M(+)
L (pi p′i ; Ji → pf nf ; Jf = 0) = δJiLδjnf jpf Ĵiĵnf

−1
Npip′i(Ji)

×
[
δpipf (−1)

jpf+jp′
i
+1ML(p′inf ) + δp′ipf (−1)

JiML(pinf )
]
, (7.113)

M(+)
L (pi p′i ; Ji = 0→ pf nf ; Jf ) = δJfLδjpi jp′i

(−1)Jf Ĵf ĵpi
−1
Npip′i(0)

×
[
δpipfML(p′inf ) + δp′ipfML(pinf )

]
, (7.114)

M(+)
L (pi ni ; Ji → nf n′f ; Jf = 0) = δJiLδjnf jn′f

(−1)Ji Ĵiĵnf
−1
Nnfn′

f
(0)

×
[
δnin′

f
ML(pinf ) + δninfML(pin′f )

]
, (7.115)
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M(+)
L (pi ni ; Ji = 0→ nf n′f ; Jf ) = δJfLδjpi jni Ĵf ĵpi

−1
Nnfn′

f
(Jf )

×
[
δnin′

f
(−1)jni+jnf+1ML(pinf ) + δninf (−1)JfML(pin′f )

]
. (7.116)

One can show that for two-hole nuclei the formulas corresponding to
(7.105)–(7.116) apply with the substitutions

M(±)
L

p→h−→M(∓)
L and ML(pn)

p→h−→ (−1)L+1ML(pn) . (7.117)

7.5.2 Application to Beta Decay of 6He

Consider the β− decay of 6He to 6Li, depicted in Fig. 7.8. With the experimen-
tal log ft value of 2.9 this is a superallowed transition according to Table 7.4.
In our simple mean-field shell-model scheme the low-energy states of 6He and
6Li have the structure given by (5.26) and (5.27):

|6He ; 0+〉 = 1√
2

[
c†ν0p3/2c

†
ν0p3/2

]
0+
|CORE〉 , (7.118)

|6Li ; 1+〉 =
[
c†π0p3/2c

†
ν0p3/2

]
1+
|CORE〉 . (7.119)

The transition is from a two-neutron nucleus to a proton–neutron nucleus
and the initial angular momentum is zero. Therefore a suitable formula for
the calculation is (7.110), which gives

M(−)
GT(ν0p3/2 ν0p3/2 ; Ji = 0→ π0p3/2 ν0p3/2 ; Jf = 1)

=
√
3× 1

2
× 1√

2

[
MGT(p3/2 p3/2) +MGT(p3/2 p3/2)

]
=

√
10
3
= 1.826 ,

(7.120)

Li
6
3 3

0 +

1+

He6
2 4

−Q
β

   = 3.510 MeV

100 %

0.808 s

2.9

Fig. 7.8. Superallowed beta-minus decay of the 0+ ground state of 6He to the 1+

ground state of 6Li. The experimental half-life, Q value, branching and log ft value
are given
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whereMGT(p3/2 p3/2) =
2
√
5

3 was taken from Table 7.3. Via the equations of
Subsect. 7.2.1 this leads to

BGT = 5.208 , log ft = 3.07 . (7.121)

This is in good agreement with the experimental value log ft = 2.9. To cal-
culate the half-life we first apply (7.25), (7.29), (7.30) and (7.34) to find the
phase-space factor f

(−)
0 . The intermediate and final results are

F
(PR)
0 (Zf = 3) = 1.070 , E0 = 7.869 , f

(−)
0 = 1058 . (7.122)

Equation (7.17) now gives the half-life as

t1/2 = 1.11 s , (7.123)

which is close to the measured value of 0.808 s.

7.5.3 Application to the Beta-Decay Chain 18Ne→ 18F→ 18O

Our second example deals with the two-particle nuclei 18O, 18F and 18Ne.
Their relevant energy levels and beta-decay transitions are presented in
Fig. 7.9. Contrary to Fig. 5.5, here the Coulomb energy is retained. The
beta decays contain both Fermi (0+ → 0+) and Gamow–Teller (0+ → 1+,
1+ → 0+) transitions.

The lowest 0+ states in 18
8O10,

18
9F9 and

18
10Ne8 form an isospin triplet as

shown in Fig. 5.5. Their structure is given by (5.30)–(5.32) as

O18
8 10

+0
F9

18
9

3.6100 %

+1

+1
+0

Q     = 1.655 MeV
EC

18
10Ne 8

+0

Q     = 4.447 MeV
EC

1.041

1.701

0.0

4.4

3.5

3.1

1.67 s

109.8 m

7.7 %

0.23 %

92.1 %

Fig. 7.9. Beta decay of the 0+ ground state of 18Ne to the 0+ and 1+ states of
18F, and the decay of the 1+ ground state of 18F to the 0+ ground state of 18O.
The decays proceed via the β+/EC mode. The experimental half-lives, Q values,
branchings and log ft values are given



www.manaraa.com

7.5 Beta-Decay Transitions in Two-Particle and Two-Hole Nuclei 185

|18O ; 0+〉 = 1√
2

[
c†ν0d5/2c

†
ν0d5/2

]
0+
|CORE〉 , (7.124)

|18F ; 0+〉 =
[
c†π0d5/2c

†
ν0d5/2

]
0+
|CORE〉 , (7.125)

|18Ne ; 0+〉 = 1√
2

[
c†π0d5/2c

†
π0d5/2

]
0+
|CORE〉 . (7.126)

Consider the Fermi transition 18Ne(0+)→ 18F(0+). Equation (7.113) with
Ji = 0, or (7.114) with Jf = 0, yields

M(+)
F (π0d5/2 π0d5/2 ; Ji = 0→ π0d5/2 ν0d5/2 ; Jf = 0)

=
1√
6
× 1√

2
× 2MF(d5/2 d5/2) =

√
2 , (7.127)

whereMF(d5/2 d5/2) =
√
6 is from (7.20). It follows that

BF = 2 , log ft = 3.49 . (7.128)

The perfect agreement with the experimental log ft value of 3.5 makes this a
nice example of a superallowed transition.

Departing from the simple mean-field shell model, we now assume config-
uration mixing in the 1+ states of 18F. Appreciable mixing can be expected
between the states [π0d5/2ν0d5/2]1+ |CORE〉 and [π1s1/2ν1s1/2]1+ |CORE〉 be-
cause they are close in energy. We form two orthogonal combinations of these
components,

|18F ; 1+1 〉 = α
[
c†π0d5/2c

†
ν0d5/2

]
1+
+ β

[
c†π1s1/2c

†
ν1s1/2

]
1+
|CORE〉 , (7.129)

|18F ; 1+2 〉 = −β
[
c†π0d5/2c

†
ν0d5/2

]
1+
+ α

[
c†π1s1/2c

†
ν1s1/2

]
1+
|CORE〉 , (7.130)

with the normalization condition

α2 + β2 = 1 . (7.131)

From (5.31) we expect that the leading configuration of the 1+1 state is
π0d5/2 ν0d5/2, i.e. β is appreciably smaller than α.

Equations (7.114) and (7.115) and Table 7.3 give the relevant Gamow–
Teller matrix elements

M(+)
GT

(
π0d5/2 ν0d5/2 ; 1→ (ν0d5/2)2 ; 0

)
= −

√
14
5 , (7.132)

M(+)
GT

(
π1s1/2 ν1s1/2 ; 1→ (ν0d5/2)2 ; 0

)
= 0 , (7.133)

M(+)
GT

(
(π0d5/2)2 ; 0→ π0d5/2 ν0d5/2 ; 1

)
= −

√
14
5 , (7.134)

M(+)
GT

(
(π0d5/2)2 ; 0→ π1s1/2 ν1s1/2 ; 1

)
= 0 . (7.135)

The final Gamow–Teller matrix elements for the wave functions (7.129) and
(7.130) now become



www.manaraa.com

186 7 Beta Decay

MGT

(18F(1+1 )→ 18O(0+gs)
)
= −

√
14
5 α , (7.136)

MGT

(18Ne(0+gs)→ 18F(1+1 )
)
= −

√
14
5 α , (7.137)

MGT

(18Ne(0+gs)→ 18F(1+2 )
)
=

√
14
5 β . (7.138)

The reduced transition probabilities (7.14) are

BGT(1+1 → 0+gs) =
14
15g

2
Aα2 , (7.139)

BGT(0+gs → 1+1 ) =
14
5 g2Aα2 , (7.140)

BGT(0+gs → 1+2 ) =
14
5 g2Aβ2 . (7.141)

We can use (7.140) and (7.141) to determine the ratio α2/β2 from the
experimental log ft values of Fig. 7.9. By means of (7.12) we find

BGT(0+gs → 1+1 )exp = 4.88 , (7.142)

BGT(0+gs → 1+2 )exp = 0.245 . (7.143)

Thus we have, with use of (7.131),

α2

β2
=
4.88
0.245

= 19.9 , β2 =
(
1 +

α2

β2

)−1
= 0.048 , α2 = 0.952 . (7.144)

Substituting α2 and β2 into (7.139)–(7.141) leads to the theoretical log ft
values

log ft
(18F(1+1 )→ 18O(0+gs)

)
= 3.65 , (7.145)

log ft
(18Ne(0+gs)→ 18F(1+1 )

)
= 3.17 , (7.146)

log ft
(18Ne(0+gs)→ 18F(1+2 )

)
= 4.47 . (7.147)

The corresponding experimental values in Fig. 7.9 are 3.6, 3.1 and 4.4. The
agreement between theory and experiment is excellent, but it must be remem-
bered that the theoretical results were fitted to experiment to the extent that
the ratio α2/β2 was taken from the data.

An important qualitative result is that without the β term in the 1+ wave
functions there would be no transition 18Ne(0+gs) → 18F(1+2 ). Minor modi-
fications to the present scheme can be expected from further configuration
mixing, as will be discussed in later chapters. Our present conclusion is that
the 1+1 and 1

+
2 states of

18F are well described by the wave functions

|18F ; 1+1 〉 = 0.98
[
c†π0d5/2c

†
ν0d5/2

]
1+
|CORE〉

+ 0.22
[
c†π1s1/2c

†
ν1s1/2

]
1+
|CORE〉 , (7.148)

|18F ; 1+2 〉 = −0.22
[
c†π0d5/2c

†
ν0d5/2

]
1+
|CORE〉

+ 0.98
[
c†π1s1/2c

†
ν1s1/2

]
1+
|CORE〉 . (7.149)
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7.5.4 Further Examples: Beta Decay in A = 42 and A = 54 Nuclei

In this subsection we proceed with further examples of beta decay in two-
particle and two-hole nuclei. Figures 7.10 and 7.11 show beta-decay transitions
in two-particle (A = 42) and two-hole (A = 54) nuclei in the 0f7/2 shell. All
these decays are of the β+/EC type.

Every nucleus involved in these examples can be described as having either
two particles in the 0f7/2 orbital (42Ca, 42Sc and 42Ti) or two holes in the 0f7/2
orbital (54Fe and 54Co). This simple description leads to good agreement be-
tween theoretical and experimental log ft values. In the figures the calculated
log ft values are shown in parentheses next to the experimental ones. Only
the log ft value for the 7+ → 6+ decay in the A = 54 nuclei is inadequately
accounted for by the theory.

The computed log ft values can be verified, and half-lives can be com-
puted, by calculations similar to those of the preceding examples. Comparison
between theory and experiment can then be extended to half-lives.

+0
(3.49)3.5100 %

(4.01)4.2100 %+6

+0

+1

+7

Q     = 6.423 MeV
EC

(3.49)3.543 %
(3.18)3.256 %

Q     = 6.999 MeV
EC

+0

Ca42
20 22 Ti42

22 20Sc42
21 21

0.0

3.189

0.611
0.617

0.0
682 ms

62.0 s

0.20 s
0.0

Fig. 7.10. Superallowed beta decay of the 0+ ground state of 42Ti to the 0+ and 1+

states of 42Sc. Also shown are decay of the 0+ ground state and the 7+ excited state
of 42Sc to the 0+ ground state and 6+ excited state of 42Ca; the Fermi transition is
superallowed. The decays proceed via the β+/EC mode. The experimental half-lives,
Q values, branchings and log ft values are also given. The numbers in parentheses
are calculated log ft values
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+0
(3.49)3.5100 %

Co
54
27 27

+0

+7

+6
(4.01)5.2100 %

Q     = 8.242 MeV
EC

0.0

193.2 ms

1.46 m

2.950

0.0
0.199

54
26 28Fe

Fig. 7.11. Beta decay of the 0+ ground state and 7+ excited state of 54Co to the 0+

ground state and 6+ excited state of 54Fe. The Fermi transition is superallowed. The
decays proceed via the β+/EC mode. The experimental half-lives, Q value, decay
branchings and log ft values are given. The numbers in parentheses are calculated
log ft values

7.6 Forbidden Unique Beta Decay

In this section forbidden unique beta-decay transitions are addressed in detail.
These transitions are an important subgroup of forbidden decay transitions.
For a given degree of forbiddenness they involve the maximum possible angular
momentum difference between the initial and final states of decay. First we
review some general aspects of first-forbidden beta decay and then concentrate
on the exact formulation of first-forbidden and, subsequently, higher-forbidden
unique beta decay.

7.6.1 General Aspects of First-Forbidden Beta Decay

So far in this chapter we have discussed allowed beta decay, with its operators
and resultant matrix elements

OF = 1 −→ Fermi matrix element , (7.150)
OGT = σ −→ Gamow–Teller matrix element . (7.151)

The spectrum shape for allowed beta decay was given by (7.28) and depicted
in Fig. 7.4. In the allowed decay modes leptons are emitted in an s state, as
stated at the beginning of Sect. 7.2. The next step is to include the possibility
of emission of p-wave leptons and the contributions coming from the small
components of the relativistic Dirac wave functions. The p-wave contributions
are suppressed relative to allowed decay by the factor(

Qb

�c

)2

� 1
100

, (7.152)
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where Q is the decay energy and b is the oscillator length (3.43) calculated
from (3.45). The relativistic effects from the small components of the Dirac
spinors of the nucleons are suppressed relative to allowed decay by the factor(

�c

2mNc2b

)2

� 1
400

, (7.153)

where mN is the mass of the nucleon.
There are four types of nuclear matrix element that emerge from p-wave

leptons, namely

OSA = σ · r −→ scalar–axial matrix element , (7.154)

OVA = i

√
3
2
σ × r −→ vector–axial matrix element , (7.155)

OTA =
√
3
2
[σr]2 −→ tensor–axial matrix element , (7.156)

OVV = −
√
3r −→ vector–vector matrix element . (7.157)

These are expressed in the CS phase convention introduced in (3.67) and in
the so-called Cartesian notation [55]. The operator OSA is a pseudoscalar,
OVA and OVV are vectors, and OTA is a rank-2 spherical pseudotensor.

There are two types of nuclear matrix element that emerge from the small
components of the Dirac spinors, namely

ORA = −γ5 −→ recoil-axial matrix element , (7.158)
ORV = α −→ recoil-vector matrix element . (7.159)

The Dirac matrices αi and γi are defined e.g. in [53]. The operator γ5 is a
pseudoscalar and the operator α a vector.

The six matrix elements (7.154)–(7.159) contribute to first-forbidden nu-
clear beta decay. Each of the operators changes the parity (for more informa-
tion see e.g. [54, 55, 62]). This means that the initial and final nuclear states
must have opposite parities, i.e. πiπf = −1.

Similar to (7.24) and (7.26), the phase-space factors for first-forbidden
beta decay are

f
(∓)
1 =

∫ E0

1

S
(∓)
1 (Zf , ε)pε(E0 − ε)2dε , (7.160)

f
(EC)
1 = 2π(αZi)3S

(EC)
1 (ε0, E0) , (7.161)

where the quantities S(∓)
1 and S

(EC)
1 are the shape functions of first-forbidden

β∓ decay and electron capture. The shape functions contain all or part of the
nuclear matrix elements (7.154)–(7.159) and the appropriate lepton kinemat-
ics.
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The shape functions S1 are much more complicated than their allowed-
decay counterparts in (7.24) and (7.26). However, a considerable simplification
is achieved when ΔJ = 2. This is the greatest value of ΔJ achievable with
the operators (7.154)–(7.159), and then only the tensor–axial matrix element
(7.156) contributes. The associated lepton spectrum shape is simple. This
decay mode is called first-forbidden unique decay. The transitions are analysed
in detail in the following subsection.

7.6.2 First-Forbidden Unique Beta Decay

The shape function of a first-forbidden unique β∓ transition can be taken to
be [59]

S
(∓)
1u (Zf , ε) = F1u(±Zf , ε)pε(E0 − ε)2

=
[
F0(±Zf , ε)(E0 − ε)2 + F1(±Zf , ε)(ε2 − 1)

]
pε(E0 − ε)2 .

(7.162)

The functions F0(±Zf , ε) and F1(±Zf , ε) are Fermi functions to be discussed
later.5 The endpoint energy E0 is given by (7.34) for a β− transition and by
(7.35) for a β+ transition. The phase-space factor is now

f
(∓)
1u =

∫ E0

1

S
(∓)
1u (Zf , ε)dε . (7.163)

For first-forbidden unique electron capture the phase-space factor is

f
(EC)
1u =

2π
9
(αZi)3(ε0 + E0)4 , (7.164)

where ε0 is given by (7.25) and the endpoint energy E0 by (7.36).
The ft value for first-forbidden unique beta decay can be defined as [59]

ft ≡ f1ut1/2 =
κ

1
12B1u

, B1u =
g2A

2Ji + 1
|M1u|2 (7.165)

with κ given by (7.13) and

f1u =

{
f
(−)
1u for β− decay ,

f
(+)
1u + f

(EC)
1u for β+/EC decay .

(7.166)

Like the ft value (7.33) for allowed decay, the ft value (7.165) is phase-
space independent and depends only on nuclear structure. However, the dif-
ference between f0 and f1u on the left-hand side means that allowed and
5 The Fermi function F0 appeared already in the phase-space factor (7.24), and an
approximate expression for it was given in (7.29).
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first-forbidden ft values are not commensurate. This is recognized in the cap-
tion to Fig. 7.7.

The nuclear matrix elementM1u in (7.165) is

M1u =
mec

2

√
4π

ζ(ξf Jf‖[σr]2‖ξi Ji) =
∑
ab

M(1u)(ab)(ξf Jf‖
[
c†ac̃b

]
2
‖ξi Ji) ,

(7.167)
where ζ = 1 for the CS and ζ = i for the BR phase convention. The single-
particle matrix element is given by

M(1u)(ab) = 2.990× 10−3 × b [fm]×m(1u)(ab) . (7.168)

The number 2.990×10−3 comes from various natural constants, andm(1u)(ab)
is given by

m(1u)(ab) = ζ
(1u)
ab

1
2
√
10
(−1)la+ja+jb

1 + (−1)la+lb+1

2
ĵaĵb

(
ja jb 2
1
2 −

1
2 0

)
×

[
− ĵa

2
+ (−1)ja+jb+1ĵb

2
+ 4(−1)la+ja+

1
2
]
R̃(1)

ab ,

ζ
(1u)
ab =

{
1 CS phase convention ,

(−1)(lb−la+1)/2 BR phase convention ,

(7.169)
where the scaled radial integral is given in (6.32) and tabulated in Table 6.2.
The scaled single-particle matrix elements m(1u)(ab) are given in Table 7.6 in
the CS phase convention.

The symmetry relations for the basic single-particle matrix elements are

m
(1u)
CS (ba) = (−1)ja+jb+1m

(1u)
CS (ab) , (7.170)

m
(1u)
BR (ba) = (−1)ja+jbm

(1u)
BR (ab) (7.171)

for the CS and BR phase conventions.
The shape function S

(∓)
1u stated in (7.162) can be simplified by using the

Primakoff–Rosen approximation (7.29) for the Fermi functions F0 and F1. In
this approximation, valid for αZ � 1,

F1(Z, ε) ≈ F0(Z, ε) . (7.172)

This leads to

S
(∓)
1u ≈ F0(±Zf , ε)[(E0 − ε)2 + (ε2 − 1)]pε(E0 − ε)2

≈ F
(PR)
0 (±Zf )[(E0 − ε)2 + (ε2 − 1)]ε2(E0 − ε)2 . (7.173)

This, in turn, yields the phase-space factor (7.163) as
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Table 7.6. Scaled nuclear single-particle matrix elements m
(1u)
CS (ab) in the CS phase

convention

a�b 0s1/2 0p3/2 0p1/2 0d5/2 1s1/2 0d3/2 0f7/2 1p3/2 0f5/2 1p1/2 0g9/2

0s1/2 0
√
3 0 0 0 0 0 0 0 0 0

0p3/2 −
√
3 0 0

√
21
5

√
2 − 2√

5
0 0 0 0 0

0p1/2 0 0 0 2
√

6
5

0 − 1√
5

0 0 0 0 0

0d5/2 0 −
√

21
5
2
√

6
5

0 0 0 9
√
2

5

√
42
5

− 4
√
3

5
− 4

√
3

5
0

1s1/2 0 −√2 0 0 0 0 0
√
5 0 0 0

0d3/2 0 − 2√
5

1√
5

0 0 0 12
√
2

5
2
√
2

5
− 3

√
3

5
−

√
2
5

0

0f7/2 0 0 0 − 9
√
2

5
0 12

√
2

5
0 0 0 0

√
66
7

1p3/2 0 0 0 −
√
42
5
−√5 2

√
2

5
0 0 0 0 0

0f5/2 0 0 0 − 4
√
3

5
0 3

√
3

5
0 0 0 0 12√

7

1p1/2 0 0 0 − 4
√
3

5
0

√
2
5

0 0 0 0 0

0g9/2 0 0 0 0 0 0 −
√

66
7

0 12√
7

0 0

f
(∓)
1u ≈

1
30

(
4
7
E7
0 − E5

0 − 10E4
0 + 30E

3
0 − 32E2

0 + 15E0 −
18
7

)
F
(PR)
0 (±Zf ) .

(7.174)

7.6.3 Application to First-Forbidden Unique Beta Decay of 16N

Consider the β− decay of the 2− ground state of 16N to the 0+ ground state
of 16O, as depicted in Fig 7.7. This is a first-forbidden unique decay transition
since πiπf = −1 and ΔJ = 2. The initial wave function, as given in (5.60), is

|16N ; 2−〉 =
[
c†ν0d5/2h

†
π0p1/2

]
2− |HF〉 . (7.175)

The one-body transition density (7.59) gives for the nuclear matrix element
(7.167) the expression

M1u(ai b−1i ; Ji → 0+gs) =
∑
ab

M(1u)(ab)δJi2δbaiδabi(−1)jai+jbi+2+1
√
5

= δJi2(−1)jai+jbi+1
√
5M(1u)(biai) = δJi2

√
5M(1u)(aibi) , (7.176)

where the symmetry relation (7.170) for the CS phase convention was used in
the last step. This result,

M1u(ai b−1i ; Ji → 0+gs) = δJi2
√
5M(1u)(aibi) , (7.177)

applies to any decay transition from an odd–odd particle–hole nucleus to the
particle–hole ground state of the adjacent even–even reference nucleus. The
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charge-changing particle–hole excitation can be either of the proton-particle–
neutron-hole or neutron-particle–proton-hole type.

From (3.45) and (3.43) we find b = 1.725 fm. Equation (7.168) and Ta-
ble 7.6 then yield for the nuclear matrix element (7.177) the value

M1u =
√
5× 2.990× 10−3 × 1.725m(1u)(0d5/2 0p1/2)

= 0.0115× 2
√

6
5 = 0.0252 . (7.178)

From (7.165) we find the reduced transition probability

B1u =
1.252

5
× 0.02522 = 1.98× 10−4 (7.179)

and the log ft value
log f1ut = 8.57 . (7.180)

The experimental result from Fig. 7.7 is log f1ut = 9.1, so that the computed
decay transition is slightly too fast.

With the Qβ− value from Fig. 7.7, (7.34) gives E0 = 21.39. Equation
(7.174) then gives the phase-space factor

f
(−)
1u ≈ 3.88× 107

2πα× 8
1− exp (−2πα× 8) = 3.88× 10

7 × 1.19 = 4.62× 107 .

(7.181)
The resulting half-life from (7.17) is

t1/2 = 10log f1ut−log f1u s = 108.57−7.66 s = 8.13 s . (7.182)

With the data from Fig. 7.7 the corresponding experimental half-life is given
by (7.39) as

t
(exp)
1/2 (2− → 0+gs) =

7.13 s
0.26

= 27.4 s , (7.183)

which is not very far from the theoretical value.

7.6.4 Higher-Forbidden Unique Beta Decay

In this subsection we discuss higher-forbidden, i.e. 2nd-, 3rd-, etc., forbidden,
unique beta-decay transitions. Such a transition can be generally referred to
as a Kth-forbidden unique beta-decay transition.

As an extension of first-forbidden beta decay relating to p-wave leptons,
Kth-forbidden beta decay relates to lepton emission with higher angular mo-
mentum. Similarly to the first-forbidden case, Kth-forbidden unique beta
decay is characterized by a maximal change in nuclear angular momentum
allowed by the appropriate four transition operators analogous to (7.155)–
(7.157) and (7.159). That change, due to an operator analogous to (7.156), is
ΔJ = K + 1.
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Parity change alternates with successive levels of forbiddenness. Table 7.7
lists the angular-momentum and parity changes inKth-forbidden unique beta
decay. It is to be noted that these are the leading decay modes; other theo-
retically possible modes are suppressed beyond observation.

Table 7.7. Identification of Kth-forbidden unique beta-decay transitions

K 1 2 3 4 5 6

ΔJ 2 3 4 5 6 7
πiπf −1 +1 −1 +1 −1 +1

The shape function of Kth-forbidden unique β∓ decay is [62] (see also the
formulation of [55])

S
(∓)
Ku (Zf , ε) ≈ F0(±Zf , ε)pε(E0 − ε)2

×
∑

ke+kν=K+2

(ε2 − 1)ke−1(E0 − ε)2(kν−1)

(2ke − 1)!(2kν − 1)!
,

(7.184)

where the approximation (7.172) has been used for all the Fermi functions
F0, F1, . . . , FK involved in the exact expression [55]. For light and medium-
heavy nuclei this approximation is very good. The phase-space factor is

f
(∓)
Ku =

(
3
4

)K (2K)!!
(2K + 1)!!

∫ E0

1

S
(∓)
Ku (Zf , ε)dε . (7.185)

This phase-space factor is related to the one in (7.165) as

f
(∓)
K=1,u =

1
12

f
(∓)
1u . (7.186)

The nuclear matrix element for Kth-forbidden unique beta decay is

MKu =
∑
ab

M(Ku)(ab)(ξf Jf‖
[
c†ac̃b]K+1‖ξi Ji) , (7.187)

The single-particle matrix element is given by

M(Ku)(ab) = (2.990× 10−3 × b [fm])Km(Ku)(ab) (7.188)

with
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m(Ku)(ab) = ζ
(Ku)
ab

1
2
√
(K + 1)(2K + 3)

(−1)la+ja+jb+K+1 1 + (−1)la+lb+K

2

× ĵaĵb

(
ja jb K + 1
1
2 −

1
2 0

)[
(−1)K ĵa

2
+ (−1)ja+jb+1ĵb

2

+ 2(K + 1)(−1)la+ja+K− 1
2
]
R̃(K)

ab ,

ζ
(Ku)
ab =

{
1 CS phase convention ,

(−1)(lb−la+K)/2 BR phase convention ,

(7.189)
where R̃(K)

ab is the scaled radial integral defined in (6.32). For the CS and BR
phase conventions the symmetry properties are

m
(Ku)
CS (ba) = (−1)ja+jb+1m

(Ku)
CS (ab) , (7.190)

m
(Ku)
BR (ba) = (−1)ja+jb+K+1m

(Ku)
BR (ab) . (7.191)

The K = 1 equations (7.168) and (7.169) are special cases of (7.188) and
(7.189). The matrix elements (7.189) with CS phases are given in Tables 7.8
and 7.9 for second- and third-forbidden beta transitions.

For Kth-forbidden unique electron capture the phase-space factor is [55]

f
(EC)
Ku =

2(2K)!!
(2K + 1)!!(2K + 1)!

π(αZi)3(ε0 + E0)2(K+1) . (7.192)

Table 7.8. Scaled nuclear single-particle matrix elements m(2u)(ab) in the CS phase
convention

a�b 0s1/2 0p3/2 0p1/2 0d5/2 1s1/2 0d3/2 0f7/2 1p3/2 0f5/2 1p1/2 0g9/2

0s1/2 0 0 0
√

15
2

0 0 0 0 0 0 0

0p3/2 0 −√15 0 0 0 0 3
√

10
7

√
6 −2

√
2
7
0 0

0p1/2 0 0 0 0 0 0 2
√

30
7

0 −
√

5
14

0 0

0d5/2

√
15
2

0 0 −6
√

3
5
−2√5 4

√
2
5

0 0 0 0
√

165
7

1s1/2 0 0 0 −2√5 0 0 0 0 0 0 0

0d3/2 0 0 0 −4
√

2
5

0
√

3
5

0 0 0 0 6
√

10
7

0f7/2 0 3
√

10
7
−2

√
30
7

0 0 0 − 9
7

√
22 − 12√

7

12
7

√
6 8

√
3
7

0

1p3/2 0
√
6 0 0 0 0 − 12√

7
−9

√
3
5

8√
35

0 0

0f5/2 0 2
√

2
7
−
√

5
14

0 0 0 − 12
7

√
6 − 8√

35

18
7

√
3
5

2√
7

0

1p1/2 0 0 0 0 0 0 −8
√

3
7

0 2√
7

0 0

0g9/2 0 0 0
√

165
7

0 −6
√

10
7

0 0 0 0 − 2
7

√
715
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Table 7.9. Scaled nuclear single-particle matrix elements m(3u)(ab) in the CS phase
convention

a�b 0s1/2 0p3/2 0p1/2 0d5/2 1s1/2 0d3/2 0f7/2 1p3/2 0f5/2 1p1/2 0g9/2

0s1/2 0 0 0 0 0 0
√
105
2

0 0 0 0

0p3/2 0 0 0 − 3
√
35
2

0 0 0 0 0 0 5
6

√
77

0p1/2 0 0 0 0 0 0 0 0 0 0 10
3

√
7

0d5/2 0 3
√
35
2

0 0 0 0 − 3
2

√
55 −3√14 3

√
2 0 0

1s1/2 0 0 0 0 0 0 −3
√

35
2

0 0 0 0

0d3/2 0 0 0 0 0 0 −3√5 0 3
2

0 0

0f7/2 −
√
105
2

0 0 3
√
55
2

3
√

35
2
−3√5 0 0 0 0 − 3

2

√
715
7

1p3/2 0 0 0 3
√
14 0 0 0 0 0 0 −

√
385
2

0f5/2 0 0 0 3
√
2 0 − 3

2
0 0 0 0 −3

√
110
7

1p1/2 0 0 0 0 0 0 0 0 0 0 −2√70
0g9/2 0 − 5

√
77
6

10
√
7

3
0 0 0 3

2

√
715
7

√
385
2
−3

√
110
7
−2√70 0

Note that the charge number is that of the initial nucleus. Here ε0 is given by
(7.27) and E0 by (7.36).

Similarly to allowed beta decay, for Kth-forbidden unique beta decay we
have

fKut1/2 =
κ

BKu
, BKu =

g2A
2Ji + 1

|MKu|2 . (7.193)

The theoretical half-life can be computed from this. However, it is desirable
to have log ft values that are directly comparable for different types of beta
decay. In particular, all log ft values should be commensurate with those for
allowed decay, where the phase-space factor is f0. To that end the ft value
for Kth-forbidden unique beta decay can be defined as [55]

ft ≡ f
(−)
0 t1/2 =

f
(−)
0

fKu

κ

BKu
, (7.194)

where

fKu =

{
f
(−)
Ku for β− decay ,

f
(+)
Ku + f

(EC)
Ku for β+/EC decay .

(7.195)

Note that this ft value differs from those for allowed and first-forbidden
decay, (7.33) and (7.165), in that it depends not only on nuclear structure
but also on the leptonic properties contained in the phase factors. Note also
that the ft value (7.194) is not completely commensurate with ft values for
allowed decay because it contains f

(−)
0 also for β+/EC decay.

The phase-space factors (7.185) can be integrated into explicit expressions
when the Primakoff–Rosen approximation (7.29) is used. Up to K = 5, the
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results are

f
(∓)
2u ≈

3
10

(
E9
0

9072
− 2E7

0

4725
− E6

0

360
+
23E5

0

1800
− 23E

4
0

1080
+

E3
0

54
− 113E

2
0

12 600
+

E0

432

− 29
113 400

)
F
(PR)
0 (±Zf ) , (7.196)

f
(∓)
3u ≈

27
140

(
E11
0

498 960
− 13E9

0

1 058 400
− E8

0

15 120
+
11E7

0

26 460
− E6

0

1080
+
29E5

0

25 200

− 17E4
0

18 900
+

E3
0

2160
− 5E2

0

31 752
+

E0

30 240
− 19
5 821 200

)
× F

(PR)
0 (±Zf ) , (7.197)

f
(∓)
4u ≈

9
700

(
E13
0

4 447 872
− 151E11

0

78 586 200
− E10

0

108 864
+

563E9
0

7 620 480
− 37E8

0

181 440

+
311E7

0

952 560
− 53E6

0

151 200
+

59E5
0

217 728
− 11E4

0

70 560
+

E3
0

15 120

− 2447E2
0

125 737 920
+

19E0

5 443 200
− 31
108 972 864

)
F
(PR)
0 (±Zf ) ,

(7.198)

f
(∓)
5u ≈

27
30 800

(
E15
0

58 378 320
− 20 429E13

0

107 883 135 360
− E12

0

1 197 504
+

1627E11
0

197 588 160

− 11E10
0

408 240
+

7927E9
0

150 885 504
− 13E8

0

181 440
+

19E7
0

256 608
− 43E6

0

714 420

+
461E5

0

11 975 040
− 29E4

0

1 539 648
+

11E3
0

1 632 960
− 1487E2

0

899 026 128

+
E0

3 991 680
− 137
7 705 938 240

)
F
(PR)
0 (±Zf ) . (7.199)

7.6.5 Application to Third-Forbidden Unique Beta Decay of 40K

Figure 7.12 shows the decays of the 4− ground states of 40
19K21 and

40
21Sc19

to the ground and excited states of 40
20Ca20. Let us calculate the β− decay

40K(4−gs)→ 40Ca(0+gs).
The initial state of 40K is given in (5.67) as

|40K ; 4−gs〉 =
[
c†ν0f7/2h

†
π0d3/2

]
4− |

40Ca〉 . (7.200)

The nuclear matrix element is obtained similarly to (7.176) leading to (7.177).
In the CS phase convention it is
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Sc40
21 19Ca40

20 20

+0

−3
−4
−5

−4

−3

−4

Q     = 14.320 MeV
EC

(T=0)
(T=0)
(T=0)

(T=1)

−4

β−Q     = 1.312 MeV

50 % 3.3
~2 % 5.1
11 % 4.6
17 % 4.7
19 % 4.8

~0 % ?89.3 % 18.1

1.28*10  y
9

21K40
19

0.0

3.736

7.659

6.583

5.614

4.491

0.0

0.0

Fig. 7.12. Beta decays of the 4− ground states of 40K and 40Sc to the 0+ ground
state and five excited states of negative parity in 40Ca. The decays proceed via the
β− and β+/EC decay modes, respectively. The experimental half-lives, Q values,
branchings and log ft values are given. Gamow–Teller decays go to the 3−, 4− and
5− states. Also Fermi decay goes to the 4− final state. The decays to the final 0+

ground state are 3rd-forbidden unique

MKu(ai b−1i ;Ji → 0+gs) = δJi,K+1(−1)K−1
√
2K + 3M(Ku)(aibi) . (7.201)

With K = 1 this matrix element reduces to (7.177).
According to Table 7.9 the transition 40K(4−gs) → 40Ca(0+gs) is a 3rd-

forbidden unique transition,K = 3. Equation (7.201) gives the nuclear matrix
element

M3u

(
ν0f7/2 (π0d3/2)−1 ; 4− → 0+gs

)
= 3M(3u)(0f7/2 0d3/2)

= 3× (2.990× 10−3 × 1.939)3m(3u)(0f7/2 0d3/2)

= 5.846× 10−7 × (−3
√
5) = −3.922× 10−6 , (7.202)

where we have used the oscillator length b = 1.939 fm from (3.45) and (3.43),
and the value ofm(3u) from Table 7.9. Equation (7.192) now gives the reduced
transition probability

B3u =
1.252

9
(−3.922× 10−6)2 = 2.671× 10−12 . (7.203)

For input into the phase-space factors we have from (7.34) and (7.29)

E0 = 3.568 , F
(PR)
0 (20) = 1.528 . (7.204)

Equations (7.30) and (7.197) then give

f
(−)
0 = 25.39 , f

(−)
3u = 0.3512 . (7.205)

The ft value and its logarithm are now found from (7.194)
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ft =
25.39
0.3512

× 6147
2.671× 10−12 = 1.664× 10

17 , log ft = 17.22 . (7.206)

The experimental log ft value in Fig. 7.12 is 18.1, so the agreement is not
very good. This is not surprising in view of the simple wave functions used.
Note, however, that our calculated value fits in the log ft range 17–19 given
for third-forbidden transitions in Table 7.4.

The theoretical half-life for the 4− → 0+gs transition is, from (7.194),6

t1/2 =
ft

f
(−)
0

=
1.664× 1017

25.39
= 6.554× 1015 s = 2.08× 108 a , (7.207)

where we have used
1 a = 3.154× 107 s . (7.208)

Figure 7.12 gives the experimental half-life as 1.28× 109 a and the branching
as 89.3%. Thus the experimental partial half-life, from (7.39), is

t
(exp)
1/2 =

1.28× 109 a
0.893

= 1.43× 109 a , (7.209)

which is seven times longer than our calculated half-life (7.207).

7.6.6 Forbidden Unique Beta Decay in Few-Particle
and Few-Hole Nuclei

In Sects. 7.3–7.5 we derived transition amplitudes for allowed beta decay in
few-particle and few-hole nuclei. Many results were stated for a general L, al-
though only L = 0 and L = 1 occur in allowed decay. The transition amplitude
was defined in the same way for allowed, first-forbidden and Kth-forbidden
beta decay, in (7.18), (7.19), (7.167) and (7.187). Because the reduced transi-
tion density is the same for any one-body operator of rank L, the transition
amplitudes for forbidden unique decay can be obtained from the results for
allowed decay by an appropriate choice of L and replacement of the single-
particle matrix element.

Beta-minus decay

For Kth-forbidden (K ≥ 1) unique β− decay the conversion procedure is

ML(pn)→M(Ku)(pn) , L→ K + 1 . (7.210)

By this procedure all formulas for allowed β− decay, be they for particles or
holes, can be converted into formulas for Kth-forbidden (K ≥ 1) unique β−

decay. Specifically the replacements work as follows.
6 The SI symbol for year is ‘a’. However, ‘y’, ‘yr’ and unabbreviated ‘year’ appear
commonly in the literature.
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• One-particle and one-hole nuclei : For transitions between one-particle nu-
clei and between one-hole nuclei, respectively, the transition density is
given by (7.44) and (7.45). The resulting transition amplitudes for Kth-
forbidden unique transitions in such nuclei are

MKu(i→ f) =
√
2K + 3M(Ku)(fi) ,

MKu(i−1 → f−1) = ζ(K)(−1)K
√
2K + 3M(Ku)(fi) ,

ζ(K) =

{
1 CS phase covention ,

(−1)K BR phase covention .

(7.211)

The symmetry relations (7.190) and (7.191) were used in the second rela-
tion.

• Particle–hole nuclei : For transitions from a particle–hole state to the even–
even ground state of the reference nucleus, the result is given explicitly by
(7.201). For transitions between two particle–hole states the substitutions
(7.210) are made in (7.72) and (7.76).

• Two-particle and two-hole nuclei : For transitions between two two-particle
or two-hole nuclei, the substitutions (7.210) are made in (7.105), (7.106)
and (7.109)–(7.112).

Beta-plus decay and electron capture

The β+ operator can be obtained from the β− operator by Hermitian conju-
gation, i.e.

β+
K+1,M = ζ(K)(−1)M (β−K+1,−M )

† , (7.212)

where the spatial dependence of the Kth-forbidden unique transition operator
induces the phase factor defined in (7.211). It follows that a formula for allowed
β+/EC decay can be converted to one for Kth-forbidden unique decay by the
replacements

ML(pn)→ ζ(K)M(Ku)(pn) , L→ K + 1 . (7.213)

The difference between the CS and BR conventions is just the trivial overall
phase factor (−1)K .

The procedure of replacement is carried out the same way as for β− de-
cay. For example, to find the Kth-forbidden unique transition amplitude for
β+/EC decay between two-particle states, one has to make the substitution
(7.213) in (7.107), (7.108) and (7.113)–(7.116).
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7.6.7 Forbidden Non-Unique Beta Decays

As described in Subsect. 7.6.1, in first-forbidden beta decay there are six
decay operators available to produce a given transition. For higher-forbidden
transitions (K ≥ 2) there are four decay operators available, as pointed out
in Subsect. 7.6.4. The general case, with K ≥ 1, of all these transitions can
be called Kth-forbidden non-unique beta decay.

The selection rules for forbidden non-unique beta decay are given in Ta-
ble 7.10. Note that these selection rules do not include the forbidden unique
ones in Table 7.7. Tables 7.7 and 7.10 together constitute the selection rules
for forbidden beta decay.

Table 7.10. Identification of Kth-forbidden non-unique beta-decay transitions

K 1 2 3 4 5 6

ΔJ 0,1 2 3 4 5 6
πiπf −1 +1 −1 +1 −1 +1

For forbidden non-unique beta decay the definition of the ft value must
be generalized beyond (7.194). The appropriate definition reads (see e.g. [55])

ft ≡ f
(−)
0 t1/2 = f

(−)
0

κ

SK
, K ≥ 1 , (7.214)

where

SK =

{
S
(−)
K for β− decay ,

S
(+)
K + S

(EC)
K for β+/EC decay .

(7.215)

The quantities S
(−)
K , S(+)

K and S
(EC)
K are the shape functions of β−, β+ and

EC decay respectively. They contain up to six (K = 1, first forbidden) or four
(K ≥ 2) different nuclear matrix elements with the appropriate phase-space
factors from the lepton kinematics.

As in the case of first-forbidden unique beta decay, the phase-space factor
f
(−)
0 is used as a scaling quantity to normalize the integrated phase-space
factors residing inside the shape functions of (7.215).

Epilogue

The basic properties of beta-decay transitions were reviewed in this chapter.
However, derivations from the interaction between hadronic and leptonic weak
charged currents were omitted. The kinematics and nuclear matrix elements
of allowed and unique forbidden beta decays were discussed in detail. The
formalism was applied to the wave functions of few-particle and few-hole nuclei
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introduced in Chap. 5. In the following chapters the full power of beta-decay
analysis is used to track down deficiencies in the wave functions of more
sophisticated nuclear models that include configuration mixing.

Exercises

7.1. Verify the symmetry relations (7.22) and (7.23) of the Fermi and Gamow–
Teller single-particle matrix elements.

7.2. Compute a few non-zero entries of your choice in Table 7.3 by starting
from the definition (7.21) of the Gamow–Teller single-particle matrix element.

7.3. Derive the analytical expression (7.30) for the phase-space factor of
allowed beta decay by using the Primakoff–Rosen approximation (7.29) of
(7.24).

7.4. Derive the one-body transition densities (7.44) and (7.45) and from them
the matrix elements (7.46) and (7.47).

7.5. Derive the theoretical numbers listed in Table 7.5 for the decay of 17F.
Start from the experimental electron-capture decay energy Q listed in the
second column of the table. Compute both the β+ and EC phase-space factors
and verify that the electron-capture contribution can be neglected.

7.6. Repeat Exercise 7.5 for the decay of 39Ca.

7.7. Repeat Exercise 7.5 for the decay of 41Sc.

7.8. Compute the log ft value for the decay transition 11C(3/2−)→ 11B(3/2−)
and the corresponding half-life using the experimental Q value. Take the filled
orbitals of the particle–hole vacuum to be 0s1/2 and 0p3/2. Compare your re-
sults with experimental data and comment.

7.9. Repeat Exercise 7.8 for the decay transition 13N(1/2−)→ 13C(1/2−).

7.10. Compute the log ft value for the decay transition 33Cl(3/2+)→ 33S(3/2+)
and the corresponding half-life using the experimentalQ value. The Fermi lev-
els of the particle–hole vacuum (32S) can be taken to lie at Z = 16 and N = 16
in the 0d-1s shell. Compare your results with experimental data and comment.

7.11. Repeat Exercise 7.10 for the decay transition 31S(1/2+)→ 31P(1/2+).

7.12. Derive Eqs. (7.62)–(7.64).

7.13. Consider the decay of the 1+ ground state of 12B to the 0+ ground
state of 12C. The decay can be considered as a conversion of a neutron in the
0p1/2 orbital to a proton in the 0p3/2 orbital. Take the filled orbitals of the
particle–hole vacuum to be of 0s1/2 and 0p3/2.
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7.14. Repeat Exercise 7.13 for the decay of 12N to 12C.

7.15. The nucleus 32S can be considered as a doubly magic nucleus for which
the Fermi levels of both protons and neutrons lie at the 1s1/2 orbital. The 1+

ground state of the adjacent nucleus 32P can be considered to be a linear com-
bination of the particle–hole excitations 0d3/2-(1s1/2)−1 and 0d3/2-(0d5/2)−1.
Determine the amplitudes of this linear combination by comparing the com-
puted log ft value for the 32P(1+)→ 32S(0+) transition with the experimental
value 7.9. Evaluate the corresponding half-life by using the experimental Q
value.

7.16. Derive the formula (7.82) from (7.72)–(7.74).

7.17. Compute the log ft value for the decay transition 32Cl(1+gs) → 32S(2+1 )
by taking into account only the particle–hole excitation 0d3/2-(1s1/2)−1. Com-
pute the corresponding partial half-life of 32Cl. Compare the computed results
with the experimental numbers and comment.

7.18. Compute the log ft values for the transitions 40Sc(4−gs) → 40Ca(3−1 ),
40Sc(4−gs) → 40Ca(4−1 ) and

40Sc(4−gs) → 40Ca(5−1 ) of Fig. 7.12. Compare with
the data and comment.

7.19. Derive (7.109) and (7.110) from (7.105).

7.20. Verify by computation the log ft values inside parentheses in Fig. 7.10.
The nuclei involved have two particles in the 0f7/2 orbital. Compute the half-
lives of the ground state of 42Ti and the 7+ state of 42Sc. Compare the results
with the data.

7.21. Verify by computation the log ft values in parentheses in Fig. 7.11. The
nuclei involved have two holes in the 0f7/2 orbital.

7.22. Compute the log ft values for the decay of 38Ca to the first 0+ and 1+

states in 38K by assuming two holes in the 0d3/2 orbital. Compute the corre-
sponding partial decay half-lives and compare with experiment. Comment on
the result.

7.23. The 0+ ground state of 50Ca decays to the first 1+ state in 50Sc with
experimental branching of 100% and log ft = 4.1. The 0+ ground state wave
function can be guessed to consist of a leading component and some small
components. The leading component is inactive in the decay transition. Com-
pute an estimate for the amplitude of that component of the wave function
which mediates the decay transition by reproducing the measured log ft value.

7.24. The 5+ ground state of 50Sc decays to the 4+ (branching 14%, log ft =
6.4) and 6+ (branching 86%, log ft = 5.4) states in 50Ti. The 5+ ground state
can be guessed to consist of two components where the leading component is
inactive in the transitions. Compute an estimate of the amplitudes of the two
components by comparing the computed log ft values with the experimental
ones.
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7.25. Verify the symmetry relations (7.170) and (7.171) for the basic single-
particle matrix elements of the first-forbidden unique transitions.

7.26. Derive the values of a few non-zero single-particle matrix elements of
your choice in Table 7.6.

7.27. Derive the phase-space factor (7.174) by starting from (7.163) and using
the result (7.173).

7.28. Verify the symmetry relations (7.190) and (7.191) for the basic single-
particle matrix elements of Kth-forbidden unique transitions.

7.29. Derive the values of a few non-zero single-particle matrix elements of
your choice in Table 7.8.

7.30. Calculate the basic single-particle matrix element m(3u)(0f7/20d3/2).

7.31. Derive the values of a few single-particle matrix elements of your choice
in Table 7.9.

7.32. Derive the expression (7.196) for the phase-space factor f
(±)
2u by us-

ing the Primakoff–Rosen approximation in the shape function (7.184) in the
integral of (7.185).

7.33. Evaluate the log ft value and partial half-life for the decay of the 3+

ground state of 38K to the 0+ ground state of 38Ar. Assume two holes in the
0d3/2 orbital. What are the chances of measuring this partial half-life?

7.34. Evaluate the log ft value and partial half-life for the decay of the 0+

ground state of 48Ca to the 5+ first excited state of 48Sc. For 48Sc assume a
particle and a hole in the 0f7/2 orbital. The transition is 4th-forbidden unique
and competes with the double beta decay of 48Ca to the 0+ ground state of
48Ti. Compare your result with the measured half-life [63,64]

t1/2(ββ) = 4.2× 1019 a (7.216)

for the double beta decay and comment. Hint: Compute the basic single-
particle matrix element from (7.189) and evaluate the scaled radial integral
by using the formalism of Subsect. 6.1.4.
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Nuclear Two-Body Interaction and
Configuration Mixing

Prologue

In previous chapters the nucleus was described as a collection of non-interacting
nucleons in a mean-field potential. The wave function of a nuclear state was
taken to be a Slater determinant corresponding to a definite way of placing
the valence nucleons in the mean-field single-particle orbitals. In this way the
energy of a nuclear state was fully determined by the energies of the occupied
single-particle orbitals.

In this chapter we introduce the notion of configuration mixing, already al-
luded to several times previously. Configuration mixing leads to wave functions
that consist of more than just one Slater determinant. Nucleon configurations
are mixed by the residual interaction, the part of the nuclear Hamiltonian that
was omitted in the mean-field description. Interactions between valence nucle-
ons make them jump from one orbital to another, so that the wave function
contains several configurations.

We start by studying configuration mixing in two-particle and two-hole
nuclei, using a simple residual force, the so-called surface delta interaction.
Despite its schematic nature it is realistic enough to yield results which can
justifiably be compared with experiment.

8.1 General Properties of the Nuclear Two-Body
Interaction

The basic properties of nuclear two-body interaction are reviewed in this sec-
tion. Angular-momentum-coupled two-body interaction matrix elements are
introduced and used to write down the angular-momentum-coupled form of
the nuclear Hamiltonian. Important properties of the two-body matrix ele-
ments are discussed. The important special case of a separable interaction,
the surface delta interaction (SDI) in particular, is taken up. The SDI will be
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used throughout this book to produce configuration mixing in various simple
few-particle and, later, few-quasiparticle systems.

8.1.1 Coupled Two-Body Interaction Matrix Elements

Equation (4.28) gives the two-body part of the nuclear Hamiltonian as

V = 1
4

∑
αβγδ

v̄αβγδc
†
αc
†
βcδcγ , (8.1)

where the
v̄αβγδ = vαβγδ − vαβδγ (8.2)

are the antisymmetrized two-nucleon interaction matrix elements (4.30). In
(4.45) this matrix element was written as

v̄αβγδ = 〈αβ|V |γδ〉 , (8.3)

where
|αβ〉 = c†αc

†
β |0〉 , |γδ〉 = c†γc

†
δ|0〉 (8.4)

were the normalized and antisymmetrized two-nucleon states relative to the
appropriate particle vacuum |0〉 (usually the state |CORE〉 introduced in
Chap. 5).

Equations (5.21) and (5.23) give the normalized angular-momentum-
coupled two-nucleon states

|a b ; J M〉 = Nab(J)
[
c†ac
†
b

]
JM
|0〉 , (8.5)

Nab(J) =

√
1 + δab(−1)J
1 + δab

. (8.6)

Here the indices a and b may contain also the proton and neutron labels π
and ν. Hence the wave function (8.5) can describe a proton–proton, neutron–
neutron or proton–neutron two-particle system.

We now express the uncoupled wave function |αβ〉 in terms of the coupled
wave functions (8.5). Equation (1.29) gives for the operators1

c†αc
†
β =

∑
JM

(ja mα jb mβ |J M)
[
c†ac
†
b

]
JM

. (8.7)

Operating with this on the vacuum and taking into account the normalization
contained in (8.5) we have

|αβ〉 =
∑
JM

(ja mα jb mβ |J M)[Nab(J)]−1|a b ; J M〉 . (8.8)

1 Because of the wave function normalization arising from fermion antisymmetry,
the basically geometrical relation (1.29) cannot be applied directly.
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Substituting (8.8) into the Hamiltonian (8.1) yields

V = 1
4

∑
αβγδ

JMJ ′M ′

[Nab(J)Ncd(J ′)]−1(ja mα jb mβ |J M)(jc mγ jd mδ|J ′M ′)

× 〈a b ; J M |V |c d ; J ′M ′〉c†αc
†
βcδcγ . (8.9)

Converting the annihilation operators into spherical tensors (4.23) yields

cδcγ = (−1)−jd+mδ−jc+mγ c̃−δ c̃−γ = (−1)jc+jd−M ′+1c̃−γ c̃−δ , (8.10)

where the property (1.22) of the second Clebsch–Gordan coefficient was used.
By summing over the single-particle projection quantum numbers we obtain

V = 1
4

∑
abcd

JMJ ′M ′

[Nab(J)Ncd(J ′)]−1〈a b ; J M |V |c d ; J ′M ′〉

×
[
c†ac
†
b

]
JM
(−1)J ′+M ′+1

[
c̃cc̃d

]
J ′,−M ′ . (8.11)

The two-body interaction V is a scalar, i.e. a spherical tensor of rank λ = 0.
Applying the Wigner–Eckart theorem (2.27) to the two-body matrix element
we obtain

〈a b ; J M |V |c d ; J ′M ′〉 = (−1)J−M
(

J 0 J ′

−M 0 M ′

)
(a b ; J‖V ‖c d ; J ′)

= δJJ ′δMM ′ Ĵ−1(a b ; J‖V ‖c d ; J ′) , (8.12)

where we used (1.39) and (1.42). Thus we see that the matrix element is
diagonal in J and M and independent of the value ofM , so that we can write

〈a b ; J M |V |c d ; J ′M ′〉 ≡ δJJ ′δMM ′〈a b ; J |V |c d ; J〉 . (8.13)

The resulting expression for V is

V = − 1
4

∑
J

∑
abcd

[Nab(J)Ncd(J)]−1〈a b ; J |V |c d ; J〉

×
∑
M

(−1)J+M
[
c†ac
†
b

]
JM

[
c̃cc̃d

]
J,−M . (8.14)

With use of (2.51) this simplifies to

V = − 1
4

∑
J

∑
abcd

[Nab(J)Ncd(J)]−1Ĵ〈a b ; J |V |c d ; J〉
[[

c†ac
†
b

]
J

[
c̃cc̃d

]
J

]
00

.

(8.15)
For completeness we note the relations, in both directions, between coupled
and uncoupled two-nucleon interaction matrix elements:
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〈a b ; J |V |c d ; J〉

= Nab(J)Ncd(J)
∑

mαmβ
mγmδ

(ja mα jb mβ |J M)(jc mγ jd mδ|J M)v̄αβγδ , (8.16)

v̄αβγδ =
∑
JM

[Nab(J)Ncd(J)]−1(ja mα jb mβ |J M)(jc mγ jd mδ|J M)

× 〈a b ; J |V |c d ; J〉 . (8.17)

We now state the corresponding expressions in isospin representation. The
normalized two-nucleon wave functions are given by (5.96) as

| a b ; J M ; T MT 〉 = Nab(JT )
[
c†ac
†
b

]TMT

JM
|0〉 , (8.18)

Nab(JT ) =

√
1− δab(−1)J+T

1 + δab
, (8.19)

where the labels a and b carry no proton or neutron labels.
The isospin counterpart of (8.8) is

|αβ〉 =
∑
JM
TMT

(ja mα jb mβ |J M)( 12 mtα
1
2 mtβ |T MT )

× [Nab(JT )]−1|a b ; J M ; T MT 〉 . (8.20)

We assume that the two-nucleon interaction V is not only a scalar but also
an isoscalar. Applying the Wigner–Eckart theorem also in isospace allows us
to write, as an extension of (8.13),

〈a b ; J M ; T MT |V |c d ; J M ; T ′M ′T 〉 ≡ δTT ′δMTM ′
T
〈a b ; J T |V |c d ; J T 〉 .

(8.21)
The expression corresponding to (8.15) becomes

V = − 1
4

∑
J

T=0,1

∑
abcd

[Nab(JT )Ncd(JT )]−1Ĵ T̂ 〈a b ; J T |V |c d ; J T 〉

×
[[

c†ac
†
b

]T
J

[
ĉcĉd

]T
J

]00
00

.

(8.22)

The isospin extensions of (8.16) and (8.17) are

〈a b ; J T |V |c d ; J T 〉 = Nab(JT )Ncd(JT )
∑

mαmβmtαmtβ
mγmδmtγmtδ

(ja mα jb mβ |J M)

× ( 12 mtα
1
2 mtβ |T MT )(jc mγ jd mδ|J M)( 12 mtγ

1
2 mtδ|T MT )v̄αβγδ , (8.23)



www.manaraa.com

8.1 General Properties of the Nuclear Two-Body Interaction 209

v̄αβγδ =
∑
JM
TMT

[Nab(JT )Ncd(JT )]−1(ja mα jb mβ |J M)( 12 mtα
1
2 mtβ |T MT )

× (jc mγ jd mδ|J M)( 12 mtγ
1
2 mtδ|T MT )〈a b ; J T |V |c d ; J T 〉 .

(8.24)

Here the labels α, β, γ and δ contain also the isospin parts of (5.85).

8.1.2 Relations for Coupled Two-Body Matrix Elements

Matrix elements with angular momentum coupling and those with angular
momentum and isospin coupling can be related to each other by applying the
transformation formulas (5.107), (5.108), (5.114) and (5.115). The two-body
interaction is assumed to be an isoscalar, i.e. to have the property (8.21).

For like-nucleon two-body matrix elements we have the simple relations

〈p1 p2 ; J |V |p3 p4 ; J〉 = 〈a1 a2 ; J T = 1|V |a3 a4 ; J T = 1〉 ,
〈n1 n2 ;J |V |n3 n4 ;J〉 = 〈a1 a2 ; J T = 1 |V | a3 a4 ; J T = 1〉 .

(8.25)

The relations for proton–neutron and neutron–proton two-body matrix ele-
ments are

〈p1 n2 ; J |V |p3 n4 ; J〉 = 〈n1 p2 ; J |V |n3 p4 ; J〉

=
1
2

{√
[1 + (−1)Jδa1a2 ][1 + (−1)Jδa3a4 ]

× 〈a1 a2 ; J T = 1|V |a3 a4 ; J T = 1〉

+
√
[1− (−1)Jδa1a2 ][1− (−1)Jδa3a4 ]

× 〈a1 a2 ; J T = 0|V |a3 a4 ; J T = 0〉
}

,

(8.26)

〈n1 p2 ; J |V |p3 n4 ; J〉 = 〈p1 n2 ; J |V |n3 p4 ; J〉

=
1
2

{√
[1 + (−1)Jδa1a2 ][1 + (−1)Jδa3a4 ]

× 〈a1 a2 ; J T = 1|V |a3 a4 ; J T = 1〉

−
√
[1− (−1)Jδa1a2 ][1− (−1)Jδa3a4 ]

× 〈a1 a2 ; J T = 0|V |a3 a4 ; J T = 0〉
}

.

(8.27)

also note the simple symmetry

〈c d ; J |V |a b ; J〉 = 〈a b ; J |V |c d ; J〉 ,
〈c d ; J T |V |a b ; J T 〉 = 〈a b ; J T |V |c d ; J T 〉 .

(8.28)
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It is necessary to use a consistent phase convention throughout a nuclear
structure calculation. The single-particle wave functions (3.63) are defined
according to (3.67) in either the CS or BR phase convention. The resulting
two-body matrix elements are related as

〈a b ; J (T )|V |c d ; J (T )〉BR
= (−1) 12 (lc+ld−la−lb)〈a b ; J (T )|V |c d ; J (T )〉CS .

(8.29)

This holds equally whether or not the isospin formalism is used. The quantity
1
2 (lc + ld − la − lb) is an integer since the initial and final two-nucleon states
must have the same parity due to parity conservation of the nuclear force.

In both phase conventions the two-body matrix elements have the sym-
metry properties

〈a b ; J |V |c d ; J〉 = (−1)ja+jb+J+1〈b a ; J |V |c d ; J〉
= (−1)jc+jd+J+1〈a b ; J |V |d c ; J〉 ,

(8.30)

〈a b ; J T |V |c d ; J T 〉 = (−1)ja+jb+J+T 〈b a ; J T |V |c d ; J T 〉
= (−1)jc+jd+J+T 〈a b ; J T |V |d c ; J T 〉 .

(8.31)

8.1.3 Different Types of Two-Body Interaction

In the following the nuclear two-body interactions are divided into four cat-
egories. These categories are only suggestive, other types being possible and
existing in the literature. For a more exhaustive presentation see e.g. [16].

• Realistic interactions: meson-exchange potentials: Interactions based on
meson-exchange potentials are considered as realistic interactions. They
are developed starting from two interacting nucleons in free space. To make
such a potential applicable in nuclear matter, namely to take into account
the Pauli principle, one has to use the so-called G-matrix approach. The
Pauli principle is very important since in nuclear matter the two interacting
nucleons are surrounded by several other neighbouring nucleons.

• Realistic interactions: fitted effective interactions: In nuclear shell-model
calculations the two-body matrix elements are often obtained by choosing
them so that calculated energy levels and transition probabilities fit avail-
able data; further data can then be predicted. The collection of matrix
elements can be considered as constituting a realistic interaction for the
purpose at hand. Also other complicated interactions with a number of
fitting parameters, like the different types of Skyrme and Gogny phenom-
enological forces, belong to the category of realistic interactions.
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• Schematic interactions: Schematic interactions are designed to mimic
salient features of realistic forces. One good example is the delta inter-
action of zero range.

• Separable schematic interactions: An interaction is called separable if it can
be expressed as a sum of products where each factor contains labels of only
one particle. Separable schematic interactions are discussed extensively
in Sect. 8.2. Examples of this category are the SDI, to be discussed in
Subsect. 8.2.2, all the simplifiedmultipole–multipole forces like the ‘pairing-
plus-quadrupole interaction’ and the simplified pure pairing interaction to
be discussed in Chap. 12.

Nucleon–nucleon interactions can also be divided into two categories according
to the direction of force. If the force is directed along the line connecting them,
the force is a central force. Otherwise the force is non-central (tensor force).
For a central force the mutual potential (energy) between the two interacting
nucleons, located at r1 and r2, is a function of their relative distance only, so
the potential simplifies to v(r1, r2) = v(|r1 − r2|).

In the present work we discuss only central forces. The central two-body
interaction can be conveniently handled by making amultipole expansion of it.
In the multipole expansion the relative distance coordinate |r1−r2| is replaced
by the coordinates of the individual nucleons in the following manner:

v(|r1 − r2|) =
∑
λ

vλ(r1, r2)
∑
μ

Y ∗λμ(Ω1)Yλμ(Ω2)

=
∑
λ

vλ(r1, r2)Yλ(Ω1) · Yλ(Ω2) ,

vλ(r1, r2) = 2π
∫ 1

−1
v(|r1 − r2|)Pλ(cos θ12)d(cos θ12) ,

(8.32)

where θ12 is the angle between the coordinate vectors r1 and r2 and the
scalar product is from (2.51). The result is derived by means of the addition
theorem for Legendre polynomials. We see that separation always occurs in
the angular coordinates, so separability depends on the radial part, i.e. on
whether vλ(r1, r2) factorizes.

To clarify the use of the multipole-expansion technique we proceed to
analyse two schematic zero-range forces. We start with the delta-function
interaction

vδ(r1, r2) = −Vδδ(r1 − r2) . (8.33)

The dimension of the strength constant Vδ is energy times volume. It follows
from (8.32) that

v
(δ)
λ (r1, r2) = −Vδ

δ(r1 − r2)
r1r2

. (8.34)

This is not a product of a particle-1 term and a particle-2 term, so the delta
interaction is not separable.
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Consider next the surface delta interaction (SDI)

vSDI(r1, r2) = −V0δ(r1 −R)δ(r2 −R)δ(Ω1 −Ω2) . (8.35)

The dimension of V0 is energy times area, and R is the nuclear radius. The
interaction thus occurs only when both nucleons are at the same point on the
nuclear surface. Now (8.32) gives

v
(SDI)
λ (r1, r2) = −V0

δ(r1 −R)
r1

δ(r2 −R)
r2

. (8.36)

We see that the SDI is separable. Furthermore, it has the same radial term
for all multipoles λ.

In fact, the SDI is surprisingly realistic since it reproduces the qualita-
tive behaviour of nucleon–nucleon scattering data. The data show that the
nucleon–nucleon interaction increases with decreasing relative kinetic energy
of the two nucleons. In a nucleus the kinetic energies are the smallest in the
surface region of the mean-field potential. This means that the nucleons in-
teract most strongly in the surface region. An extreme limit of this would be
the SDI with a sharp nuclear surface at R, where the relative kinetic energy
of the interacting nucleons becomes zero, leading to an interaction of infinite
strength. A more realistic interaction would contain a Gaussian peak at the
nuclear surface, consistent with the diluted nuclear surface of thickness a in
the Woods–Saxon parametrization of the mean field in (3.20).

8.1.4 Central Forces with Spin and Isospin Dependendence

The central nucleon–nucleon potential V (|r1−r2|) was considered above. This
coordinate-dependent potential can be complemented with spin and isospin
dependence, so that it becomes

v(spin–isospin)(|r1 − r2|) = f(|r1 − r2|)
× [A+Bσ1 · σ2 + Cτ 1 · τ 2 +D(σ1 · σ2)(τ 1 · τ 2)] , (8.37)

where σi and τ i are the spin and isospin operators respectively; see (2.37) and
(5.76). The coefficients A, B, C and D are related to those of the historical
exchange forces, defined in terms of the operators

Pσ = 1
2 (1 + σ1 · σ2) , Pτ = 1

2 (1 + τ 1 · τ 2) . (8.38)

These exchange forces are the Bartlett spin-exchange force CBPσ, the Heisen-
berg isospin-exchange force CHPτ and the Majorana spatial-exchange force
CMPσPτ .

Two frequently used special cases of (8.37) are the following.
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• The Rosenfeld force, for which the radial dependence is given by

f(r) = V0e−r
2/μ2 , r = |r1 − r2| (8.39)

with parameters V0 = −70.82MeV and μ = 1.48 fm. The spin–isospin
parameters are A = 0, B = 0, C = 0.1 and D = 0.233.

• The Serber force, for which the radial dependence is given by (8.39), but
with V0 = −35MeV and μ = 1.48 fm. The spin–isospin parameters are
A = 3

8 , B = −1
8 , C = − 1

8 and D = − 1
8 .

After a lengthy but straightforward calculation the two-body interaction
matrix elements of the general spin–isospin dependent residual interaction
(8.37) can be written in the CS phase convention as

〈a b ; J T |V (spin–isospin)|c d ; J T 〉 = Nab(JT )Ncd(JT )

× [Vabcd(JT ) + (−1)jc+jd+J+TVabdc(JT )] (8.40)

with the normalization constant Nab(JT ) stated in (8.19) and

Vabcd(JT ) =
∑
λ

R(λ)
abcdU

JTλ
abcd , (8.41)

The quantities on the right-hand side are defined as

R(λ)
abcd =

∫ ∞
0

r21dr1
∫ ∞
0

r22dr2 gnala(r1)gnblb(r2)vλ(r1, r2)gnclc(r1)gndld(r2) ,

(8.42)

UJTλ
abcd = [A+ C(δT1 − 3δT0)]ΘJλ

abcd + [B +D(δT1 − 3δT0)]ΛJλ
abcd , (8.43)

where, in turn, we have the abbreviations

ΘJλ
abcd = (−1)jb+jc+J

{
ja jb J
jd jc λ

}
Y(λ)
ac Y

(λ)
bd , (8.44)

ΛJλ
abcd = (−1)jb+jc+J+λ+1

∑
j

(−1)j
{

ja jb J
jd jc j

}
Z(λj)
ac Z

(λj)
bd , (8.45)

Y(λ)
ac =

1
4
√

π
(−1)jc− 1

2+λ
[
1 + (−1)la+lc+λ

]
ĵaĵc

(
ja jc λ
1
2 −

1
2 0

)
, (8.46)

Z(λj)
ac =

1
2
√

π
(−1)la ĵaĵcĵ l̂a l̂cλ̂

(
la λ lc
0 0 0

)⎧⎪⎨⎪⎩
la

1
2 ja

lc
1
2 jc

λ 1 j

⎫⎪⎬⎪⎭ . (8.47)

8.2 Separable Interactions; the Surface Delta Interaction

In the following we first address the properties of a general separable interac-
tion and then specialize the results to our actual working mule, the SDI.
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8.2.1 Multipole Decomposition of a General Separable Interaction

A separable interaction, by definition, possesses the convenient property that
the radial part of each multipole term factorizes in (8.32). This property
greatly simplifies the calculation of two-body matrix elements. The radial
part of the λ multipole term of a general separable interaction can be written
in the form

vλ(r1, r2) = fλ(r1)fλ(r2) . (8.48)

In practice, the function f is usually taken to be a power function,

fλ(r) = Cλr
λ . (8.49)

This is the basic ingredient in a multipole–multipole force. For instance, the
multipole–multipole interaction containing the monopole (λ = 0) and quadru-
pole (λ = 2) parts is called the pairing-plus-quadrupole interaction. For our
separable interaction the expansion (8.32) is

v(|r1 − r2|) =
∑
λ

fλ(r1)fλ(r2)
∑
μ

Y ∗λμ(Ω1)Yλμ(Ω2)

=
∑
λμ

Q∗λμ(r1)Qλμ(r2) , Qλμ(r) ≡ fλ(r)Yλμ(Ω) . (8.50)

With the two-body operator expressed in the form (4.27), substitution of
the separable interaction gives

V = 1
2

∑
αβγδ

vαβγδc
†
αc
†
βcδcγ =

1
2

∑
αβγδ
λμ

〈α|Q∗λμ|γ〉〈β|Qλμ|δ〉c†αc
†
βcδcγ . (8.51)

Noting that Q∗λμ = (−1)μQλ,−μ, we apply the Wigner–Eckart theorem (2.27)
to the two matrix elements and after some algebra find

V = 1
2

∑
abcd
λ

λ̂−2(a‖Qλ‖c)(b‖Qλ‖d)
[
c†ac̃c

]
λ
·
[
c†bc̃d

]
λ
. (8.52)

Except for the absence of the charge e and the more general radial depen-
dence, the operator Qλμ in (8.50) is the same as the electric operator (6.6).
Therefore the reduced matrix elements appearing in (8.52) can be read off
(6.23). In the CS phase convention the result is

(a‖Qλ‖c) =
1√
4π
(−1)jc+λ− 1

2
1 + (−1)la+lc+λ

2
λ̂ĵaĵc

(
ja jc λ
1
2 −

1
2 0

)
R(λ)

ac ,

(8.53)
where the radial integral, in general different from that in (6.23), is
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R(λ)
ac =

∫ ∞
0

gnala(r)fλ(r)gnclc(r)r
2dr . (8.54)

We proceed to calculate the matrix element of the separable residual inter-
action (8.52) for angular-momentum-coupled two-nucleon states. The result
for like nucleons, obtained after some contractions and angular momentum
algebra, is

〈a b ; J |V |c d ; J〉 = Nab(J)Ncd(J)[Aabcd − (−1)jc+jd+JAabdc] , (8.55)

where

Aabcd ≡
∑
λ

(−1)ja+jb+J

{
ja jb J
jd jc λ

}
(c‖Qλ‖a)(b‖Qλ‖d) . (8.56)

When V is a separable proton–neutron interaction, (8.55) is replaced by

〈p1 n2 ; J |V |p3 n4 ; J〉 = Ap1n2p3n4 , (8.57)

〈p1 n2 ; J |V |n3 p4 ; J〉 = (−1)jn3+jp4+J+1Ap1n2p4n3 , (8.58)

where we have used (1.30) and (4.15).

8.2.2 Two-Body Matrix Elements of the Surface Delta Interaction

Comparison of (8.36) and (8.48) shows that for the SDI

fλ(r) =
√
−V0

δ(r −R)
r

. (8.59)

Substituting this into (8.54) gives the simple radial integral

R(λ)
ab (SDI)

/√
−V0 =

∫ ∞
0

gnala(r)
δ(r −R)

r
gnblb(r)r

2dr

= gnala(R)gnblb(R)R ≡ κab = κba . (8.60)

We now calculate the auxiliary quantity Aabcd defined in (8.56) by substi-
tuting from (8.53). After some simplification and rearranging we have

Aabcd = Kabcd(−1)jb+jd+J ĵaĵbĵcĵd
[
1 + (−1)la+lb+lc+ld

]
×

∑
λ

[
1 + (−1)la+lc+λ

]
λ̂2

(
jc ja λ
1
2 −

1
2 0

)(
jb jd λ
1
2 −

1
2 0

){
ja jb J
jd jc λ

}
, (8.61)

where
Kabcd ≡ −

V0κacκbd
16π

. (8.62)

The sum over λ is evaluated by means of the relations [7, 22]
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λ

(−1)J+λ+1λ̂2
(
ja jd λ
1
2 −

1
2 0

)(
jc jb λ
1
2 −

1
2 0

){
ja jd λ
jc jb J

}
=

(
ja jb J
1
2 −

1
2 0

)(
jc jd J
1
2 −

1
2 0

)
(8.63)

and

∑
λ

(−1)jb+jd+J λ̂2
(
jc ja λ
1
2 −

1
2 0

)(
jb jd λ
1
2 −

1
2 0

){
jc ja λ
jb jd J

}
=

(
ja jb J
1
2

1
2 −1

)(
jc jd J
1
2

1
2 −1

)
. (8.64)

The result is

Aabcd = Kabcd

[
1 + (−1)la+lb+lc+ld

]
ĵaĵbĵcĵd

[(
ja jb J
1
2

1
2 −1

)(
jc jd J
1
2

1
2 −1

)
− (−1)la+lc+jb+jd

(
ja jb J
1
2 −

1
2 0

)(
jc jd J
1
2 −

1
2 0

)]
. (8.65)

Substituted into (8.55) this gives the matrix element for like nucleons as

〈a b ; J |VSDI|c d ; J〉 = −KabcdNab(J)Ncd(J)(−1)la+lc+jb+jd

×
[
1 + (−1)la+lb+lc+ld

][
1 + (−1)lc+ld+J

]
× ĵaĵbĵcĵd

(
ja jb J
1
2 −

1
2 0

)(
jc jd J
1
2 −

1
2 0

)
.

(8.66)

The proton–neutron matrix elements (8.57) and (8.58) are obtained directly
from (8.65).

The two-body matrix element in isospin representation can be deduced
immediately since there is no isospin-dependent term in the Hamiltonian.2

Generalizing (8.55) we have

〈a b ; J T |V |c d ; J T 〉
= Nab(JT )Ncd(JT )

[
Aabcd − (−1)jc+jd+J(−1) 12+ 1

2+TAabdc

]
= Nab(JT )Ncd(JT )

[
Aabcd + (−1)jc+jd+J+TAabdc

]
, (8.67)

which leads to

2 In general the nuclear two-body Hamiltonian need not be an isoscalar. The two
creation operators, each an isospinor with t = 1

2
, can be coupled to T1 = 0 or

1. Likewise the two annihilation operators can be coupled to T2 = 0 or 1. Thus
T1 and T2 can be coupled to T = 0, 1, 2. The Coulomb interaction contains such
isoscalar, isovector and isotensor terms.
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〈a b ; J T |VSDI|c d ; J T 〉
= KabcdNab(JT )Ncd(JT )

[
1 + (−1)la+lb+lc+ld

]
ĵaĵbĵcĵd

×
{[
1 + (−1)T

](ja jb J
1
2

1
2 −1

)(
jc jd J
1
2

1
2 −1

)
− (−1)la+lc+jb+jd

[
1− (−1)lc+ld+J+T

](ja jb J
1
2 −

1
2 0

)(
jc jd J
1
2 −

1
2 0

)}
.

(8.68)
Note that for T = 1 this coincides with the like-nucleon result (8.66).

It turns out (see e.g. [28]) that the absolute value of the oscillator wave
function gnl(r) at the nuclear surface, r = R, is nearly independent of n and
l. Accordingly the magnitude |Kabcd| of the parameter (8.62) is practically
independent of the indices a, b, c and d. With the phasing of the gnl(r) given
in (3.47), we can write

Kabcd = −|Kabcd|(−1)na+nb+nc+nd . (8.69)

Following [28] we now adopt a simplified interaction such that Kabcd has a
constant magnitude,

Kabcd → − 1
4AT (−1)na+nb+nc+nd , T = 0, 1 , (8.70)

where the strength constants A0 and A1 are treated as fitting parameters.
With explicit account of the normalizer (8.19) we find the notable special

cases of (8.68)

〈a2 ; J T |VSDI|c2 ; J T 〉 = − 1
4AT

[
1− (−1)J+T

]
ĵa

2
ĵc

2
{

1
2

[
1 + (−1)T

]
×

(
ja ja J
1
2

1
2 −1

)(
jc jc J
1
2

1
2 −1

)
− (−1)la+lc+ja+jc

(
ja ja J
1
2 −

1
2 0

)(
jc jc J
1
2 −

1
2 0

)}
,

(8.71)

〈a2 ; J T |VSDI|a2 ; J T 〉 = − 1
4AT

[
1− (−1)J+T

]
ĵa

4

×
{

1
2

[
1 + (−1)T

](ja ja J
1
2

1
2 −1

)2
+

(
ja ja J
1
2 −

1
2 0

)2 }
. (8.72)

In Tables 8.1 and 8.2 the (a priori) non-zero matrix elements of the SDI,
given by (8.68) and (8.70) with AT = 1, are listed for the 0s-0p and 0d-1s
shells . All the zeros appearing in these tables are non-trivial, i.e. not due
to the angular momentum, parity or isospin selection rules. Tables 8.3 and
8.4 similarly list the matrix elements for interactions between the 0p and
0d-1s shells and between the 0d-1s and 0f7/2 shells. Table 8.4 includes also
the 0f7/2 intra-shell matrix elements. The matrix elements in these tables
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Table 8.1. Two-body matrix elements 〈a b ; J T |VSDI|c d ; J T 〉 with AT = 1 for the
0s-0p shells in the CS phase convention

abcd JT 〈VSDI〉 JT 〈VSDI〉 JT 〈VSDI〉 JT 〈VSDI〉
1111 01 −1.0000 10 −1.0000
1122 01 1.4142 10 1.0541
1123 10 −1.3333
1133 01 1.0000 10 −0.3333
1212 10 −0.6667 11 −1.3333 20 −2.0000 21 0
1213 10 0.9428 11 −0.9428
1313 00 −2.0000 01 0 10 −1.3333 11 −0.6667
2222 01 −2.0000 10 −1.2000 21 −0.4000 30 −1.2000
2223 10 1.2649 21 −0.5657
2233 01 −1.4142 10 0.6325
2323 10 −2.0000 11 0 20 −1.2000 21 −0.8000
2333 10 0
3333 01 −1.0000 10 −1.0000
The states are numbered 1 = 0s1/2, 2 = 0p3/2 and 3 = 0p1/2. The first column

gives the state labels, and the following columns give the JT combinations
and matrix elements.

serve as a reference and as a convenient source for small configuration mixing
calculations.

It can be advantageous to add to the SDI the isospin-exchange contribution
of the spin–isospin force (8.37). With B = 0 and D = 0 in (8.37), the resulting
two-body interaction has the matrix elements

〈a b ; J T |V |c d ; J T 〉 = 〈a b ; J T |VSDI|c d ; J T 〉[A+ C (δT1 − 3δT0)] , (8.73)

as can be seen by an elementary calculation or from (8.43).
A modified version of the interaction in (8.73) is the so-called modified

surface delta interaction (MSDI) [28], defined by its matrix elements

〈a b ; J T |VMSDI|c d ; J T 〉 = 〈a b ;J T |VSDI| c d ;J T 〉

+ (B1δT1 +B0δT0)
δacδbd + (−1)jc+jd+J+T δadδbc

1 + δab
. (8.74)

The added term, consistent with the form of (8.67), is diagonal in the nucleon
labels. It thus effectively only changes the single-particle energies, differently
for T = 1 and T = 0, and therefore does not affect the wave functions. The
result is that the energies of all levels of a given T shift by the constant amount
BT .
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Table 8.2. Two-body matrix elements 〈a b ; J T |VSDI|c d ; J T 〉 with AT = 1 for the
0d-1s shells in the CS phase convention

abcd JT 〈VSDI〉 JT 〈VSDI〉 JT 〈VSDI〉 JT 〈VSDI〉 JT 〈VSDI〉
1111 01 −3.0000 10 −1.6286 21 −0.6857 30 −0.9143 41 −0.2857
1111 50 −1.4286
1112 21 −0.9071 30 −1.3279
1113 10 1.8142 21 −0.4849 30 0.5938 41 −0.5714
1122 01 −1.7320 10 −1.1832
1123 10 −0.6761 21 −0.7407
1133 01 −2.4495 10 1.1759 21 −0.5237 30 0.3429
1212 20 −0.8000 21 −1.2000 30 −2.0000 31 0
1213 20 −1.0690 21 −0.6414 30 1.0222 31 0
1223 20 −0.9798 21 −0.9798
1233 21 −0.6928 30 0.2213
1313 10 −3.6000 11 0 20 −1.4286 21 −0.3429 30 −0.7429
1313 31 0 40 −1.4286 41 −1.1429
1322 10 1.7888
1323 10 −0.8944 11 0 20 −1.3093 21 −0.5237
1333 10 −0.5657 21 −0.3703 30 0.3959
2222 01 −1.0000 10 −1.0000
2223 10 0
2233 01 −1.4142 10 0.6325
2323 10 −2.0000 11 0 20 −1.2000 21 −0.8000
2333 10 1.2649 21 −0.5657
3333 01 −2.0000 10 −1.2000 21 −0.4000 30 −1.2000
The states are numbered 1 = 0d5/2, 2 = 1s1/2 and 3 = 0d3/2. The first column
gives the state labels, and the following columns give the JT combinations
and matrix elements.

8.3 Configuration Mixing in Two-Particle Nuclei

In the previous section we discussed the separable two-nucleon interaction, in
particular the SDI. In this section we use the SDI to produce configuration
mixing for states in two-particle nuclei.

8.3.1 Matrix Representation of an Eigenvalue Problem

The starting point in our discussion is the many-nucleon Schrödinger equation

H|Ψn〉 = En|Ψn〉 , (8.75)

where |Ψn〉 is a many-nucleon state. Such a state can be expanded in any
complete orthonormal basis {|φk〉}Nk=1 by writing

|Ψn〉 =
∑
l

a
(n)
l |φl〉 . (8.76)
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Table 8.3. Two-body matrix elements 〈a b ; J T |VSDI|c d ; J T 〉 with AT = 1 be-
tween the 0p and 0d-1s shells in the CS phase convention

abcd JT 〈VSDI〉 JT 〈VSDI〉 JT 〈VSDI〉 JT 〈VSDI〉 JT 〈VSDI〉
1313 10 −0.6667 11 −1.3333 20 −2.0000 21 0
1314 20 0 21 0
1315 10 −0.9428 11 0.9428
1323 10 −1.1926 11 −0.5963 20 0.8000 21 0
1324 10 0.8944 11 −1.7888 20 0.7856 21 0
1325 10 −0.6667 11 −1.3333 20 0.4000 21 0
1414 20 −2.0000 21 0 30 −1.1429 31 −0.8571
1423 20 0.9798 21 0 30 −1.2519 31 0.9389
1424 20 −1.7105 21 0 30 0.2555 31 0.7666
1425 20 −1.9596 21 0
1515 00 −2.0000 01 0 10 −1.3333 11 −0.6667
1523 00 2.8284 01 0 10 −1.6865 11 0.4216
1524 10 1.2649 11 1.2649
1525 10 −0.9428 11 0.9428
2323 00 −4.0000 01 0 10 −2.1333 11 −0.2667 20 −0.8000
2323 21 0 30 −1.3714 31 −1.0286
2324 10 1.6000 11 −0.8000 20 0.5237 21 0 30 0.2799
2324 31 −0.8398
2325 10 −1.1926 11 −0.5963 20 0.8000 21 0
2424 10 −1.2000 11 −2.4000 20 −1.7714 21 0 30 −0.0571
2424 31 −0.6857 40 −2.5714 41 0
2425 10 0.8944 11 −1.7888 20 −1.8330 21 0
2525 10 −0.6667 11 −1.3333 20 −2.0000 21 0

The first column gives the state labels, and the following columns give the JT
combinations and matrix elements. The states are numbered 1 = 0p1/2, 2 = 0p3/2,

3 = 0d3/2, 4 = 0d5/2 and 5 = 1s1/2.

Here we have assumed that the basis has N <∞ basis states, an assumption
valid for our purposes.

We first write the projection of the eigenvalue equation (8.75) onto the
basis state |φk〉, i.e.

〈φk|H|Ψn〉 = En〈φk|Ψn〉 , (8.77)

and then expand it by using (8.76) to yield∑
l

a
(n)
l 〈φk|H|φl〉 = Ena

(n)
k (8.78)

Writing 〈φk|H|φl〉 ≡ Hkl this becomes∑
l

Hkla
(n)
l = Ena

(n)
k , (8.79)

which is the matrix equation
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Table 8.4. Two-body matrix elements 〈a b ; J T |VSDI|c d ; J T 〉 with AT = 1 be-
tween the 0d-1s and 0f7/2 shells, and within the 0f7/2 shell, in the CS phase conven-
tion

abcd JT 〈VSDI〉 JT 〈VSDI〉 JT 〈VSDI〉 JT 〈VSDI〉 JT 〈VSDI〉
1414 20 −3.4286 21 0 30 −1.1429 31 −0.3809 40 −0.7619
1414 41 0 50 −1.4545 51 −1.2121
1424 20 −2.2857 21 0 30 0.3299 31 0.6598 40 −0.9763
1424 41 0 50 0.1587 51 0.7935
1434 30 0.9897 31 0.6598 40 −1.1269 41 0
2424 10 −1.7143 11 −3.4286 20 −2.0952 21 0 30 −0.0952
2424 31 −1.1429 40 −1.7922 41 0 50 −0.0173 51 −0.5195
2424 60 −3.0303 61 0
2434 30 −0.2857 31 −1.1429 40 −1.8687 41 0
3434 30 −0.8571 31 −1.1429 40 −2.0000 41 0
4444 01 −4.0000 10 −2.0952 21 −0.9524 30 −0.9870 41 −0.4675
4444 50 −0.9391 61 −0.2331 70 −1.6317
The states are numbered 1 = 0d3/2, 2 = 0d5/2, 3 = 1s1/2 and 4 = 0f7/2. The first
column gives the state labels, and the following columns give the JT
combinations and matrix elements.

⎛⎜⎜⎜⎝
H11 H12 · · · H1N

H21 H22 · · · H2N

...
...

. . .
...

HN1 HN2 · · · HNN

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

a
(n)
1

a
(n)
2
...

a
(n)
N

⎞⎟⎟⎟⎟⎠ = En

⎛⎜⎜⎜⎜⎝
a
(n)
1

a
(n)
2
...

a
(n)
N

⎞⎟⎟⎟⎟⎠ . (8.80)

So we have converted the Schrödinger equation (8.75) into an eigenvalue prob-
lem of the Hamiltonian matrix.

The eigenvalues and eigenstates of a general Hamiltonian are obtained by
diagonalizing the Hamiltonian matrix. For two-particle nuclei the basis states
are

|a b ; J M ; T MT 〉 = Nab(JT )
[
c†ac
†
b

]TMT

JM
|CORE〉 (8.81)

constructed within a chosen single-particle valence space. To solve for the
eigenenergies and eigenstates we then need to diagonalize a Hamiltonian ma-
trix with elements

〈a b ; J M ; T MT |H|c d ; J M ; T MT 〉 . (8.82)

8.3.2 Solving the Eigenenergies of a Two-by-Two Problem

The two-by-two eigenvalue problem is an analytically solvable special case of
the general formalism introduced above. The matrix equation (8.80), to be
satisfied by each n = 1, 2, becomes
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H11 − E H12

H21 H22 − E

)(
a1
a2

)
= 0 . (8.83)

A non-trivial solution of the two linear equations for a1 and a2 exists only if
the determinant condition

0 =
∣∣∣∣H11 − E H12

H21 H22 − E

∣∣∣∣ = (H11 − E)(H22 − E)− |H12|2 (8.84)

is satisfied. Here we have used the fact that H21 = H∗12 for a Hermitian matrix
representing a Hermitian Hamiltonian. Solving for E gives

E1 =
1
2

(
H11 +H22 −

√
(H11 −H22)2 + 4|H12|2

)
,

E2 =
1
2

(
H11 +H22 +

√
(H11 −H22)2 + 4|H12|2

)
,

(8.85)

where we follow the usual labelling convention E1 < E2.
The eigenstates corresponding to E1 and E2 are, in the pattern of (8.76),

|Ψ1〉 = a
(1)
1 |φ1〉+ a

(1)
2 |φ2〉 , (8.86)

|Ψ2〉 = a
(2)
1 |φ1〉+ a

(2)
2 |φ2〉 . (8.87)

The ratio of the amplitudes a
(n)
l and a

(n)
2 is found by substituting En into

(8.83). The result is

a
(n)
1

a
(n)
2

=
H12

En −H11
=

En −H22

H21
, (8.88)

which leads to
a
(2)
1

a
(2)
2

= −a
(1)∗
2

a
(1)∗
1

. (8.89)

This allows us to write the eigenstates as

|Ψ1〉 = a
(1)
1

(
|φ1〉+

a
(1)
2

a
(1)
1

|φ2〉
)

,

|Ψ2〉 = a
(2)
2

(
a
(2)
1

a
(2)
2

|φ1〉+ |φ2〉
)
= a

(2)
2

(
− a

(1)∗
2

a
(1)∗
1

|φ1〉+ |φ2〉
)

.

(8.90)

We note that the algebraic solution thus produces orthogonal eigenstates,
〈Ψ1|Ψ2〉 = 0, as expected of the eigenstates of a Hermitian operator.

It remains to normalize the eigenstates |Ψn〉, so that |a(n)1 |2 + |a
(n)
2 |2 = 1.

This is accomplished by inserting the amplitude ratio a
(1)
2 /a

(1)
1 from (8.88) into

(8.90) and determining a
(1)
1 and a

(2)
2 so that 〈Ψ1|Ψ1〉 = 1 and 〈Ψ2|Ψ2〉 = 1.

This results in the magnitudes
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|a(1)1 | =
(
1 + |a(1)2 /a

(1)
1 |2

)−1/2 = |a(2)2 | . (8.91)

The phases of a(1)1 and a
(2)
2 remain undetermined. They are normally chosen

to be real and such that the leading amplitude of each eigenstate is positive.
A simple analytic solution is generally not possible for three-by-three or

larger problems. They are solved by readily available numerical methods and
computer codes.

8.3.3 Matrix Elements of the Hamiltonian
in the Two-Nucleon Basis

To carry out the evaluation of the matrix element (8.82) we need both the
one-body and two-body parts of the nuclear Hamiltonian. The one-body part
is given by (4.19), and we assume it has the diagonal form of (4.71),

Tε =
∑
α

εαc
†
αcα . (8.92)

The matrix elements of this operator are evaluated in the basis (8.81). The
operator Tε is a scalar and an isoscalar, so similarly to (8.21) we only need
to consider matrix elements diagonal in angular momentum and isospin, and
there is no dependence on the projection quantum numbers. Thus we have

〈a b ; J M ; T MT |Tε|c d ; J M ; T MT 〉 ≡ 〈a b ; J T |Tε|c d ; J T 〉

= Nab(JT )Ncd(JT )
∑
α′

εα′〈CORE|
([

c†ac
†
b

]TMT

JM

)†
c†α′cα′

[
c†cc
†
d

]TMT

JM
|CORE〉

= Nab(JT )Ncd(JT )
∑
a′

εa′
∑
mα′

∑
mαmβ
mγmδ

∑
mtαmtβ
mtγmtδ

(ja mα jb mβ |J M)

× ( 12 mtα
1
2 mtβ |T MT )(jc mγ jd mδ|J M)( 12 mtγ

1
2 mtδ|T MT )

× 〈CORE|cβcαc†α′cα′c†γc
†
δ|CORE〉 . (8.93)

Performing the contractions yields

〈CORE|cβcαc†α′cα′c†γc
†
δ|CORE〉

= δβα′δαγδα′δ − δβα′δαδδα′γ − δβγδαα′δα′δ + δβδδαα′δα′γ . (8.94)

Properties of the Clebsch–Gordan coefficients lead to

〈a b ; J T |Tε|c d ; J T 〉

=
1− δab(−1)J+T

(1 + δab)2
[
δacδbd + (−1)ja+jb+J+T δadδbc

]
(εa + εb) . (8.95)
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For our two-particle basis states we adopt the convention a ≤ b to avoid
counting the same physical states twice. It follows that only the δacδbd term
of (8.95) contributes when a 	= b, so that

〈a b ; J T |Tε|c d ; J T 〉 = δacδbd(εa + εb) for a < b . (8.96)

When a = b both terms of (8.95) contribute, with the result

〈a2 ; J T |Tε|c d ; J T 〉 = δacδad
[
1− (−1)J+T

]
εa . (8.97)

Equations (8.96) and (8.97) can be combined into the single equation

〈a b ; J T |Tε|c d ; J T 〉 = δacδbd
1− δab(−1)J+T

1 + δab
(εa + εb) , a ≤ b . (8.98)

In the proton–neutron formalism the matrix element of Tε is derived sim-
ilarly. The result is

〈a b ; J |Tε|c d ; J〉 = δacδbd
1 + δab(−1)J
1 + δab

(εa + εb) , a ≤ b , (8.99)

where the condition a ≤ b means the labelling order p1 ≤ p2, n1 ≤ n2, p < n.
Note that (8.99) coincides with the T = 1 case of (8.98), as one would expect.

The two-body part V of the nuclear Hamiltonian was expressed in terms of
its two-body matrix elements in Subsect. 8.1.1. Thus the matrix elements of V
between wave functions of two nucleons are directly the two-body interaction
matrix elements as expressed in (8.13) and (8.21).

8.3.4 Solving the Eigenvalue Problem for a Two-Particle Nucleus

The preceding discussion in this section can be condensed into the following
three-part recipe to solve the eigenvalue problem for a two-particle nucleus.

Proton–neutron nucleus

Adopt a single-particle valence space according to the principles of Chap. 5.
For a given angular momentum and parity Jπ, form all possible proton–
neutron states |pn ; JπM〉, with a common value of M . Because the matrix
elements of the Hamiltonian are independent of M (and MT ), we now omit
projection quantum numbers in the notation for basic states: |pn ; Jπ〉.

Denoting the set of basis states as

{|1〉 , |2〉 , . . . , |N〉} (8.100)

and the matrix elements as
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Tij ≡ 〈i|Tε|j〉 = δijTii , Vij ≡ 〈i|V |j〉 , (8.101)

we have the Hamiltonian matrix

H =

⎛⎜⎜⎜⎝
T11 + V11 V12 · · · V1N

V21 T22 + V22 · · · V2N
...

...
. . .

...
VN1 VN2 · · · TNN + VNN

⎞⎟⎟⎟⎠ . (8.102)

Diagonalization of this matrix yields the eigenenergies En, n = 1, 2, . . . , N ,
and the corresponding eigenstates

|Ψn〉 =
N∑
i=1

a
(n)
i |i〉 , n = 1, 2, . . . , N . (8.103)

The Hamiltonian matrix is Hermitian, H = H†, i.e. its elements Hkl have
the property

Hkl = (H†)kl = H∗lk . (8.104)

It is therefore sufficient to compute just the diagonal and the upper or lower
half of the Hamiltonian matrix. When the matrix elements are real, as they
are in Tables 8.1–8.4 for the surface delta interaction, the relation is simply
Hkl = Hlk.

Proton–proton or neutron–neutron nucleus

For a given Jπ form all possible proton–proton or neutron–neutron states
|a1 a2 (a1 ≤ a2) ; Jπ〉 in the adopted single-particle valence space and proceed
as in the previous case.

Isospin representation

For a given JπT form all possible two-nucleon states |a b (a ≤ b) ; Jπ; T 〉 in
the adopted single-particle valence space and proceed as in the two previous
cases. Note that the matrices to be diagonalized are usually smaller in isospin
representation than they are in proton–neutron representation. Also note that
isospin symmetry is realized only when the relative single-particle energies of
protons and neutrons are the same.

8.3.5 Application to A = 6 Nuclei

The even–even nucleus 6
2He4 offers an enlightening example of configuration

mixing. The nucleus can be described as a two-particle nucleus with two neu-
trons in the 0p shell. All states of this model space have T = 1.



www.manaraa.com

226 8 Nuclear Two-Body Interaction and Configuration Mixing

We take the energies of the orbitals to be ε0p3/2 = 0 and ε0p1/2 ≡ ε =
6.0MeV (see Fig. 3.3), for both protons and neutrons in order to have isospin
symmetry. For the 0+ states the two-neutron basis states are given by

{|1〉 , |2〉} = {|(ν0p3/2)2 ; 0+〉 , |(ν0p1/2)2 ; 0+〉} . (8.105)

We assume the SDI, V = VSDI. In the basis (8.105) the Hamiltonian matrix
then becomes

H =
(
2× 0− 2.000A1 −1.414A1

−1.414A1 2ε− 1.000A1

)
, (8.106)

where the one-body part is from (8.99) and the two-body part from Table 8.1
with the strength constant A1 included. Substituting the numerical value of
ε and taking3 A1 = 1.0MeV we have the matrix

H =
(
−2.000 −1.414
−1.414 11.000

)
(8.107)

with all elements in MeV. Equation (8.85) gives its eigenvalues as

E(0+1 ) = −2.152MeV , E(0+2 ) = 11.152MeV . (8.108)

The wave functions are found as in Subsection 8.3.2. The result is

|0+1 〉 ≡ |0+gs〉 = 0.994|1〉+ 0.107|2〉
= 0.994|(ν0p3/2)2 ; 0+〉+ 0.107|(ν0p1/2)2 ; 0+〉 (8.109)

|0+2 〉 = −0.107|1〉+ 0.994|2〉
= −0.107|(ν0p3/2)2 ; 0+〉+ 0.994|(ν0p1/2)2 ; 0+〉 . (8.110)

The result for the two-proton nucleus 6
4Be2 is the same except for the

replacement ν → π. Also, because of isospin symmetry the same 0+ states,
with appropriate πν labels, occur in the proton–neutron nucleus 6

3Li3, e.g.

|6Li ; 0+1 T = 1〉 = 0.994|π0p3/2 ν0p3/2 ; 0
+〉+ 0.107|π0p1/2 ν0p1/2 ; 0

+〉 .
(8.111)

Let us discuss next the 1+ states. For the two-proton and two-neutron
nuclei, with T = 1, this problem is trivial since for odd angular momentum it
is possible to construct only one basis state (remember the condition a ≤ b),
which is |0p3/2 0p1/2 ; 1+〉 with the energy

E(1+ T = 1) = T11 + V11 = ε0p3/2 + ε0p1/2 + 0 = 6.0MeV . (8.112)

Here the one-body part is from (8.99) and the two-body part from Table 8.1.

3 It turns out that A0 = A1 = 1MeV is globally a reasonable first guess. In the
text we present our calculations with that choice, but fitted values are used in
figures containing comparison with experiment.
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In the case of 63Li3 the possible basis states for 1
+ are

{|1〉 , |2〉 , |3〉 , |4〉} = {|π0p3/2 ν0p3/2 ; 1
+〉 , |π0p3/2 ν0p1/2 ; 1

+〉 ,
|π0p1/2 ν0p3/2 ; 1

+〉 , |π0p1/2 ν0p1/2 ; 1
+〉} . (8.113)

With (8.26), (8.99) and Table 8.1, the Hamiltonian matrix (8.102) becomes

H =

⎛⎜⎜⎝
−1.200A0 0.894A0 −0.894A0 0.632A0

0.894A0 −1.000A0 + ε 1.000A0 0
−0.894A0 1.000A0 −1.000A0 + ε 0
0.632A0 0 0 −1.000A0 + 2ε

⎞⎟⎟⎠ . (8.114)

We pick A0 = 1.0MeV and perform a numerical diagonalization. The eigen-
energies come out as

E(1+1 ) = −1.522MeV , E(1+2 ) = 4.288MeV ,

E(1+3 ) = 6.000MeV , E(1+4 ) = 11.033MeV . (8.115)

The wave function of the lowest 1+ state comes out as

|1+1 〉 = 0.974|1〉 − 0.158|2〉+ 0.158|3〉 − 0.049|4〉 . (8.116)

According to (8.112), we have only one Jπ = 1+ state with T = 1, namely the
one at 6.0MeV. This energy is identified with E(1+3 ) in (8.115). We conclude
that the other three 1+ states are T = 0 states. In this way it is possible
to identify T = 1 and T = 0 states in two-nucleon nuclei without using the
isospin formalism. Note also that if we did use the isospin formalism, the 4-
by-4 matrix (8.114) would be replaced by a 1-by-1 matrix for T = 1 and a
3-by-3 matrix for T = 0.

For the 2+ states in 6
3Li3 the basis is

{|1〉 , |2〉 , |3〉} = {|π0p3/2 ν0p3/2 ; 2
+〉 , |π0p3/2 ν0p1/2 ; 2

+〉 ,
|π0p1/2 ν0p3/2 ; 2

+〉} . (8.117)

The Hamiltonian matrix becomes

H =

⎛⎝−0.400A1 −0.400A1 0.400A1

−0.400A1 ε− 0.600A0 − 0.400A1 −0.600A0 + 0.400A1

0.400A1 −0.600A0 + 0.400A1 ε− 0.600A0 − 0.400A1

⎞⎠ . (8.118)

Here both the isoscalar and isovector interaction matrix elements are active,
via the relation (8.26). Taking A0 = A1 = 1.0MeV produces the eigenenergies

E(2+1 ) = −0.457MeV , E(2+2 ) = 4.800MeV , E(2+3 ) = 5.257MeV .
(8.119)

In 6
2He4 the basis for 2

+ states (T = 1) is

{|1〉 , |2〉} = {|(ν0p3/2)2 ; 2+〉 , |ν0p3/2 ν0p1/2 ; 2
+〉} . (8.120)
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The Hamiltonian matrix is

H =
(
−0.400A1 −0.566A1

−0.566A1 ε− 0.800A1

)
. (8.121)

With A1 = 1.0MeV the energy eigenvalues are

E(2+1 T = 1) = −0.457MeV , E(2+2 T = 1) = 5.257MeV . (8.122)

Comparison with (8.119) reveals that the 2+ state with the energy 4.800MeV
is a T = 0 state.

For Jπ = 3+ the only possible basis state is |π0p3/2 ν0p3/2 ; 3+〉. This
state describes a T = 0 state in 6

3Li3. With A0 = 1.0MeV its energy is

E(3+ T = 0) = −1.200MeV . (8.123)

We have now constructed all the states of the A = 6 two-particle nuclei
using the 0p shell as the valence space. The number of states in this space
for the nucleus 6

3Li3, classified by angular momentum and isospin, is given in
Table 8.5. Of the ten states only the five T = 1 states are possible for the
even–even 6

2He4 and
6
4Be2 nuclei.

Table 8.5. Numbers of 0p-shell states in 6
3Li3 for different angular momenta and

isospins

Angular momentum 0 1 2 3

Isospin 0 1 0 1 0 1 0 1
Number of states 0 2 3 1 1 2 1 0

The lowest experimental energy levels of the A = 6 nuclei are shown
in Fig. 5.4. Our computed states with energies (8.108), (8.115), (8.119) and
(8.123) can be identified with them, but the quantitative agreement is poor.
In particular, the relative positions of the T = 0 and T = 1 states in 6Li
are wrong: the ground state is 0+, T = 1 in theory while experimentally it
is 1+, T = 0. However, our computations used the ‘initial’ parameter values
A0 = A1 = 1MeV. With A0 = 2.4MeV and A1 = 0.5MeV a rather good fit
is obtained, as shown in Fig. 8.1. Another way to improve the fit is to use the
MSDI (8.74), which produces a shift between the T = 0 and T = 1 states.

8.3.6 Application to A = 18 Nuclei

In the 0d-1s shell the two-particle nuclei are 18
8O10,

18
9F9 and

18
10Ne8. The

relative single-particle energies

ε0d5/2 = 0 , ε1s1/2 = 0.87MeV , ε0d3/2 = 5.08MeV (8.124)
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Fig. 8.1. Theoretical and experimental energy levels of 6Li. The calculation was
done in the 0p valence space. The 0p1/2–0p3/2 energy separation was taken to be
6.0MeV and the SDI was used with the parameters A0 = 2.4MeV and A1 = 0.5MeV

are obtained from the experimental spectra of the one-particle nuclei 17
8O9

and 17
9F8 (see also Fig. 3.3). The simplest configuration mixing calculation

is to restrict the valence space to the near-lying 0d5/2 and 1s1/2 orbitals.
The matrices to be diagonalized are then no larger than 2-by-2, as seen from
Table 8.6. In the valence space containing the complete 0d-1s shell the matrices
are larger, as seen from the last row of the table.

Table 8.6. Numbers of states in 18
9F9 built from the 0d5/2-1s and 0d-1s shells for

different angular momenta and isospins

Angular momentum 0 1 2 3 4 5
Isospin 0 1 0 1 0 1 0 1 0 1 0 1

0d5/2-1s 0 2 2 0 1 2 2 1 0 1 1 0
0d-1s 0 3 5 2 3 5 4 2 1 2 1 0
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The spectra of the three two-particle nuclei, derived by using both the
smaller and the larger valence space, are depicted in Figs. 8.2–8.4. The pa-
rameters A0 = 0.9MeV and A1 = 0.5MeV of the SDI were used throughout
(A0 affects only the proton–neutron nucleus 18F).

The calculated spectra for 18O and 18Ne are identical. Except for the
unobserved 3+ state, Figs. 8.2 and 8.3 show that the theory predicts the
correct low-lying states, but with poor energy agreement. We also see that
the larger valence space brings no significant improvement. However, only the
full 0d-1s space can produce the levels around 7MeV. Contrary to the even–
even nuclei, the description of the odd–odd nucleus 18F greatly improves when
enlarging the valence space. In particular, the ground state is given correctly
as 1+ only in the larger valence space. Furthermore, the observed 5+ state
can be generated only in that space.
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Fig. 8.2. Theoretical and experimental energy levels of 18O. The calculations were
done in the 0d5/2-1s valence space and in the complete 0d-1s valence space. The
single-particle energies (8.124) and the SDI, with A1 = 0.5MeV, were used
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Fig. 8.3. Theoretical and experimental energy levels of 18Ne. The calculations were
done in the 0d5/2-1s valence space and in the complete 0d-1s valence space. The
single-particle energies (8.124) and the SDI, with A1 = 0.5MeV, were used

8.4 Configuration Mixing in Two-Hole Nuclei

The behaviour of two-hole nuclei is very much the same as that of two-particle
nuclei. This results from the mirror kind of symmetry between particles and
holes. First we survey the formalism of diagonalization of the residual inter-
action in the two-hole basis and then discuss some applications.

8.4.1 Diagonalization of the Residual Interaction
in a Two-Hole Basis

The particle–hole symmetry shows up in the matrix elements of the nuclear
Hamiltonian. When dealing with holes it is necessary to specify the one-body
part as the Hartree–Fock Hamiltonian HHF given in (4.72) and the two-body
part as the residual interaction VRES given in (4.73); the constant term of
VRES is here omitted because it has no effect on excitation energies.
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Fig. 8.4. Theoretical and experimental energy levels of 18F. The calculations were
done in the 0d5/2-1s valence space and in the complete 0d-1s valence space. The
single-particle energies (8.124) and the SDI, with A0 = 0.9MeV and A1 = 0.5MeV,
were used

Proceeding as in Subsect. 8.3.3 one can calculate the matrix elements of
HHF and VRES between two-hole states. The result for the two-body part is
in proton–neutron representation

〈a−1 b−1 ; J M |VRES|c−1 d−1 ; J M〉 = 〈a b ; J |V |c d ; J〉 (8.125)

and in isospin representation

〈a−1 b−1 ; J M ; T MT |VRES|c−1 d−1 ; J M ; T MT 〉 = 〈a b ; J T |V |c d ; J T 〉 .
(8.126)

So the two-body part of the Hamiltonian matrix in a two-hole problem is the
same as in the corresponding two-particle problem.

The result for the one-body part is in proton–neutron representation

〈a−1 b−1 ; J M |HHF|c−1 d−1 ; J M〉
= [Nab(J)]2

[
δacδbd + (−1)ja+jb+J+1δadδbc

]
(E − εa − εb) (8.127)
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and in isospin representation

〈a−1 b−1 ; J M ; T MT |HHF|c−1 d−1 ; J M ; T MT 〉
= [Nab(JT )]2

[
δacδbd + (−1)ja+jb+J+T δadδbc

]
(E − εa − εb) , (8.128)

where
E =

∑
α

εα =
∑
a

(2ja + 1)εa . (8.129)

Because the constant quantity E appears on the diagonal of the Hamil-
tonian matrix and thus affects the energy eigenvalues by a common energy
shift, it can be omitted when computing excitation energies. Thus the Hamil-
tonian matrix for a two-hole nucleus is the same as that for the corresponding
two-particle nucleus within the same valence space except that the single-
particle energies change sign,

εa(hole) = −εa(particle) . (8.130)

To avoid confusion, we choose to list the non-negative numerical values of
εa(particle) and insert the required minus signs in front of the εa in the Hamil-
tonian matrix. This is illustrated in the examples below.

8.4.2 Application to A = 14 Nuclei

Consider the two-hole nuclei 146C8,
14
7N7 and

14
8O6 in the valence space con-

sisting of the 0p shell. We adopt the interaction parameters used for the two-
particle nuclei in the same valence space, i.e. A0 = 2.4MeV and A1 = 0.5MeV
(see Fig. 8.1). We also adopt the same single-particle energies, ε0p3/2 = 0 and
ε0p1/2 ≡ ε = 6.0MeV. This energy difference is supported by the spectra of
the one-hole nuclei 157N8 and

15
8O7 in Fig. 5.2.

The Hamiltonian matrix for the 0+ states is the same as (8.106) except
for ε being replaced by −ε:

H =
(
2× 0− 2.000A1 −1.414A1

−1.414A1 −2ε− 1.000A1

)
. (8.131)

Likewise for all other angular momenta we have the same Hamiltonian ma-
trices as in Subsect. 8.3.5 except for the replacements εa → −εa. The isospin
identification is the same as in the two-particle calculations.

Inserting the strength constants into (8.131) and diagonalizing the result-
ing matrix, we obtain the energy eigenvalues

E1 = −12.543MeV , E2 = −0.957MeV . (8.132)

The wave function of the first 0+ state becomes

|0+1 〉 = 0.998|(0p1/2)2 ; 0+〉+ 0.061|(0p3/2)2 ; 0+〉 , (8.133)
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Fig. 8.5. Theoretical and experimental energy levels of 14C and 14O. The calculation
was done in the 0p valence space. The difference between the 0p1/2 and 0p3/2 single-
particle energies was taken to be 6.0MeV and the SDI was used with A1 = 0.5MeV

where we have omitted the proton and neutron labels to cover the 0+, T = 1
states in all three nuclei at the same time. Comparison with (8.109) shows the
expected reversal of the leading amplitudes.

Using the Hamiltonian matrices of Subsect. 8.3.5 with the change ε→ −ε
and the parameter values quoted above produces the energy spectra shown in
Figs. 8.5 (14C and 14O) and 8.6 (14N). The agreement between the experimen-
tal and computed spectra is fair considering the simplicity of the theoretical
approach.

8.4.3 Application to A = 38 Nuclei

The nuclei 3818Ar20,
38
19K19 and

38
20Ca18 have two holes in the 0d-1s shell. They

can be treated in the same way as the two-hole A = 14 nuclei in the 0p shell.
The relative single-particle energies we adopt for these two-hole nuclei

differ somewhat from those in (8.124) used for the two-particle nuclei. This
difference can be understood when looking at the spectra of the one-particle
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Fig. 8.6. Theoretical and experimental energy levels of 14N. The calculation was
done in the 0p valence space. The difference between the 0p1/2 and 0p3/2 single-
particle energies was taken to be 6.0MeV and the SDI was used with A0 = 2.4MeV
and A1 = 0.5MeV

and one-hole nuclei in the 0d-1s shell. In the beginning of the shell the single-
particle energies can be deduced from the data on one-particle nuclei and at
the end of the shell from the data on one-hole nuclei. From the one-hole nuclei
39
19K20 and

39
20Ca19 in Fig. 5.3 we deduce the relative single-particle energies

ε0d5/2 = 0 , ε1s1/2 = 1.5MeV , ε0d3/2 = 4.0MeV . (8.134)

In the two-hole calculations these are used with a minus sign according to
(8.130).

The energy spectra of the two-hole nuclei are shown in Figs. 8.7 (38Ar
and 38Ca) and 8.8 (38K). The SDI was used in the computation with A0 =
A1 = 0.9MeV. The experimental spectra are seen to contain some states not
accounted for by the simple theory. They can be associated with configurations
containing particle–hole excitations from the 0d-1s shell to the 0f7/2 shell. In
addition, the relative positions of the T = 0 and T = 1 states in 38K are not
correctly reproduced. Using the MSDI could improve this situation.
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Fig. 8.7. Theoretical and experimental energy levels of 38Ar and 38Ca. The calcula-
tions were done in the 0d-1s valence space. The single-particle energies (8.134) and
the SDI, with A0 = A1 = 0.9MeV, were used

8.5 Electromagnetic and Beta-Decay Transitions in
Two-Particle and Two-Hole Nuclei

In this section we compute electromagnetic and beta-decay transitions from
and to nuclear states described by wave functions with configuration mix-
ing. Configuration mixing is expected to provide a better description of these
processes than does the simple single-configuration approach in Chaps. 6
and 7.

8.5.1 Transition Amplitudes With Configuration Mixing

Configuration mixing in two-particle and two-hole nuclei leads to a represen-
tation of the state vectors as linear combinations (8.103) of the basis states.
For an electromagnetic or a beta-decay transition between an initial and a
final state

|Ψi〉 =
∑
k

Ak|k〉 , |Ψf 〉 =
∑
l

Bl|l〉 , (8.135)
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Fig. 8.8. Theoretical and experimental energy levels of 38K. The calculations were
done in the 0d-1s valence space. The single-particle energies (8.134) and the SDI,
with A0 = A1 = 0.9MeV, were used

The transition amplitude (real Ak, Bl assumed) becomes

(Ψf‖T λ‖Ψi) =
∑
kl

AkBl(l‖T λ‖k) . (8.136)

The tensor operator T λ is either an electromagnetic operator (6.5) or a beta-
decay operator appearing in (7.20), (7.21), (7.167) or (7.187). Consider |k〉 and
|l〉 as two-particle or two-hole basis states. Below we discuss a few examples
of the application of (8.136).

8.5.2 Application to Beta Decay of 6He

Consider the β− decay transition 6He(0+gs) → 6Li(1+gs) shown in Fig. 7.8 and
discussed in Subsect. 7.5.2. Our computation with the pure states (7.118) and
(7.119) gave log ft = 3.07 while the experimental value is log ft = 2.9. We
now propose to improve the agreement by including configuration mixing.
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The configuration mixing calculation in Subsect. 8.3.5, with A0 = 2.4MeV
and A1 = 0.5MeV, gave 6Li the energy spectrum of Fig. 8.1, in rather nice
agreement with experiment; note that with equal proton and neutron single-
particle energies the unmixed states (7.118) and (7.119) are degenerate. The
calculation gives the 6He ground-state wave function

|6He ; 0+gs T = 1〉 = 0.998|(ν0p3/2)2 ; 0+〉+ 0.056|(ν0p1/2)2 ; 0+〉 (8.137)

and 6Li ground-state wave function4

|6Li ; 1+gs T = 0〉 = 0.883|π0p3/2 ν0p3/2 ; 1
+〉 − 0.325|π0p3/2 ν0p1/2 ; 1

+〉
+ 0.325|π0p1/2 ν0p3/2 ; 1

+〉 − 0.094|π0p1/2 ν0p1/2 ; 1
+〉 . (8.138)

Equations (8.137) and (8.138) give the amplitudes

A1 = 0.998 , A2 = 0.056 , (8.139)
B1 = 0.883 , B2 = −0.325 , B3 = 0.325 , B4 = −0.094 . (8.140)

The non-zero Gamow–Teller matrix elements are obtained from (7.110):

M1 ≡M(−)
GT

(
(ν0p3/2)

2 ; 0+ → π0p3/2 ν0p3/2 ; 1
+
)
=

√
10
3

, (8.141)

M2 ≡M(−)
GT

(
(ν0p3/2)

2 ; 0+ → π0p1/2 ν0p3/2 ; 1
+
)
= 2

√
2
3

, (8.142)

M3 ≡M(−)
GT

(
(ν0p1/2)

2 ; 0+ → π0p3/2 ν0p1/2 ; 1
+
)
= − 4√

3
, (8.143)

M4 ≡M(−)
GT

(
(ν0p1/2)

2 ; 0+ → π0p1/2 ν0p1/2 ; 1
+
)
= −

√
2
3

. (8.144)

The transition amplitude is a linear combination of these matrix elements
according to (8.136):

MGT(0+gs → 1+gs) = A1B1M1 +A1B3M2 +A2B2M3 +A2B4M4 = 2.185 .
(8.145)

This should be compared with (7.120) or (8.141), which gives the result with-
out configuration mixing as

√
10/3 = 1.826. The value 2.185 leads to

log ft = 2.91 , (8.146)

in perfect agreement with the experimental value. The immediate conclusion
is that it is essential to consider configuration mixing when calculating nuclear
decay transitions.

4 These wave functions differ from (8.109) and (8.116) because those were calculated
with A0 = A1 = 1MeV.
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8.5.3 Application to E2 Decays in 18O and 18Ne

Consider the nuclei 188O10 and
18
10Ne8 in the 0d5/2-1s1/2 valence space. Their

calculated energy levels are given on the left in Figs. 8.2 and 8.3. We set out
to compute their reduced E2 transition probabilities B(E2 ; 2+1 → 0+gs). The
original calculation yields the initial and final states

|2+1 〉 = 0.883|(0d5/2)2 ; 2+〉+ 0.470|0d5/2 1s1/2 ; 2+〉 , (8.147)

|0+gs〉 = 0.961|(0d5/2)2 ; 0+〉+ 0.278|(1s1/2)2 ; 0+〉 . (8.148)

In 18O these states are two-neutron states, in 18Ne two-proton states, with
their different effective charges.

In the notation of (8.136) the amplitudes in the wave functions (8.147)
and (8.148) are

A1 = 0.883 , A2 = 0.470 , B1 = 0.961 , B2 = 0.278 . (8.149)

The non-zero electric quadrupole transition matrix elements are, from (6.103)
and Table 6.4,(

(0d5/2)2 ; 0+‖Q2‖(0d5/2)2 ; 2+
)
= −2.1106eeffb2 , (8.150)(

(0d5/2)2 ; 0+‖Q2‖0d5/2 1s1/2 ; 2+
)
= −1.2615eeffb2 , (8.151)(

(1s1/2)2 ; 0+‖Q2‖0d5/2 1s1/2 ; 2+
)
= −2.185eeffb2 . (8.152)

By using b = 1.750 fm from Subsect. 6.3.1 we obtain the transition amplitude

(0+gs‖Q2‖2+1 ) = [A1B1(−2.1106) +A2B1(−1.2615) +A2B2(−2.185)]eeffb2

= −8.104eeff fm2 , (8.153)

leading to the reduced transition probability

B(E2 ; 2+1 → 0+gs) = 13.13e
2
eff fm

4 . (8.154)

The no-mixing calculation of Subsect. 6.3.1 gave 8.357e2eff fm
4, so even our

minimal configuration mixing calculation increased B(E2) by nearly 60%.
The electric polarization constant now becomes

χ ≈ 0.9 (8.155)

instead of χ ≈ 1.3 in (6.115). Even the diminished value is so large that it
evidently summarizes much configuration mixing not explicitly included.

To see whether further configuration mixing increases the B(E2) value,
we have repeated the present calculation in the complete 0d-1s valence space
(middle spectra in Figs. 8.2 and 8.3). The result is

B(E2 ; 2+1 → 0+gs)0d-1s = 14.32e
2
eff fm

4 . (8.156)

This is indeed a further increase though not very large.
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Epilogue

In this chapter we have been able to extend the mean-field description of
nuclear states. The handicap of single-configuration wave functions has been
removed by the residual interaction. Within this scheme the states of two-
particle and two-hole nuclei were allowed to include several configurations as
demanded by the SDI. In the following three chapters that interaction is used
to induce doubly magic nuclei to open their closed shells into their particle–
hole excitation. In the latter half of this book the SDI serves to provide us
with quasiparticles and their configuration mixing in open-shell nuclei.

Exercises

8.1. Verify the relations (8.25).

8.2. Verify (8.26) and (8.27).

8.3. Derive (8.29).

8.4. Derive (8.32)

8.5. Derive the expression (8.34) for the radial part of the delta interaction
by starting from (8.32).

8.6. Derive the expression (8.36) for the radial part of the SDI by starting
from (8.32).

8.7. Derive the matrix element (8.55) by starting from (8.52).

8.8. Derive the expressions (8.57) and (8.58) by starting from (8.52).

8.9. Complete the details of the derivation of (8.66).

8.10. Complete the details of the derivation of (8.68).

8.11. Derive (8.71) and (8.72) by starting from (8.68).

8.12. Verify some numbers of your choice in Table 8.1.

8.13. Derive the relation (8.89).

8.14. Complete the details of the derivation of (8.98).

8.15. Complete the details of the derivation of (8.99).

8.16. Verify the matrix (8.114).

8.17.Write down all the wave functions corresponding to the energies of
(8.115).



www.manaraa.com

Exercises 241

8.18. Verify the matrix of (8.118) and diagonalize it for A0 = 2.4MeV and
A1 = 0.5MeV. Compare with the theoretical energies of Fig. 8.1.

8.19. Verify the matrix (8.121). Compute the eigenenergies and eigenfunctions
for A1 = 0.5MeV.

8.20. Compute the eigenenergies and eigenvectors of the 1+, 2+, 3+ and 4+

states of 18O and 18Ne in the 0d5/2-1s1/2 valence space. Use the energy differ-
ence ε1s1/2 − ε0d5/2 = 0.87MeV and the parameter values A0 = 0.9MeV and
A1 = 0.5MeV for the SDI. Draw the theoretical spectrum, compare it with
experiment and comment.

8.21. The same as Exercise 8.20 but for 18F.

8.22. Compute the eigenenergies and eigenvectors of the 1+–7+ states in 42Sc.
Try to determine the parameters of the SDI in such a way that they best
reproduce the experimental spectrum.

8.23. Compute the eigenenergies of the 0+, 1+, 2+ and 3+ states of 6Li in
the 0p valence space by using ε0p1/2 − ε0p3/2 = 6.0MeV and determining the
parameters A0, A1, B0 and B1 of the MSDI (8.74) in such a way that they
best reproduce the experimental spectrum. Draw the theoretical spectrum,
compare it with the data and comment.

8.24. Derive (8.127).

8.25. Derive (8.128).

8.26. Compute the eigenenergies and eigenvectors of the 0+, 1+ and 2+ states
of 14N in the 0p valence space. Use the energy difference ε0p1/2 − ε0p3/2 =
6.0MeV and the parameter values A0 = 2.4MeV and A1 = 0.5MeV for the
SDI. Draw the resulting theoretical spectrum, compare it with experimental
data and comment.

8.27. Compute the eigenenergies and eigenvectors of the 0+, 1+, 2+ and 3+

states of 38Ar, 38K and 38Ca in the 1s1/2-0d3/2 valence space. Take A0 =
A1 = 0.9MeV and use the energy difference ε0d3/2 − ε1s1/2 = 2.5MeV. Draw
the resulting theoretical spectrum, compare it with experiment and comment.

8.28. For the nucleus 50Sc compute all the energies and wave functions that
you can extract when using the 1p-0f5/2 valence space for neutrons. Take
A0 = A1 = 0.9MeV and use the single-particle energies ε1p3/2 = 0, ε1p1/2 =
2.02MeV and ε0f5/2 = 3.9MeV. Compare the structure of the ground-state
wave function with that extracted in Exercise 7.24.

8.29. Compute the structure of the 0+ ground state of 50Ca by using the
valence space and parameters of Exercise 8.28. Compare the result with that
extracted in Exercise 7.23.
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8.30. Compute the energies of the 2+ states of 50Ca by using the valence
space and parameters of Exercise 8.28. Draw the spectrum, compare it with
experiment and comment.

8.31. Compute the log ft values for the beta-decay transitions 18Ne(0+gs) →
18F(1+gs) and

18F(1+gs) → 18O(0+gs) with the wave functions computed in Ex-
ercises 8.20 and 8.21. Compare the wave functions and the log ft values with
the results of the simplified calculation of Subsect. 7.5.3. Comment on the
correspondence. Compare also with the experimental data and comment.

8.32. Calculate the log ft value of the transition 6He(0+gs)→ 6Li(1+gs) by mak-
ing a configuration mixing calculation in the 0p shell. Use A0 = A1 = 1.0MeV
and the energy difference ε0p1/2 − ε0p3/2 = 6.0MeV. Compare with the exper-
imental data and the result of Subsect. 8.5.2.

8.33. Calculate the log ft values of the beta-decay transitions from the 0+

ground state of 14O to the 1+1 and 1
+
2 states in

14N by using the wave functions
obtained in Exercise 8.26. Compare with the data and comment.

8.34. Using the wave functions of Exercise 8.27 calculate the B(E2) values
for the decay of the first 2+ state in 38Ar and 38Ca. Determine the electric
polarization constant χ, compare with the result of Exercise 6.31 and com-
ment.

8.35. Using the wave functions of Exercise 8.27 calculate the log ft values for
the decay of the 0+ ground state of 38Ca to the 0+ ground state and the
first two excited 1+ states of 38K. Compare with the data and the results of
Exercise 7.22 and comment.
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Particle–Hole Excitations and the
Tamm–Dancoff Approximation

Prologue

This chapter describes the configuration mixing of particle–hole excitations
in doubly magic nuclei. The discussion is confined to one-particle–one-hole
excitations within the simplest scheme of configuration mixing, namely the
Tamm–Dancoff approximation (TDA). We show that the TDA arises from a
variational principle and leads to diagonalization of the residual Hamiltonian
in a basis of particle–hole excitations of the particle–hole vacuum.

We address the effects of particle–hole configuration mixing on electromag-
netic observables. In particular, we introduce the notion of collectivity of a
wave function and of an electromagnetic transition. We show that the general
features of the TDA are conveniently represented by a schematic separable
model with graphical solution.

9.1 The Tamm–Dancoff Approximation

In this section we derive the Tamm–Dancoff approximation (TDA) from a
variational principle leading to a result known as Brillouin’s theorem. This
theorem justifies the diagonalization of the residual interaction within a one-
particle–one-hole basis. We also write down the explicit form of the TDA
matrix equations and tabulate the matrix elements for a large number of
different particle–hole configurations.

9.1.1 Justification of the TDA: Brillouin’s Theorem

Particle–hole excitations were introduced in Sect. 4.4 and extensively dis-
cussed in Sect. 5.4 and Subsect. 5.5.4 in the context of the mean-field shell
model. In this subsection the residual interaction is allowed to mix particle–
hole excitations to produce configuration-mixed nuclear states. The scheme is
known as the TDA.
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Consider the Hamiltonian H of a nucleus and an arbitrary state vector
|Ψ〉 in a restricted part of the nuclear Hilbert space. The expectation value of
the energy in this state is

E[Ψ] ≡ 〈Ψ|H|Ψ〉〈Ψ |Ψ〉 , (9.1)

where the denominator is included to guarantee normalization. The expecta-
tion value is written as a functional that appeared already in (3.14).

We wish to determine |Ψ〉 so that the energy (9.1) is minimized. That |Ψ〉
is then the best description of the state (usually the ground state) within the
restricted space, i.e. the best approximation to the exact state realized in the
full space. For the best |Ψ〉 the energy functional (9.1) must be stationary,
δE[Ψ] = 0, under small variations of |Ψ〉.1

Let us vary E[Ψ] so that |Ψ〉 → |Ψ〉 + |δΨ〉, where |δΨ〉 is an arbitrary
state of infinitesimal norm in the restricted space. By the elementary rules of
differentiation and rearranging we obtain [4]

〈Ψ|Ψ〉δE = 〈δΨ|H − E|Ψ〉+ 〈Ψ|H − E|δΨ〉 . (9.2)

The requirement δE = 0 now gives

〈δΨ|H − E|Ψ〉+ 〈Ψ|H − E|δΨ〉 = 0 . (9.3)

Since |δΨ〉 was chosen to be arbirary within the restricted space, we can
do in that space a second variation where |δΨ〉 is replaced by i|δΨ〉. Equation
(9.3) is then replaced with

−i〈δΨ|H − E|Ψ〉+ i〈Ψ|H − E|δΨ〉 = 0 . (9.4)

If we now multiply (9.3) by −i and add it to (9.4), we find

〈δΨ|H − E|Ψ〉 = 0 , 〈Ψ|H − E|δΨ〉 = 0 . (9.5)

Let us now take the restricted space to be the space spanned by the N -
particle Slater determinants (4.6) of single-particle states φα. The lowest-
energy trial state in that space is the state |Φ0〉 which has the N lowest levels
occupied. A general variation of |Φ0〉 in the chosen space of Slater determi-
nants is obtained by varying one of its single-particle states according to

φβ → φβ + ηφα , (9.6)

where η is an arbitrary infinitesimal number. For this to be a true variation,
i.e. an infinitesimal change of the state |Φ0〉, the single-particle state φα has

1 This is a necessary condition that does not guarantee that the extremum is a
minimum. However, we may here safely assume that a minimum indeed results.
For further discussion see [16].
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to be one of the unoccupied states, so that εα > εF. In occupation number
representation we thus have

|δΦ0〉 = ηc†αcβ |Φ0〉 ≡ η|χ〉 , εα > εF , εβ ≤ εF . (9.7)

The state |χ〉 is a particle–hole excitation of |Φ0〉 and clearly orthogonal to it,
i.e. 〈χ|Φ0〉 = 0. The first equation (9.5) now gives

〈χ|H|Φ0〉 = 0 . (9.8)

This result, known as Brillouin’s theorem, says that the nuclear Hamiltonian
does not connect the particle–hole vacuum to its particle–hole excitations.
Also, when the condition (9.8) is met, we have a formal proof that the state
|Φ0〉 is indeed the ground state in the chosen space of Slater determinants.

Let us relate Brillouin’s theorem to Hartree–Fock theory. From (4.62) and
(4.63) we see that

〈χ|H|Φ0〉 = tαβ +
∑
γ

εγ≤εF

v̄γαγβ = Tαβ . (9.9)

According to Brillouin’s theorem we have Tαβ = 0. This means that the
effective one-body part of the nuclear Hamiltonian can be exactly diagonalized
in a single-particle basis that only includes the orbitals below the Fermi level.
After the diagonalization we have

Tββ′ = εβδββ′ , εβ , εβ′ ≤ εF . (9.10)

This is the Hartree–Fock equation (4.68), with the additional information
that only the states below the Fermi level contribute. Noting the unitary
transformation (4.64) we identify the ground state |Φ0〉 as the Hartree–Fock
vacuum |HF〉.

Since particle–hole excitations cannot mix into the Hartree–Fock vacuum,
we conclude that the first possible perturbations of the vacuum come from two-
particle–two-hole excitations. The resulting ‘correlated ground state’ appears
in sophisticated particle–hole theories such as the RPA, to be discussed in
Chap. 11.

When we include the residual interaction in the description of a doubly
magic nucleus, in first approximation the ground state is the Hartree–Fock
vacuum and the excited states are linear combinations of particle–hole exci-
tations. The linear combinations are obtained by diagonalizing the nuclear
Hamiltonian in the particle–hole basis; for a general description of the proce-
dure see Subsect. 8.3.1. This first step in introducing configuration mixing of
particle–hole excitations is called the TDA.

The TDA can only be used for doubly magic nuclei since they are the
only ones that offer a converging hierarchy in n-particle–n-hole (n = 1, 2, . . .)
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excitations. This is seen from the fact that each new order n of particle–
hole excitation costs at least the energy needed to cross the magic gap. In
open-shell nuclei particle–hole excitations do not cost much energy. In them
the excitations for different n coexist within the same energy range, so the
hierarchical structure of perturbation theory is lost.

9.1.2 Derivation of Explicit Expressions for the TDA Matrix

In the proton–neutron formalism and angular-momentum-coupled particle–
hole representation, the particle–hole basis states are |a b−1 ; J M〉. The
Hamiltonian

H = HHF + VRES (9.11)

is given in detail by (4.71) and (4.72). We now form the matrix elements of
H in the coupled basis.

The matrix element of HHF is

〈a b−1 ; J M |HHF|c d−1 ; J M〉 =
∑
α′

εα′
∑

mαmβ
mγmδ

(ja mα jb mβ |J M)

× (jc mγ jd mδ|J M)〈HF|hβcαc†α′cα′c†γh
†
δ|HF〉 . (9.12)

Using (4.46), (4.47), (4.52) and (4.53) we find

〈HF|hβcαc†α′cα′c†γh
†
δ|HF〉

= −δ−βα′δαγδα′,−δ + δβδδαα′δα′γ + δβδδαγθ(εF − εα′) , (9.13)

where θ is the Heaviside step function defined as

θ(x) =

{
1 , x ≥ 0 ,

0 , x < 0 .
(9.14)

Substitution into (9.12) results in

〈a b−1 ; J M |HHF|c d−1 ; J M〉 = δacδbd

(
εa − εb +

∑
εα′≤εF

εα′
)

. (9.15)

For excitation energies the last term in (9.15) can be omitted. This is
because the ground-state energy (4.73) contains

〈HF|HHF|HF〉 =
∑

εα≤εF
εα . (9.16)

The contribution of the one-body part to the excitation energies is then

〈a b−1 ; J |HHF|c d−1 ; J〉 = δacδbd(εa − εb) ≡ δacδbdεab . (9.17)
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The two-body part is

〈a b−1 ; J M |VRES|c d−1 ; J M〉

= 1
4

∑
mαmβ
mγmδ

(ja mα jb mβ |J M)(jc mγ jd mδ|J M)

×
∑

α′β′γ′δ′
〈α′ β′|V |γ′ δ′〉〈HF|hβcαN

[
c†α′c

†
β′cδ′cγ′

]
c†γh
†
δ|HF〉 (9.18)

with the two-body matrix element (4.45). The normal order varies as the
operators take on particle or hole character, and for a non-zero contribution
there has to be four particle and four hole operators. With these observations
the contractions yield

〈HF|hβcαN
[
c†α′c

†
β′cδ′cγ′

]
c†γh
†
δ|HF〉

= δαα′δβ,−γ′δ−β′δδδ′γ(−1)jc′+jb′+mγ′+mβ′

− δαα′δβ,−δ′δγγ′δδ,−β′(−1)jd′+jb′+mδ′+mβ′

− δαβ′δβ,−γ′δδ′γδ−α′δ(−1)jc′+ja′+mα′+mγ′

+ δαβ′δβ,−δ′δγγ′δ−α′δ(−1)ja′+jd′+mα′+mδ′ . (9.19)

After merging terms and simplifying this leads to

〈a b−1 ; J M |VRES|c d−1 ; J M〉 =
∑

mαmβ
mγmδ

(−1)jb+jd+mβ+mδ

× (ja mα jb mβ |J M)(jc mγ jd mδ|J M)〈α −δ|V |−β γ〉 . (9.20)

We now substitute (8.8) into (9.20), noticing that a 	= b, c 	= d. Since the
particle–hole matrix element is independent of M , we can sum the equation
over M and divide the result by 2J + 1. Then, with formulas of Chap. 1, we
convert the Clebsch–Gordan coefficients into 3j symbols and find

〈a b−1 ; J |VRES|c d−1 ; J〉

=
∑
J ′

Ĵ ′
2
〈a d ; J ′|V |b c ; J ′〉

∑
MM ′

∑
mαmβ
mγmδ

(−1)jb+jd+mβ+mδ

×
(

ja jb J
mα mβ −M

)(
ja jd J ′

mα −mδ −M ′

)(
jc jb J ′

−mγ mβ M ′

)(
jc jd J
mγ mδ −M

)
=

∑
J ′

Ĵ ′
2
(−1)jb+jc+J′〈a d ; J ′|V |b c ; J ′〉

{
ja jb J
jc jd J ′

}
, (9.21)

where the explicit definition (1.59) of the 6j symbol was used in the last
step. We use the symmetry property (8.30) and, to accommodate some of the
literature and computer codes, express the result also in terms of the Racah
symbol (1.63):
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〈a b−1 ; J |VRES|c d−1 ; J〉 = −
∑
J ′

Ĵ ′
2
{

ja jb J
jc jd J ′

}
〈a d ; J ′|V |c b ; J ′〉

= −
∑
J ′

Ĵ ′
2
W (ja jb jd jc;J J ′)〈d a ; J ′|V |b c ; J ′〉 .

(9.22)
This result is known as the Pandya transformation of particle–hole matrix
elements.

In isospin formalism an analogous derivation leads to the expression

〈a b−1 ; J T |VRES|c d−1 ; J T 〉

= −
∑
J ′T ′

Ĵ ′
2
T̂ ′

2
{

ja jb J
jc jd J ′

}{ 1
2

1
2 T

1
2

1
2 T ′

}
〈a d ; J ′ T ′|V |c b ; J ′ T ′〉

= −
∑
J ′T ′

Ĵ ′
2
T̂ ′

2
W (ja jb jd jc;J J ′)W (12

1
2

1
2

1
2 ;T T ′)

× 〈d a ; J ′ T ′|V |b c ; J ′ T ′〉 .

(9.23)

The particle–hole matrix elements (9.22) and (9.23) have the useful prop-
erty

〈c d−1 ; J (T )|VRES|a b−1 ; J (T )〉 = 〈a b−1 ; J (T )|VRES|c d−1 ; J (T )〉 ,
(9.24)

which means that the TDA Hamiltonian matrix is symmetric. This was to be
expected on general grounds: any Hamiltonian matrix is Hermitian and our
particle–hole matrix elements are real.

By means of the unitarity relation (1.66) of 6j symbols we can invert (9.22)
to yield

〈a d ; J |V |c b ; J〉 = −
∑
J ′

Ĵ ′
2
{

ja jd J
jc jb J ′

}
〈a b−1 ; J ′|VRES|c d−1 ; J ′〉 . (9.25)

Substituting this into the right-hand side of (9.22) and applying (8.30) and
(1.65) we can derive the relation

〈p n−1 ; J |VRES|p′ n′−1 ; J〉 = (−1)jn+jp′+J+1
∑
J ′
(−1)J ′

Ĵ ′
2
{

jp jn J
jn′ jp′ J ′

}
× 〈p p′−1 ; J ′|VRES|nn′−1 ; J ′〉 . (9.26)

9.1.3 Tabulated Values of Particle–Hole Matrix Elements

Equation (9.22) or (9.23) gives the particle–hole matrix elements once the
two-particle matrix elements are known. For the SDI the latter can be taken
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from Table 8.3 for excitations from the 0p shell to the 0d-1s shell, and from
Table 8.4 for excitations from the 0d-1s shell to the 0f7/2 shell.

For more direct evaluation of particle–hole matrix elements Tables 9.1–9.4
list the quantities

Mabcd(JT ) ≡ −
∑
J ′

Ĵ ′
2
{

ja jb J
jc jd J ′

}
〈a d ; J ′ T |VSDI|c b ; J ′ T 〉AT=1 . (9.27)

This is the same as (9.22) for the SDI scaled to AT = 1, except that here the
two-particle matrix element is in isospin representation. Table 9.1 gives (9.27)
for excitations from the 0s to the 0p shell, Table 9.2 from the 0p shell to the
0d-1s shells, Table 9.3 from the 0d-1s shells to the 0f7/2 shell and Table 9.4
from the 0f7/2 shell to the rest of the 0f-1p space. The CS phase convention
is used throughout.

Table 9.1. QuantitiesMabcd(JT ) in the CS phase convention

abcd JT M JT M JT M JT M
1111 10 2.3333 11 −0.3333 20 1.0000 21 1.0000
1121 10 −0.9428 11 0.9428
2121 00 1.0000 01 1.0000 10 1.6667 11 0.3333

The particle states are numbered 1 = 0p3/2 and 2 = 0p1/2, and

the hole state is numbered 1 = 0s1/2. The first column gives the
particle-hole–particle-hole labels, and the following columns give
the JT combinations and values ofM.

By means of the relations (8.25) and (8.27) the particle–hole matrix ele-
ments (9.22) are obtained from theMabcd(JT ) according to

〈p1 p−12 ; J |VRES|p3 p−14 ; J〉 = A1Ma1a2a3a4(J1) , (9.28)

〈n1 n−12 ; J |VRES|n3 n−14 ; J〉 = A1Ma1a2a3a4(J1) , (9.29)

〈p1 p−12 ; J |VRES|n3 n−14 ; J〉

=
1
2

{
A1

√
[1 + (−1)Jδa1a2 ][1 + (−1)Jδa3a4 ]Ma1a2a3a4(J1)

−A0

√
[1− (−1)Jδa1a2 ][1− (−1)Jδa3a4 ]Ma1a2a3a4(J0)

}
. (9.30)

The particle–hole matrix elements (9.23) are given directly by

〈a b−1 ; J T = 0|VRES|c d−1 ; J T = 0〉
= 1

2 [3A1Mabcd(J1)−A0Mabcd(J0)] , (9.31)
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Table 9.2. QuantitiesMabcd(JT ) in the CS phase convention

abcd JT M JT M JT M JT M JT M
1111 10 4.2000 11 −0.6000 20 0.8857 21 0.8857 30 1.0571
1111 31 −0.3143 40 1.2857 41 1.2857
1112 20 −0.8552 21 −0.8552 30 1.2777 31 −0.2555
1121 10 2.2361 11 −1.3416 20 0.9165 21 0.9165
1122 10 2.5298 11 0
1131 10 −0.4000 11 1.2000 20 0.2619 21 0.2619 30 −1.1198
1131 31 0.5599
1132 10 2.2361 11 −1.3416 20 −0.3928 21 −0.3928
1212 20 1.0000 21 1.0000 30 1.8571 31 0.1429
1221 20 −0.9798 21 −0.9798
1231 20 −0.4899 21 −0.4899 30 −0.7825 31 1.0954
1232 20 0 21 0
2121 10 2.3333 11 −0.3333 20 1.0000 21 1.0000
2122 10 0.9428 11 −0.9428
2131 10 −1.4907 11 −0.2981 20 0.4000 21 0.4000
2132 10 2.3333 11 −0.3333 20 −0.2000 21 −0.2000
2222 00 1.0000 01 1.0000 10 1.6667 11 0.3333
2231 00 −1.4142 01 −1.4142 10 0.2108 11 1.0541
2232 10 0.9428 11 −0.9428
3131 00 2.0000 01 2.0000 10 1.4667 11 0.9333 20 0.4000
3131 21 0.4000 30 2.2286 31 0.1714
3132 10 −1.4907 11 −0.2981 20 0.4000 21 0.4000
3232 10 2.3333 11 −0.3333 20 1.0000 21 1.0000

The particle states are numbered 1 = 0d5/2, 2 = 1s1/2 and 3 = 0d3/2, and the hole
states are numbered 1 = 0p3/2 and 2 = 0p1/2. The first column gives the particle-

hole–particle-hole labels, and the following columns give the JT combinations and
values ofM. The zeros recorded do not result from conservation laws.

〈a b−1 ; J T = 1|VRES|c d−1 ; J T = 1〉
= 1

2 [A1Mabcd(J1) +A0Mabcd(J0)] . (9.32)

Particle–hole matrix elements in the BR phase convention are obtained
from those in the CS convention according to

〈a b−1 ; J (T )|VRES|c d−1 ; J (T )〉BR
= (−1) 12 (lb+lc−la−ld)〈a b−1 ; J (T )|VRES|c d−1 ; J (T )〉CS . (9.33)

The relations (9.24)–(9.26) are valid also in the BR convention.
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Table 9.3. QuantitiesMabcd(JT ) in the CS phase convention

abcd JT M JT M JT M JT M JT M
1111 10 6.0000 11 −0.8571 20 1.0476 21 1.0476 30 1.7619
1111 31 −0.5238 40 0.8961 41 0.8961 50 0.7879 51 −0.2511
1111 60 1.5151 61 1.5151
1112 30 1.8571 31 −0.4286 40 0.9343 41 0.9343
1113 20 −1.1429 21 −1.1429 30 1.1547 31 −0.1650 40 −0.4882
1113 41 −0.4882 50 1.2696 51 −0.3174
1212 30 2.1429 31 −0.1429 40 1.0000 41 1.0000
1213 30 1.4846 31 0.1650 40 −0.5634 41 −0.5634
1313 20 1.7143 21 1.7143 30 1.1429 31 0.3809 40 0.3809
1313 41 0.3809 50 2.5454 51 0.1212

The particle state is numbered 1=0f7/2, and the hole states are numbered 1=0d5/2,
2=1s1/2 and 3=0d3/2. The first column gives the particle-hole–particle-hole labels,
and the following columns give the JT combinations and values ofM.

Table 9.4. QuantitiesMabcd(JT ) in the CS phase convention

abcd JT M JT M JT M JT M JT M
1111 20 3.7714 21 −0.3429 30 0.7619 31 0.7619 40 1.0159
1111 41 −0.2540 50 1.3333 51 1.3333
1121 30 0.8248 31 0.8248 40 −1.3147 41 0.1878
1131 20 −1.8286 21 −0.4571 30 0.4949 31 0.4949 40 −1.0625
1131 41 0.0861 50 0.4761 51 0.4761
2121 30 1.0000 31 1.0000 40 1.8889 41 0.1111
2131 30 0.7143 31 0.7143 40 1.6139 41 0.2548
3131 10 2.5714 11 2.5714 20 1.2762 21 0.8190 30 0.6190
3131 31 0.6190 40 1.4156 41 0.3766 50 0.2684 51 0.2684
3131 60 2.9137 61 0.1165

The particle states are numbered 1 = 1p3/2, 2 = 1p1/2 and 3 = 0f5/2, and the hole

state is numbered 1 = 0f7/2. The first column gives the particle-hole–particle-hole
labels, and the following columns give the JT combinations and values ofM.

9.1.4 TDA as an Eigenvalue Problem; Properties of the Solutions

The ground state of the TDA is the Hartree–Fock vacuum |HF〉. We seek TDA
excited states in the form

|ΨTDA
ω 〉 =

∑
ab

Xω
ab|a b−1 ; Jπ M〉 , (9.34)

where ω ≡ nJπM and n = 1, 2, 3, . . . numbers the eigenvalues for a given
multipolarity Jπ. In the pattern of (8.78) we then have the matrix equation∑

cd

〈a b−1 ; Jπ|H|c d−1 ; Jπ〉Xω
cd = EωX

ω
ab . (9.35)
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With (9.17) this becomes∑
cd

(δacδbdεab + 〈a b−1 ; Jπ|VRES|c d−1 ; Jπ〉)Xω
cd = EωX

ω
ab . (9.36)

These, for various ω, are the TDA equations to be solved.
We require orthonormality of the TDA eigenstates, i.e.

〈ΨTDA
ω |ΨTDA

ω′ 〉 = δωω′ = δnn′δJJ ′δππ′δMM ′ . (9.37)

Substituting (9.34) in the left-hand side and using (5.45) we obtain∑
abcd

Xω∗
ab Xω′

cd 〈a b−1 ; Jπ M |c d−1 ; J ′π′
M ′〉

=
∑
abcd

Xω∗
ab Xω′

cd δacδbdδJJ ′δππ′δMM ′ = δJJ ′δππ′δMM ′
∑
ab

Xω∗
ab Xω′

ab . (9.38)

Thus we see that orthogonality with respect to JπM is guaranteed by the
basis. Since the amplitudes Xω

ab are independent of M , we can write the
remaining condition as∑

ab

(
XnJπ

ab

)∗
Xn′Jπ

ab = δnn′ (TDA orthonormality) . (9.39)

Normalization is carried by the special case∑
ab

|Xω
ab|2 = 1 . (9.40)

The TDA states form a complete set in the particle–hole space, so that
they satisfy ∑

ω

|ΨTDA
ω 〉〈ΨTDA

ω | = 1 . (9.41)

Inserting this relation into (5.45) gives

δacδbd = 〈a b−1 ; Jπ M |
∑
ω

|ΨTDA
ω 〉〈ΨTDA

ω |c d−1 ; Jπ M〉 =
∑
n

XnJπ

ab

(
XnJπ

cd

)∗
,

(9.42)
so we have ∑

n

XnJπ

ab

(
XnJπ

cd

)∗ = δacδbd (TDA completeness) . (9.43)

The calculation of the eigenenergies Eω and the eigenfunctions |ΨTDA
ω 〉 will

be addressed in the following sections of this chapter.
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9.2 TDA for General Separable Forces

In this section we present the particle–hole matrix element and simplify it by
excluding part of it, which leads to a schematic model. Within that model,
we derive a simple equation, a so-called dispersion relation, for approximate
TDA energies. We solve the equation graphically for excitation energies in
4He.

9.2.1 Schematic Model; Dispersion Equation

In the following we develop a schematic model for solving the TDA equations
(9.36) for separable forces. In spite of the radical assumptions required for its
simplicity, the model gives qualitative and even quantitative insight into the
basic principles and properties of the TDA and its solutions.

We write the Pandya transformation (9.22) and change the cb coupling
order in the two-particle matrix element by means of (8.30). We then insert the
two-particle matrix element given by (8.55) and (8.56) for a general separable
force. This gives

〈a b−1 ; J |VRES|c d−1 ; J〉 = −
∑
J ′

Ĵ ′
2
{

ja jb J
jc jd J ′

}
Nad(J ′)Nbc(J ′)

× (−1)jc+jb+J′+1

[∑
λ

χλ(−1)ja+jd+J′
{

ja jd J ′

jc jb λ

}
(b‖Qλ‖a)(d‖Qλ‖c)

− (−1)jb+jc+J′ ∑
λ

χλ(−1)ja+jd+J′
{

ja jd J ′

jb jc λ

}
(c‖Qλ‖a)(d‖Qλ‖b)

]
.

(9.44)

Here we have inserted interaction strengths χλ, while in the original formula-
tion of Subsect. 8.2.1 they were included in the reduced matrix elements of the
Qλ. This changes the definition of the reduced matrix elements, as discussed
in detail in Subsect. 9.2.3.

The sums over J ′ can be carried out because Nad = 1 = Nbc. The first
term of (9.44) simplifies radically because of the 6j orthogonality relation
(1.66). The second term also simplifies because of the relation (1.65), and
(9.44) becomes

〈a b−1 ; J |VRES|c d−1 ; J〉 = (−1)ja+jb+jc+jdχJ Ĵ
−2(b‖QJ‖a)(d‖QJ‖c)

−
∑
λ

(−1)ja+jd+J+λχλ

{
ja jb J
jd jc λ

}
(c‖Qλ‖a)(d‖Qλ‖b) . (9.45)

The second, ‘exchange’ term is still complicated as it mixes different multipoles
λ. We introduce now an approximate, schematic model that omits the explicit
exchange term but takes it into account through the interaction parameters,
as discussed in Subsect. 9.2.2.
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From Subsect. 8.2.1 we know that the operator Qλ in the separable force
is essentially the same as the electric operator Qλ. We can therefore apply
the symmetry property (6.27) to the reduced matrix elements in (9.45). The
particle–hole matrix element in our schematic model then reads

〈a b−1 ; J |VRES|c d−1 ; J〉 = χJ Ĵ
−2(a‖QJ‖b)(c‖QJ‖d) . (9.46)

With the abbreviation
QJ
ab ≡ Ĵ −1(a‖QJ‖b) (9.47)

this becomes
〈a b−1 ; J |VRES|c d−1 ; J〉 = χJQ

J
abQ

J
cd . (9.48)

Substituting (9.48) into the TDA eigenvalue equation (9.36) yields∑
cd

(δacδbdεab + χJQ
J
abQ

J
cd)X

ω
cd = EωX

ω
ab , (9.49)

which can be put in the form

(εab − Eω)Xω
ab = QJ

abNω , Nω ≡ −χJ

∑
cd

QJ
cdX

ω
cd . (9.50)

Solving for the TDA amplitudes gives

Xω
ab =

QJ
ab

εab − Eω
Nω . (9.51)

The magnitude of Nω can be determined from the normalization condition
(9.40):

1 =
∑
ab

Xω∗
ab Xω

ab =
∑
ab

(QJ
ab)

2

(εab − Eω)2
|Nω|2 , (9.52)

where we have noted that the QJ
ab are real but Nω is complex if complex

phases are used in the amplitudes Xω
ab. This leads to the result

|Nω|−2 =
∑
ab

(QJ
ab)

2

(εab − Eω)2
. (9.53)

From the definition of Nω in (9.50) and from the expression (9.51) for the
TDA amplitude we obtain

Nω = −χJ

∑
cd

QJ
cd

QJ
cd

εcd − Eω
Nω . (9.54)

Dividing both sides by Nω, renaming the summation indices and rearranging,
we have
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− 1
χJ

=
∑
ab

(QJ
ab)

2

εab − Eω
. (9.55)

This equation gives the eigenenergies Eω, normally by numerical or graphical
methods. Equations of this type in physics are known as dispersion equations
or dispersion relations.

A graphical solution of a transcendental equation like (9.55) can give a
panoramic view of the physics described by the equation. The basic method
is to plot in the same coordinate system the left-hand and right-hand sides of
the equation and then look for intersections of the curves. In the present case
the curves are drawn as functions of the TDA eigenenergy Eω. This method is
applied in Subsect. 9.2.4 to determine the TDA energies of 1− states in 4He.

An interesting special case of the dispersion equation (9.55) occurs for
degenerate particle–hole energies, i.e. εab = ε for all ab. Then all but one
solution, for a given χJ , are trapped at the unperturbed energy ε. This can
be seen from Fig. 9.1. For the untrapped solution equation (9.55) gives

− 1
χJ

=
Q2

ε− E
, Q2 ≡

∑
ab

(QJ
ab)

2 , (9.56)

leading to
E = ε+ χJQ

2 ≡ Ecoll . (9.57)

The result (9.57) shows that the energy of the lowest solution decreases
with increasing magnitude of χJ for χJ < 0. The opposite happens to the

10 15 20 25 30 35 40

−1

−0.5

0

0.5

1

E
n

(A=1,T=1)

(A=1,T=0)

(A=2,T=1)

(A=2,T=0)

Fig. 9.1. Graphical solution of the transcendental equation (9.82) for the 1− states
in 4He. All energies are given in MeV. Solutions of the T = 0 and T = 1 eigenenergies
are shown for two interaction strengths A. The unperturbed particle–hole energies
are shown as vertical dash-dotted lines
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highest solution if χJ > 0. This behaviour of the two untrapped TDA states
displays their collective nature. In the following subsection we associate the
attractive interaction with isoscalar states (χJ < 0, T = 0) and the repulsive
interaction with isovector states (χJ > 0, T = 1).

9.2.2 The Schematic Model for T = 0 and T = 1

Let us now see how we can compensate for the omission of the exchange term
of (9.45). To that end, we return to the complete equation (9.45) and designate
its two terms as D for ‘direct’ and E for ‘exchange’:

〈a b−1 ; J |VRES|c d−1 ; J〉 = D − E . (9.58)

This contains the proton and neutron terms

〈p1 p−12 ; J |VRES|p3 p−14 ; J〉 = Dππ − Eππ , (9.59)

〈n1 n−12 ; J |VRES|n3 n−14 ; J〉 = Dνν − Eνν , (9.60)

〈p1 p−12 ; J |VRES|n3 n−14 ; J〉 = Dπν , (9.61)

〈n1 n−12 ; J |VRES|p3 p−14 ; J〉 = Dνπ . (9.62)

There cannot exist a term of the form Eπν or Eνπ since it would contain
factors like (n3‖Qλ‖p1), in violation of charge conservation.

In the isospin formalism the particle–hole T = 0 and T = 1 states
with MT = 0 include both proton-particle–proton-hole and neutron-particle–
neutron-hole excitations. These states, originally given by (5.126) and (5.127),
are

|a1 a−12 ; J M ; 0 0〉 = 1√
2

(
|n1 n−12 ; J M〉+ |p1 p−12 ; J M〉

)
, (9.63)

|a1 a−12 ; J M ; 1 0〉 = 1√
2

(
|n1 n−12 ; J M〉 − |p1 p−12 ; J M〉

)
. (9.64)

Equations (9.59)–(9.62) now give

〈a b−1 ; J 0|VRES|c d−1 ; J 0〉
= 1

2 [(Dνν − Eνν) + (Dππ − Eππ) + (Dπν +Dνπ)] , (9.65)

〈a b−1 ; J 1|VRES|c d−1 ; J 1〉
= 1

2 [(Dνν − Eνν) + (Dππ − Eππ)− (Dπν +Dνπ)] . (9.66)

With isospin symmetry assumed, we have

Dππ = Dνν = Dπν = Dνπ ≡ D , Eππ = Eνν ≡ E , (9.67)

so that
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〈a b−1 ; J 0|VRES|c d−1 ; J 0〉 = 2D − E , (9.68)

〈a b−1 ; J 1|VRES|c d−1 ; J 1〉 = −E . (9.69)

For a typical set abcd it turns out that E ≈ D. This implies that the
matrix elements (9.68) and (9.69) are roughly equal in magnitude and opposite
in sign. On general experience from particle–hole spectra, as presented in
Sect. 5.4, we expect the T = 0 matrix element to be smaller than the T = 1
matrix element, which implies

〈a b−1 ; J 0|VRES|c d−1 ; J 0〉 ≈ D < 0 , (9.70)

〈a b−1 ; J 1|VRES|c d−1 ; J 1〉 ≈ −D > 0 . (9.71)

For an attractive interaction in the direct term (9.48) we have χJ < 0.
According to (9.70) and (9.71) we can then use the direct term with χJ to
calculate the T = 0 matrix element and with −χJ to calculate the T =
1 matrix element. We adopt this approximation as an essential part of our
schematic model.

The rather radical approximations introduced above find their practical
justification in the application presented in Subsect. 9.2.4.

9.2.3 The Schematic Model with the Surface Delta Interaction

Equation (8.53) and the definition (9.47) provide an explicit expression for
QJ
ab. For the SDI, with details and notation from Subsect. 8.2.2, it becomes

QJ
ab =

|κab|
√
−V0

4
√

π
(−1)na+nb(−1)jb+J−1

2
[
1 + (−1)la+lb+J

]
ĵaĵb

(
ja jb J
1
2 −

1
2 0

)
.

(9.72)
If we formed QJ

abQ
J
cd with (9.72), the constant in front would become the SDI

constant − 1
4AT according to the replacement (8.70). However, from Eq. (9.44)

on we have removed the strength constant from the reduced matrix elements
of Qλ and included the external strength constant χλ. Thus we now adopt

QJ
ab(SDI) = (−1)na+nb(−1)jb+J−1

2
[
1 + (−1)la+lb+J

]
ĵaĵb

(
ja jb J
1
2 −

1
2 0

)
.

(9.73)
With D given by (9.48), the particle–hole matrix elements (9.70) and (9.71)
become

〈a b−1 ; J T |VRES|c d−1 ; J T 〉 = − 1
4ATQJ

ab(SDI)Q
J
cd(SDI) , (9.74)

where
A0 ≡ A > 0 , A1 = −A . (9.75)

Altogether the SDI matrix elements of our schematic model are thus
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〈a b−1 ; J 0|VRES|c d−1 ; J 0〉 = − 1
4AQJ

ab(SDI)Q
J
cd(SDI) ,

〈a b−1 ; J 1|VRES|c d−1 ; J 1〉 = +1
4AQJ

ab(SDI)Q
J
cd(SDI) .

(9.76)

Comparison with (9.48) shows that we may write

χSDI
J (T = 0) = −1

4A , χSDI
J (T = 1) = +1

4A . (9.77)

The formulas of this subsection are used in the following example to find
the energies of 1− states in 4He by means of the dispersion equation (9.55).

9.2.4 Application to 1− Excitations in 4He

Consider the 1− excitation spectrum of 42He2 within the 0s-0p valence space.
This nucleus is doubly magic, its ground state being the particle–hole vac-
uum |HF〉. Particle–hole nuclei were treated without configuration mixing in
Sect. 5.4, with the experimental excitation spectrum of 4He shown in Fig. 5.9.

The energy gap between the two relevant major shells, 0s and 0p, can be
obtained from the empirical formula

Δε(0p-0s) ≈ 33A−1/3MeV . (9.78)

From this we take Δε = 21.0MeV. For the energy difference within the 0p
shell we take ε0p1/2 − ε0p3/2 = 6.0MeV. The energies involved are also shown
in the schematic drawing of Fig. 3.3.

The possible 1− particle–hole excitations in our chosen valence space are

{|1〉 , |2〉} = {|0p3/2 (0s1/2)−1 ; 1−〉 , |0p1/2 (0s1/2)−1 ; 1−〉} , (9.79)

for both protons and neutrons. The corresponding particle–hole energies εab
are ε1 = 21.0MeV and ε2 = 27.0MeV. Inserting the values of the 3j symbols
into (9.73) gives

Q1
0p3/20s1/2

(SDI) =
4√
3

, Q1
0p1/20s1/2

(SDI) = −2
√
2
3

. (9.80)

Substituting into the dispersion equation (9.55) results in

− 1
∓ 1

4A
=

16
3

21.0MeV− E
+

8
3

27.0MeV− E
, (9.81)

where the upper sign is for T = 0 and the lower for T = 1. Simplifying, we
obtain

± 1
A
=

4
3

21.0MeV− E
+

2
3

27.0MeV− E
. (9.82)
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Table 9.5. TDA eigenenergies En of J
π = 1−, T = 0 particle–hole states in 4He

obtained by graphical solution of the schematic model and by exact diagonalization

A (MeV) E1 (MeV) E2 (MeV)
Schematic Exact Schematic Exact

1.0 19.5 18.877 26.5 27.123
2.0 17.9 16.255 26.1 27.745

The SDI is used for both.

Table 9.6. TDA eigenenergies En of J
π = 1−, T = 1 particle–hole states in 4He

obtained by graphical solution of the schematic model and by exact diagonalization

A (MeV) E1 (MeV) E2 (MeV)
Schematic Exact Schematic Exact

1.0 22.2 22.000 27.8 28.000
2.0 23.0 23.000 29.0 29.000

The SDI is used for both.

The two equations (9.82) are solved graphically in Fig. 9.1. The left-hand
sides (horizontal lines) and the common right-hand side are plotted as func-
tions of E for two values of A: A = 1.0MeV and A = 2.0MeV. The abscissas
of the intersection points give the solutions En, separately for each T . The
solutions read off the figure2 are collected into Tables 9.5 and 9.6, and there
compared with exact solutions obtained by numerical diagonalization in Sub-
sect. 9.3.2.

Figure 9.1 confirms the statements about collectivity made in the last
paragraph of Subsect. 9.2.1. Even in the realistic case where the single-particle
energies are not degenerate, the solutions other than the lowest T = 0 and the
highest T = 1 are confined between adjacent vertical lines and therefore do not
change very much when A is increased. In contrast, the lowest T = 0 solution
is free to move to the left and the highest T = 1 solution to the right with
increasing A. The collectivity appears not only in the energy spectrum but
expressly in the electromagnetic properties, as discussed later in this chapter.

The collective Jπ = 1−, T = 1 state is known as the giant dipole resonance.
It is well known experimentally, and realistic TDA calculations have been
performed to reproduce its energy and dipole strength [14].

As can be seen from Tables 9.5 and 9.6, the solutions of the schematic
model are surprisingly close to the exact solutions. However, varying the value
of A shows that the schematic description of the collective states deteriorates
with increasing A.

2 Because of the small valence space, equations (9.82) are of only second order in
E and can therefore be solved also analytically. The graphical solutions in Tables
9.5 and 9.6 have been thus checked.
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9.3 Excitation Spectra of Doubly Magic Nuclei

In the following we apply the TDA method to calculate excitation energies of
doubly magic nuclei by matrix diagonalization.

9.3.1 Block Decomposition of the TDA Matrix

As discussed in the previous section, particle–hole excitations have both pro-
ton and neutron contributions, i.e. we have both pp−1 and nn−1 excitations.
Bearing this in mind, we can write the general form of a TDA matrix in a
block form as

HTDA =
(
H(pp−1 − pp−1) V(pp−1 − nn−1)
V(nn−1 − pp−1) H(nn−1 − nn−1)

)
. (9.83)

The proton–proton block H(pp−1 − pp−1) consists of the matrix elements

(εp1 − εp2)δp1p3δp2p4 + 〈p1 p−12 ; J |VRES|p3 p−14 ; J〉 . (9.84)

The Pandya transformation (9.22) decomposes 〈p1 p−12 ; J |VRES|p3 p−14 ; J〉
into a sum of terms proportional to the two-particle matrix element

〈p1 p4 ; J ′|V |p3 p2 ; J ′〉 . (9.85)

The neutron–neutron block is the same except that the proton labels are
replaced with neutron labels. These two blocks have necessarily isospin T = 1.

The proton–neutron block V(pp−1−nn−1) consists of the matrix elements

〈p1 p−12 ; J |VRES|n3 n−14 ; J〉 (9.86)

and it decomposes into a sum of terms proportional to the two-particle matrix
element

〈p1 n4 ; J ′|V |n3 p2 ; J ′〉 . (9.87)

The neutron–proton block is the same as the proton–neutron block, only the
labels π and ν are interchanged. Equation (8.27) gives the matrix elements
(9.87) in terms of the isospins T = 1 and T = 0.

Equations (9.28)–(9.30) give the particle–hole matrix elements in terms
of the auxiliary quantity Mabcd(JT ). This quantity is tabulated for various
particle–hole valence spaces in Tables 9.1–9.4. Next we discuss some examples
of the construction and diagonalization of TDA Hamiltonian matrices.

9.3.2 Application to 1− States in 4He

Consider the 1− excitations of the nucleus 4
2He2 in the particle–hole valence

space (0p3/2-0p1/2)-(0s1/2)−1 with the single-particle energies ε0s1/2 = 0,
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ε0p3/2 = 21.0MeV and ε0p1/2 = 27.0MeV. This is exactly the valence space of
the example of Subsect. 9.2.4, where the same problem was discussed within
the schematic model. The basis states are

{|π1〉 , |π2〉 , |ν1〉 , |ν2〉}
= {|π0p3/2 (π0s1/2)−1 ; 1−〉 , |π0p1/2 (π0s1/2)−1 ; 1−〉 ,
|ν0p3/2 (ν0s1/2)−1 ; 1−〉 , |ν0p1/2 (ν0s1/2)−1 ; 1−〉} . (9.88)

The TDA matrix (9.83) becomes

HTDA(1−) =

⎛⎜⎜⎝
επ1 + Vπ1π1 Vπ1π2 Vπ1ν1 Vπ1ν2

Vπ2π1 επ2 + Vπ2π2 Vπ2ν1 Vπ2ν2
Vν1π1 Vν1π2 εν1 + Vν1ν1 Vν1ν2
Vν2π1 Vν2π2 Vν2ν1 εν2 + Vν2ν2

⎞⎟⎟⎠ , (9.89)

where

επ1 = επ0p3/2 − επ0s1/2 = 21.0MeV , επ2 = επ0p1/2 − επ0s1/2 = 27.0MeV ,

εν1 = εν0p3/2 − εν0s1/2 = 21.0MeV , εν2 = εν0p1/2 − εν0s1/2 = 27.0MeV .

(9.90)

Using now Eqs. (9.28)–(9.30) and Table 9.1 we obtain, with single-particle
energies in MeV and rounding off the two-body matrix elements to three
decimals,

HTDA(1−) =⎛⎜⎝21.0− 0.333A1 0.943A1
1
2
(−0.333A1 − 2.333A0)

1
2
(0.943A1 + 0.943A0)

0.943A1 27.0 + 0.333A1
1
2
(0.943A1 + 0.943A0)

1
2
(0.333A1 − 1.667A0)

. . . . . . 21.0− 0.333A1 0.943A1

. . . . . . 0.943A1 27.0 + 0.333A1

⎞⎟⎠ ,

(9.91)

where the dots represent the matrix elements symmetric with those of the
proton–neutron block; the TDA matrix is symmetric, as stated in (9.24). By
diagonalizing for A0 = A1 = 1.0MeV and A0 = A1 = 2.0MeV we obtain
the eigenenergies quoted as ‘exact’ in Tables 9.5 and 9.6. The corresponding
diagonal elements in the proton block and in the neutron block are the same
because we have the same single-particle energies and the same interactions
for both kinds of nucleon. The eigenstates have therefore good isospin, but
the isospin assignment is not obvious.

The calculation of the 1− states of 4He can be done also in the isospin
formalism. This choice is preferable in general because it gives an immediate
isospin identification and smaller matrices. For 4He we obtain two 2-by-2
matrices, one for T = 0 and the other for T = 1. The one-body part is given
by (9.17) and the two-body part by the relations (9.31) and (9.32) and Table
9.1. The basis is
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{|1〉 , |2〉} = {|0p3/2 (0s1/2)−1 ; 1− T 〉 , |0p1/2 (0s1/2)−1 ; 1− T 〉} . (9.92)

The matrices become

HTDA(1−, T = 0) =(
21.0 + 1

2 [3(−0.3333A1)− 2.3333A0] 1
2 [3(0.9428A1)− (−0.9428A0)]

1
2 [3(0.9428A1)− (−0.9428A0)] 27.0 + 1

2 [3(0.3333A1)− 1.6667A0]

)
,

(9.93)

HTDA(1−, T = 1) =(
21.0 + 1

2 (−0.3333A1 + 2.3333A0) 1
2 (0.9428A1 − 0.9428A0)

1
2 (0.9428A1 − 0.9428A0) 27.0 + 1

2 (0.3333A1 + 1.6667A0)

)
.

(9.94)

The eigenvalues of the matrices (9.93) and (9.94) are quoted in Tables 9.5
and 9.6 respectively. We notice that for A0 = A1 ≡ A the T = 1 matrix
(9.94) happens to be diagonal, which results in the energies E1(T = 1) =
21.0MeV + A and E2(T = 1) = 27.0MeV + A. This explains the ‘round’
figures in Table 9.6.

9.3.3 Application to Excited States in 16O

In our second example we consider particle–hole excitations across the N =
Z = 8 magic shell gap in 16

8O8. We take this gap from experiment as
11.6MeV.3 Our energies within the 0p and 0d-1s shells are those of Fig. 9.2 (a),
for both protons and neutrons.

Let us compute the energies of the 2− and 3− states and compare them
with experiment. The smallest possible particle–hole valence space for them
is 0d5/2-(0p1/2)−1. It contains the basis states

{|π1〉 , |ν1〉} = {|π0d5/2 (π0p1/2)−1 ; J−〉 , |ν0d5/2 (ν0p1/2)−1 ; J−〉} . (9.95)

Equations (9.28)–(9.30) and Table 9.2 give the following matrices:

HTDA(2−) =
(

11.6 + 1.0000A1
1
2 (1.0000A1 − 1.0000A0)

1
2 (1.0000A1 − 1.0000A0) 11.6 + 1.0000A1

)
, (9.96)

HTDA(3−) =
(

11.6 + 0.1429A1
1
2 (0.1429A1 − 1.8571A0)

1
2 (0.1429A1 − 1.8571A0) 11.6 + 0.1429A1

)
. (9.97)

Let us take A0 = A1 = 1.0MeV. The two 2− states given by (9.96)
are then degenerate at the energy E(2−) = 12.600MeV. Diagonalizing the
matrix (9.97) we obtain E1(3−) = 10.886MeV and E2(3−) = 12.600MeV.
The energies yielded by (9.96) and (9.97) are shown in the left-hand column
of Fig. 9.3.
3 The rule-of-thumb formula (9.78) gives 13.1MeV, while Fig. 3.3 shows ≈12MeV.



www.manaraa.com

9.3 Excitation Spectra of Doubly Magic Nuclei 263

0

5

10

15

20

25
M

ea
n−

fie
ld

 e
ne

rg
y 

[M
eV

]

 1−  0.00

 1−  6.20

 1− 17.80
 1− 18.67

 1− 22.88

 1−  0.00

 1−  1.50

 1−  4.00

 1− 10.00

 1−  0.00

 1−  1.50

 1−  4.00

 1−  9.00

 1−  0.00

 1−  4.80

 1−  6.82

 1−  8.80

Jπ ε Jπ ε Jπ ε Jπ ε

11.6 MeV 

6.0 MeV 
5.0 MeV 

4.8 MeV 

π ν
(a) (b) (c)

0p3/2

0p1/2

0d3/2

1s1/2
0d5/2

0f 7/2

0d3/2

1s1/2

0d5/2

0f7/2

0d3/2

1s1/2

0d5/2

0f5/2

1p1/2

1p3/2

0f7/2

Fig. 9.2. Single-particle energies of the particle–hole valence spaces used to calculate
spectra of the doubly magic nuclei 16O (a), 40Ca (b) and 48Ca (c). See also the rough
scheme of Fig. 3.3

We have proceeded to calculate the energies of the 2− and 3− states in suc-
cessively larger particle–hole valence spaces. The resulting spectra are shown
in Fig. 9.3. In all these spectra every 2− state is doubly degenerate.

Figure 9.3 shows that the TDA fails to bring the lowest 3− state low
enough for good agreement with experiment. This is understood to result from
an insufficient collectivity of the lowest TDA 3− state. The RPA introduced
in Chap. 11 improves the description. However, the presence of collectivity in
the lowest TDA states is borne out by their electromagnetic decay rates, to
be discussed in the next section.

9.3.4 Further Examples: 40Ca and 48Ca

Similarly to the previous examples of 42He2 and
16
8O8, we have calculated TDA

spectra for 40
20Ca20 and

48
20Ca28. Details of the calculations are omitted; only

their results are displayed in Figs. 9.4 and 9.5. The single-particle energies
used in these calculations are given in panels (b) and (c) of Fig. 9.2.

Figure 9.4 for 40Ca shows the TDA spectrum for the minimal hole space
(0d3/2)−1 and for the complete 0d-1s hole space. Use of the larger space greatly
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Fig. 9.3. TDA energies of the 2− and 3− states in 16O computed in successively
larger valence spaces built from the single-particle levels of Fig. 9.2 (a), together
with the experimental 2− and 3− levels. The SDI was used with parameters A0 =
A1 = 1.0MeV

improves the quality of the spectrum. The lowest 3− and 5− states drop
considerably towards their experimental counterparts. However, only the RPA
spectrum, shown for completeness, contains a good description of the 3− and
5− energies.

Figure 9.5 shows the calculated TDA and RPA spectra of 48Ca. The
particle–hole valence space used in these calculations is shown in Fig. 9.2 (c).
Here the protons have particle–hole excitations from the 0d-1s shell to the
0f7/2 orbital, across the Z = 20 magic gap, which produced the theoreti-
cal negative-parity states. The neutrons have particle–hole excitations from
the 0f7/2 orbital to the 1p-0f5/2 shell, across the N = 28 magic gap, which
produced the theoretical positive-parity levels. There is no isospin symmetry
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Fig. 9.4. TDA spectra of 40Ca in two different particle–hole valence spaces and the
RPA spectrum in the larger valence space, together with the experimental spectrum
for negative-parity states. The single-particle energies are those of Fig. 9.2 (b). The
SDI was used with parameters A0 = 0.85MeV and A1 = 0.90MeV

because of the completely different proton and neutron particle–hole spaces;
this was noted at the end of Sect. 5.4.

The TDA and RPA spectra are not very different; both compare rather well
with the experimental spectrum. No 0+ state can be produced in the chosen
particle–hole valence space, so the 0+ states of the experimental spectrum
must have another, more complicated structure.

9.4 Electromagnetic Transitions in Doubly Magic Nuclei

In this section we discuss the effects of configuration mixing on the electro-
magnetic decay properties of particle–hole states. These decays were discussed
in Subsect. 6.4.1 with no configuration mixing. The transitions can be divided
into two categories: ground-state transitions, involving only one TDA wave
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Fig. 9.5. TDA and RPA spectra of 48Ca in the particle–hole valence space of
Fig. 9.2 (c), together with the experimental spectrum. The SDI was used with pa-
rameters A0 = A1 = 1.0MeV

function, and transitions between two TDA states. We start by discussing
transitions of the first category. The reduced transition probabilities and half-
lives can be obtained with the formulas and tables of Sect. 6.1.

9.4.1 Transitions to the Particle–Hole Ground State

In Subsect. 6.4.1 we discussed the electromagnetic decay of a single particle–
hole excitation to the particle–hole vacuum. In particular we established, as
Eq. (6.119), that in the CS phase convention

(HF‖Mσλ‖ai b−1i ; Ji) = δλJi(−1)Ji(ai‖Mσλ‖bi) , (9.98)

whereMσλ is the electromagnetic multlipole operator (6.5) of the electric,
σ = E, or magnetic, σ = M, type. The particle–hole state in (9.98) is

|ai b−1i ; Ji Mi〉 =
[
c†aih

†
bi

]
JiMi
|HF〉 , (9.99)

where ai and bi are both either proton or neutron labels.
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The TDA wave function is given by (9.34) as a linear combination of
the particle–hole excitations (9.99). Thus we can immediately write the TDA
decay amplitude as4

(HF‖Mσλ‖Ψ(TDA)
ω ) ≡ (HF‖Mσλ‖ω) = δλJ(−1)J

∑
ab

Xω
ab(a‖Mσλ‖b) ,

(9.100)
where ω stands for nJπ. The reduced transition probability is

B(σλ ; ω → 0+gs)TDA = δλJ Ĵ
−2∣∣(HF‖MσJ‖ω)

∣∣2 . (9.101)

For transitions in the opposite direction, the squared amplitude
∣∣(ω‖Mσλ‖HF)

∣∣2
is called the decay strength to the final state |ω〉.

9.4.2 Non-Energy-Weighted Sum Rule

The summed decay strength to all final states reached by the operatorMσλ

from the particle–hole ground state is∑
n

∣∣(ω‖Mσλ‖HF)
∣∣2 =∑

n

∣∣(HF‖Mσλ‖ω)
∣∣2 =∑

n

∣∣∣∑
ab

Xω
ab(a‖Mσλ‖b)

∣∣∣2
=

∑
n

∑
ab
a′b′

Xω
ab(X

ω
a′b′)

∗(a‖Mσλ‖b)(a′‖Mσλ‖b′)∗

=
∑
ab

∣∣(a‖Mσλ‖b)
∣∣2 , (9.102)

where the TDA completeness relation (9.43) was used in the last step. Spelling
out ω and taking into account the Kronecker delta in (9.100) we then have
the TDA sum rule∑

n

∣∣(nλπ‖Mσλ‖HF)
∣∣2 =∑

ab

∣∣(a‖Mσλ‖b)
∣∣2 . (9.103)

The left-hand side of (9.103) depends on the TDA wave functions, whereas
the right-hand side depends only on the chosen valence space and the char-
acteristics of the transition operator. By computing each side of the equation
we have a check on the correctness of our TDA wave functions. This sum rule
is an example of the so-called non-energy-weighted sum rule (NEWSR).

For electric transitions with effective charges (6.26) we obtain from (9.103)
the expression

4 The phase factor (−1)J is replaced by +1 for σ = E and −1 for σ = M in the
Biedenharn-Rose phase convention.
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k

∣∣(k λπ‖Qλ‖HF)
∣∣2 = (epeff/e)2 ∑

pp′

∣∣(p‖Qλ‖p′)
∣∣2

+ (eneff/e)
2
∑
nn′

∣∣(n‖Qλ‖n′)
∣∣2 ,

(9.104)

where p and n are particle indices and p′ and n′ hole indices. The single-
particle matrix elements are given by (6.23). With substitution from (9.100)
the left-hand side of (9.104) becomes∑

k

∣∣(k λπ‖Qλ‖HF)
∣∣2 = 1

e2

∑
k

∣∣∣epeff ∑
pp′

Xkλπ

pp′ (p‖Qλ‖p′)

+ eneff
∑
nn′

Xkλπ

nn′ (n‖Qλ‖n′)
∣∣∣2 . (9.105)

Next we discuss some examples to clarify the notion of a collective state
and the related decay strength.

9.4.3 Application to Octupole Transitions in 16O

Consider the electric octupole (E3) transitions from the 3− states of 168O8 to
the 0+ ground state. We calculate the transitions in the three successively
larger particle–hole valence spaces of Fig. 9.3 with the single-particle energies
of Fig. 9.2 (a). For the SDI we use A0 = A1 = 1.0MeV as in Fig. 9.3. The
oscillator length for A = 16, b = 1.725 fm, we have from Subsect. 6.4.2.

Valence space 0d5/2-(0p1/2)
−1

The smallest particle–hole valence space is 0d5/2-(0p1/2)−1. Its basis states
are given by (9.95) and the 3− matrix by (9.97). The wave functions of the
two 3− states are5

|16O , 3−1 〉 =
1√
2
(|π1〉+ |ν1〉) , (9.106)

|16O , 3−2 〉 =
1√
2
(|π1〉 − |ν1〉) . (9.107)

The state (9.106) can be identified as the T = 0 state (6.126), while (9.107)
is its T = 1 companion.

We apply (9.100) with effective charges. The one single-particle matrix
element needed, (0d5/2‖Q3‖0p1/2), is found from Table 6.5 and is directly
quoted in (6.128). Thus we have

5 It can be seen from the equations of Subsect. 8.3.2 that these wave functions are
exact for the given space.
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(HF‖Q3‖3−1 ) = (−1)3
1√
2
(−3.824)(epeff + eneff)b

3 = 2.704e+b3 = 13.88e+ fm3 ,

(9.108)
where we have abbreviated

e± ≡ epeff ± eneff . (9.109)

Similarly we find
(HF‖Q3‖3−2 ) = 13.88e− fm3 . (9.110)

The left-hand side of the sum rule (9.104) is now

2∑
k=1

∣∣(3−k ‖Q3‖HF)
∣∣2 = 13.882(e2+ + e2−) fm

6 = 385.3[(epeff)
2 + (eneff)

2] fm6 .

(9.111)
On the other hand, the right-hand side of (9.104) becomes

(epeff/e)
2
∣∣(0d5/2‖Q3‖0p1/2)

∣∣2 + (eneff/e)2∣∣(0d5/2‖Q3‖0p1/2)
∣∣2

= [(epeff)
2 + (eneff)

2](−3.824b3)2 = 385.3[(epeff)2 + (eneff)2] fm
6 . (9.112)

Thus we see that the TDA sum rule is satisfied.
We finally note that this calculation substantially repeats the 3−1 part of

Subsect. 6.4.2 and the qualitative considerations of Subsect. 6.5.2, including
Fig. 6.2.

Valence space (0d5/2-1s1/2)-(0p)−1

We extend the previous example to the (0d5/2-1s1/2)-(0p)−1 particle–hole
space. The Jπ = 3− basis states are then6

{|π1〉 , |π2〉 , |ν1〉 , |ν2〉}
= {|π0d5/2 (π0p3/2)−1 ; 3−〉 , |π0d5/2 (π0p1/2)−1 ; 3−〉 ,
|ν0d5/2 (ν0p3/2)−1 ; 3−〉 , |ν0d5/2 (ν0p1/2)−1 ; 3−〉} . (9.113)

Proceeding as in Sect. 9.3 we form and diagonalize the Hamiltonian matrix
in this basis. The lowest 3− state becomes

|16O , 3−1 〉 = 0.117|π1〉+ 0.697|π2〉+ 0.117|ν1〉+ 0.697|ν2〉 . (9.114)

Note that the corresponding proton and neutron amplitudes are the same,
as a result of the assumed proton–neutron symmetry and concomitant good
isospin.

Using (9.100) and Table 6.5 we obtain

6 Note that 1s1/2 does not contribute.



www.manaraa.com

270 9 Particle–Hole Excitations and the Tamm–Dancoff Approximation

(HF‖Q3‖3−1 ) = 3.065e+b3 = 15.73e+ fm3 . (9.115)

The decay strength to the 3−1 state is thus∣∣(3−1 ‖Q3‖HF)
∣∣2 = 247.4e2+ fm6 . (9.116)

The four-dimensional basis (9.113) gives three more 3− states. The results
of the complete calculation, both the energies and the decay strengths, are
given in Table 9.7.7 The charge dependence of the transitions, as discussed in
Subsect. 6.5.2, indicates that the 3−1 and 3−3 states have T = 0 while the 3−2
and 3−4 states have T = 1.

Table 9.7. TDA energies and octupole strengths of 3− states in 16O for particle–
hole valence space (0d5/2-1s1/2)-(0p)

−1

k 1 2 3 4

Ek (MeV) 10.714 12.554 16.972 18.218∣∣(3−k ‖Q3‖HF)
∣∣2 (fm6) 248.0e2+ 161.3e2− 98.9e2+ 185.6e2−

Note abbreviations e± ≡ epeff ± eneff.

Let us check whether the decay strengths in Table 9.7 satisfy the TDA
sum relation (9.104). Its left-hand side gives

4∑
k=1

∣∣(3−k ‖Q3‖HF)
∣∣2 = (248.0 + 98.9)e2+ fm6 + (161.3 + 185.6)e2− fm

6

= (346.9e2+ + 346.9e
2
−) fm

6 = 693.8[(epeff)
2 + (eneff)

2] fm6 . (9.117)

The right-hand side of (9.104) gives

(epeff)
2[(−3.420b3)2 + (−3.824b3)2] + (eneff)2[(−3.420b3)2 + (−3.824b3)2]

= 693.4[(epeff)
2 + (eneff)

2] fm6 . (9.118)

So the sum rule is satisfied to within rounding-off errors resulting from the
decimal display in Table 6.5.

Valence space (0d-1s)-(0p)−1

Let us extend the previous analysis to the full (0d-1s)-(0p)−1 particle–hole
valence space. Then the basis becomes
7 The table entries come from a complete computer calculation. They are therefore
not subject to the three-decimal accuracy of Table 6.5 and of the wave functions
like (9.114). This explains why the tabulated strength for k = 1 differs from our
result (9.116).
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{|π1〉 , |π2〉 , |π3〉 , |ν1〉 , |ν2〉 , |ν3〉}
= {|π0d5/2 (π0p3/2)−1 ; 3−〉 , |π0d5/2 (π0p1/2)−1 ; 3−〉 ,
|π0d3/2 (π0p3/2)−1 ; 3−〉 , |ν0d5/2 (ν0p3/2)−1 ; 3−〉 ,
|ν0d5/2 (ν0p1/2)−1 ; 3−〉 , |ν0d3/2 (ν0p3/2)−1 ; 3−〉} . (9.119)

The lowest 3− state becomes

|16O , 3−1 〉 = 0.136|π1〉+ 0.681|π2〉 − 0.134|π3〉
+ 0.136|ν1〉+ 0.681|ν2〉 − 0.134|ν3〉 . (9.120)

Table 9.8. TDA energies and octupole strengths of 3− states in 16O for particle–
hole valence space (0d-1s)-(0p)−1

k 1 2 3 4 5 6

Ek (MeV) 10.281 12.551 16.792 18.206 22.635 24.095∣∣(3−k ‖Q3‖HF)
∣∣2 (fm6) 347.2e2+ 167.1e2− 129.4e2+ 167.5e2− 101.6e2+ 243.4e2−

Note abbreviations e± ≡ epeff ± eneff.

A hand calculation similar to the previous ones in this subsection gives

(HF‖Q3‖3−1 ) = 3.631e+b3 = 18.64e+ fm3 . (9.121)

The results of a complete computer calculation are stated in Table 9.8. Again
the transition strengths satisfy the sum rule (9.104): its both sides give
1156[(epeff)

2 + (eneff)
2] fm6.

9.4.4 Collective Transitions in the TDA

From the three examples of the previous subsection we can make the following
observations.

• Enlarging the particle–hole valence space increases the transition strength
from the first 3− state. This is shown by the amplitudes (9.108), (9.115)
and (9.121). Equation (9.101) gives the corresponding reduced transition
probabilities as

B(E3 ; 3−1 → 0+gs) =

⎧⎪⎨⎪⎩
27.52e2+ fm

6 , space 0d5/2-(0p1/2)−1 ,

35.35e2+ fm
6 , space (0d5/2-1s1/2)-(0p)−1 ,

49.64e2+ fm
6 , space (0d-1s)-(0p)−1 .

(9.122)
Inspection of the wave functions (9.106), (9.114) and (9.120) shows an
increasing fragmentation into a larger number of more evenly sized am-
plitudes. This fragmentation is coherent and it amounts to collectivity : an



www.manaraa.com

272 9 Particle–Hole Excitations and the Tamm–Dancoff Approximation

increasing number of particle–hole components act in a coherent way to
increase the decay probability.

• From Tables 9.7 and 9.8 we can access the distribution of the octupole
strength among the 3− final states. The trend is discernible that two of
the states, namely the lowest and the highest, gather an increasing amount
of the total strength as the space is enlarged. In Subsect. 9.2.4 these two
states were characterized as collective states. The highest-lying collective
state is in the E3 case known as the giant octupole resonance. The lowest
and highest collective states are present even in the degenerate separable
model as displayed in (9.57).

• When the proton and neutron single-particle excitation energies are the
same, we have good isospin. As recorded in (6.166), a decay amplitude
proportional to e+ = epeff + eneff connects a T = 0 state to the ground
state. Likewise (6.167) tells us that a decay amplitude proportional to
e− = epeff − eneff connects a T = 1 state to the ground state. Thus we see
from Tables 9.7 and 9.8 that every other state k has T = 0 and T = 1.
The decays of such states are isoscalar and isovector decays respectively. In
particular, the lowest collective particle–hole state decays by an isoscalar
transition and the giant octupole state by an isovector transition.

The experimental reduced transition probability for the lowest 3− state in
16O is

B(E3 ; 3−1 → 0+gs)exp = 205.3 e
2fm6 = 13.5W.u. (9.123)

This can be reproduced by fitting the effective charges. From (6.26) we have
e+ = (1 + 2χ)e. The result 49.64e2+ fm

6 in (9.122) thus gives the electric
polarization constant χ = 0.52. The RPA yields more collectivity than does
the TDA, so that the polarization constant is χ = 0.34.

Based on the results of Subsect. 9.4.3, Fig. 9.6 shows the distribution of
the B(E3) values in 16O for the three particle–hole valence spaces considered.
The effective charges were chosen as epeff = 1.2e and eneff = 0.2e, and the values
are given in Weisskopf units. The successive panels display the evolution of the
distribution of the octupole strength with the increasing size of the particle–
hole valence space.

Successive enlargements of the valence space bring in new states at higher
energies, while the old states remain roughly unmoved. Even the octupole
strength of the low-lying states is not changed much except for the lowest
state, whose strength increases appreciably when the valence space increases.

9.4.5 Application to Octupole Transitions in 40Ca

We calculate the reduced transition probability B(E3 ; 3−1 → 0+gs) for
40
20Ca20

in two particle–hole valence spaces. We start with the smallest possible space
0f7/2-(0d3/2)−1. Proceeding as in the case of 16O, we find
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Fig. 9.6. Reduced E3 transition probabilities in Weisskopf units for transitions
from the 3− states to the ground state in 16O. The results were calculated with SDI
parameters A0 = A1 = 1.0MeV and effective charges epeff = 1.2e and eneff = 0.2e.
The top panel is for the particle–hole valence space 0d5/2-(0p1/2)

−1, the middle one

for (0d5/2-1s1/2)-(0p)
−1 and the bottom one for (0d-1s)-(0p)−1. The horizontal axis

gives the excitation energy

B(E3 ; 3−1 → 0+gs) = 57.18(e
p
eff + eneff)

2 fm6 = 0.601(1 + 2χ)2W.u., (9.124)
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where we used b = 1.939 fm as given by (3.45) and (3.43).
For the larger valence space 0f7/2-(0d-1s)−1 the basis states are

{|π1〉 , |π2〉 , |π3〉 , |ν1〉 , |ν2〉 , |ν3〉}
= {|π0f7/2 (π0d5/2)−1 ; 3−〉 , |π0f7/2 (π1s1/2)−1 ; 3−〉 ,
|π0f7/2 (π0d3/2)−1 ; 3−〉 , |ν0f7/2 (ν0d5/2)−1 ; 3−〉 ,
|ν0f7/2 (ν1s1/2)−1 ; 3−〉 , |ν0f7/2 (ν0d3/2)−1 ; 3−〉} . (9.125)

With the the single-particle energies of Fig. 9.2 (b) and the SDI parameters
A0 = 0.85MeV and A1 = 0.90MeV, the lowest 3− state becomes

|40Ca , 3−1 〉 = 0.272|π1〉+ 0.314|π2〉+ 0.572|π3〉
+ 0.272|ν1〉+ 0.314|ν2〉+ 0.572|ν3〉 . (9.126)

The wave function (9.126) leads to the theoretical value

B(E3 ; 3−1 → 0+gs) = 298.3(e
p
eff + eneff)

2 fm6 = 3.138(1 + 2χ)2W.u. (9.127)

This can be compared with the experimental value

B(E3 ; 3−1 → 0+gs)exp = 2504 e
2fm6 = 26.3W.u. (9.128)

The theoretical octupole strength distribution is plotted in Fig. 9.7 for
the 0f7/2-(0d-1s)−1 particle–hole valence space and effective charges epeff =
1.3e and eneff = 0.3e. The TDA value for the first 3− state is far below the
experimental one, whereas the RPA accurately reproduces the experimental
value. The 3−1 state is strongly collective in the RPA description.

9.4.6 E1 Transitions: Isospin Breaking in the Nuclear Mean Field

The E1 transition 1−1 → 0+gs in
16O was studied in Subsect. 6.4.2. In that con-

text, (6.142) gave a recipe for removing spurious centre-of-mass components
from the dipole transition amplitude. Applied to a self-conjugate (N = Z)
nucleus, the recipe gives

epeff =
1
2
e , eneff = −

1
2
e . (9.129)

According to (6.130), this leads to a vanishing E1 decay probability for 1−,
T = 0 states. As long as the proton and neutron contributions are the same
this behaviour persists even for larger spaces because the transition amplitude
is proportional to epeff + eneff.

As was pointed out at the end of Subsect. 6.4.2, a measured finite E1 decay
rate indicates a small isospin-breaking effect in the nuclear mean field. For 16O
this lack of complete isospin symmetry shows up as different single-particle
energies of protons and neutrons in the 0d-1s shell. To make a quantitative
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Fig. 9.7. Reduced E3 transition probabilities in Weisskopf units for transitions
from the 3− states to the ground state in 40Ca. The results were calculated with
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estimate of this breaking one can examine the spectra of the one-neutron
nucleus 17

8O9 and the one-proton nucleus
17
9F8. The extracted single-proton

energies are

ε1s1/2 − ε0d5/2 = 0.49MeV , ε0d3/2 − ε0d5/2 = 5.10MeV , (9.130)

while the single-neutron energies are

ε1s1/2 − ε0d5/2 = 0.87MeV , ε0d3/2 − ε0d5/2 = 5.09MeV . (9.131)

We introduce isospin mixing within the TDA by using the single-particle
energies (9.130) and (9.131) in the (0d-1s)-(0p1/2)−1 particle–hole valence
space. The energy gap between the 0p shell and the 0d-1s shell is chosen as
11.6MeV for both protons and neutrons. The basis states for Jπ = 1− are

{|π1〉1 , |π2〉1 , |ν1〉1 , |ν2〉1}
= {|π1s1/2 (π0p1/2)−1 ; 1−〉 , |π0d3/2 (π0p1/2)−1 ; 1−〉 ,
|ν1s1/2 (ν0p1/2)−1 ; 1−〉 , |ν0d3/2 (ν0p1/2)−1 ; 1−〉} , (9.132)
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where we have completed the notation on the left-hand side to distinguish
this basis from the Jπ = 3− basis (9.113) for 16O.

Equations (9.28)–(9.30) and Table 9.2 give the Hamiltonian matrix

HTDA(1−) =⎛⎜⎜⎝
12.09 + 0.333A1 −0.943A1

1
2
(0.333A1 − 1.667A0)

1
2
(−0.943A1 − 0.943A0)

−0.943A1 16.68− 0.333A1
1
2
(−0.943A1 − 0.943A0)

1
2
(−0.333A1 − 2.333A0)

. . . . . . 12.47 + 0.333A1 −0.943A1

. . . . . . −0.943A1 16.67− 0.333A1

⎞⎟⎟⎠ .

(9.133)

Note that, in distinction to the matrix (9.91), the corresponding proton and
neutron elements on the diagonal are only approximately equal. With A0 =
A1 = 1.0MeV the lowest eigenstate becomes

|16O , 1−1 〉 = 0.691|π1〉1 + 0.302|π2〉1 + 0.583|ν1〉1 + 0.303|ν2〉1 . (9.134)

The symmetry break shows here in the inequality of the corresponding proton
and neutron amplitudes.

With the wave function (9.134) the decay amplitude (9.100) becomes

(HF‖Q1‖1−1 ) = −[0.691(π1s1/2‖Q1‖π0p1/2) + 0.302(π0d3/2‖Q1‖π0p1/2)
+ 0.583(ν1s1/2‖Q1‖ν0p1/2) + 0.303(ν0d3/2‖Q1‖ν0p1/2)] . (9.135)

Taking the reduced matrix elements from Table 6.3 and using the effective
charges (9.129) we obtain

(HF‖Q1‖1−1 ) = −0.0211b = −0.0364e fm , (9.136)

where b = 1.725 fm.
The decay amplitude (9.136) gives the reduced transition probability

B(E1 ; 1−1 → 0+gs) = 4.42× 10−4 e2fm2 . (9.137)

With the experimental transition energy E = 7.117MeV (see Fig. 6.1), Table
6.8 gives the decay probability

T (E1) = 1.587× 1015 × 7.1173 × 4.42× 10−4 1/s = 2.53× 1014 1/s , (9.138)

and the half-life becomes

t1/2 =
ln 2

T (E1)
= 2.74 fs . (9.139)

This is of the same order as the experimental value of 8 fs.
This example shows that a small difference, in this case ≈ 0.4MeV, in

the proton and neutron mean-field single-particle energies gives an isospin
breaking sufficient to explain the observed E1 transition rate.
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9.4.7 Transitions Between Two TDA Excitations

The matrix elements of the electromagnetic operator Mσλ for transitions
between particle–hole states were discussed in Subsect. 6.4.1. The initial and
final TDA eigenfunctions are

|Ψ(TDA)
ωi 〉 =

∑
aibi

Xωi
aibi
|ai b−1i ; Ji Mi〉 , (9.140)

|Ψ(TDA)
ωf

〉 =
∑
af bf

X
ωf
af bf
|af b−1f ; Jf Mf 〉 . (9.141)

The transition amplitude for these states is

(ωf‖Mσλ‖ωi) =
∑
aibi
af bf

X
ωf∗
af bf

Xωi
aibi

(af b−1f ; Jf‖Mσλ‖ai b−1i ; Ji) . (9.142)

The particle–hole transition matrix element on the right-hand side is given by
(6.124).

9.4.8 Application to the 5−
1 → 3−

1 Transition in 40Ca

Consider the E2 transition between the first 3− and 5− states in 40
20Ca20. These

states are shown in the energy spectra, both theoretical and experimental, of
Fig. 9.4. To calculate the transition rate, we use the particle–hole valence
space 0f7/2-(0d-1s)−1.

The 3− basis states are given by (9.125), and the 5− basis states are

{|π1〉5 , |π2〉5 , |ν1〉5 , |ν2〉5}
= {|π0f7/2 (π0d5/2)−1 ; 5−〉 , |π0f7/2 (π0d3/2)−1 ; 5−〉 ,
{|ν0f7/2 (ν0d5/2)−1 ; 5−〉 , |ν0f7/2 (ν0d3/2)−1 ; 5−〉} . (9.143)

The wave function for the 3−1 state is given by (9.126). For the 5−1 state we
obtain

|40Ca , 5−1 〉 = 0.150|π1〉5 + 0.691|π2〉5 + 0.150|ν1〉5 + 0.691|ν2〉5 . (9.144)

We calculate the transition 5−1 → 3−1 , which is observed experimentally.
The fact that the levels are in reverse order in the TDA does not matter. Sub-
stituting the wave-function amplitudes X into (9.142) gives the E2 transition
amplitude

(3−1 ‖Q2‖5−1 ) = [0.272× 0.150 3(1‖Q2‖1)5 + 0.314× 0.150 3(2‖Q2‖1)5
+ 0.572× 0.150 3(3‖Q2‖1)5 + 0.272× 0.691 3(1‖Q2‖2)5
+ 0.314× 0.691 3(2‖Q2‖2)5 + 0.572× 0.691 3(3‖Q2‖2)5]
× (epeff + eneff)/e . (9.145)
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It remains to calculate the reduced matrix elements (6.124) on the right-hand
side. An example of such a calculation is provided by (6.133). The results are

3(1‖Q2‖1)5 = 0.4388eb2 , 3(2‖Q2‖1)5 = 1.6204eb2 ,

3(3‖Q2‖1)5 = −1.1837eb2 , 3(1‖Q2‖2)5 = 0.3915eb2 ,

3(2‖Q2‖2)5 = 2.4752eb2 , 3(3‖Q2‖2)5 = 1.0978eb2 . (9.146)

Combining (9.145) and (9.146) we have

(3−1 ‖Q2‖5−1 ) = 1.037b2(e
p
eff + eneff) = 3.899(e

p
eff + eneff) fm

2 , (9.147)

where b = 1.939 fm. This gives the reduced transition probability

B(E2 ; 5−1 → 3−1 ) = 1.382(e
p
eff + eneff)

2 fm4 . (9.148)

Based on the preceding examples we see that this is an isoscalar transition
between T = 0 states.

When the same calculation is done in the minimal particle–hole valence
space 0f7/2-(0d3/2)−1, the result is

B(E2 ; 5−1 → 3−1 )small space = 0.387(e
p
eff + eneff)

2 fm4 . (9.149)

This is much less than our ‘large-space’ result (9.148), and we may expect
that the result would still increase appreciably with a further enlargement of
the valence space.

From the experimental decay energy 0.75MeV (see Fig. 9.4) and half-life
290 ps, Table 6.8 gives the experimental value

B(E2 ; 5−1 → 3−1 )exp = 8.24 e
2fm4 . (9.150)

Comparing this with (9.148) gives the polarization constant

χ = 0.72 . (9.151)

It is of interest to see whether different transitions in the same nucleus lead
to consistent polarization constant. Equations (9.127) and (9.128) give us the
polarization constant for the 3−1 → 0+gs transition as

χ = 0.95 . (9.152)

The values (9.151) and (9.152) are roughly compatible.

9.5 Electric Transitions on the Schematic Model

In this, the last section of the chapter we return to the schematic model
introduced in Subsect. 9.2.1. The model was there considered only for TDA
energies. We now extend it to transition probabilities.
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9.5.1 Transition Amplitudes

The dispersion equation (9.55) of the schematic model of Subsect. 9.2.1 pro-
vides a rough estimate of TDA energies. These energies are easy to obtain
by graphical means, as demonstrated in Subsect. 9.2.4, which makes the
schematic model a valuable practical tool. The energies are calculated by
taking the isoscalar and isovector strength constants of the SDI to be equal
in magnitude and opposite in sign, as stated in (9.77).

For electric transitions, with the notationMEλ ≡ Qλ, (9.100) becomes

(HF‖Qλ‖ω) = δλJ(−1)J
∑
ab

Xω
ab(a‖Qλ‖b) , (9.153)

where (a‖Qλ‖b) is the electromagnetic matrix element given by (6.23). It is
to be distinguished from the identically denoted matrix element (8.53) used
for a separable interaction. The relation between the electromagnetic matrix
element and the quantity Qλ

ab(SDI) defined in (9.73) is

(a‖Qλ‖b) = (−1)na+nb
e

4
√

π
λ̂Qλ

ab(SDI)R
(λ)
ab . (9.154)

When we apply the schematic TDA with the SDI, as in Subsect. 9.2.4, the
quantity Qλ

ab present in the equations of Subsect. 9.2.1 is precisely Qλ
ab(SDI).

Substituting (9.51) and (9.154) into (9.153) gives

(HF‖Qλ‖ω) = δλJ(−1)J Ĵ
eeff
4
√

π
Nω

∑
ab

(−1)na+nb
[QJ

ab(SDI)]
2

εab − Eω
R(J)

ab ,

(9.155)
where Nω is given by (9.53). For the overall effective charge we take

eeff =

⎧⎪⎪⎨⎪⎪⎩
epeff + eneff√

2
=

e+√
2

for T = 0 ,

epeff − eneff√
2

=
e−√
2

for T = 1 .
(9.156)

This choice is based on the anticipation that the amplitude will be squared
and the protons and neutrons will contribute equally except for their different
effective charges. The identification between charge dependence and isospin
was established in Subsect. 6.5.2 and has been quoted throughout Sect. 9.4.

Before proceeding to an application of (9.155) we inspect electromagnetic
transitions within the extremly simple degenerate model introduced at the
end of Subsect. 9.2.1. In that model we obtain the collective TDA solution

Ecoll = ε+ χJQ
2 , Q2 =

∑
ab

(QJ
ab)

2 . (9.157)

Equations (9.53) and (9.157) then yield
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|Ncoll|−2 =
Q2

(ε− Ecoll)2
=

1
χ2
JQ

2
, (9.158)

and we choose the phase so that

Ncoll = χJQ . (9.159)

The wave-function amplitudes are given by (9.51) as

Xcoll
ab =

QJ
ab

ε−Ecoll
Ncoll = −

QJ
ab

Q
. (9.160)

Substituting these amplitudes into (9.153) we have

(HF‖QJ‖coll) = (−1)J+1
∑
ab

QJ
ab

Q
(a‖QJ‖b) . (9.161)

Assuming that the radial integrals in (6.23) and (8.53) are the same, we may
use (9.47) to write

(a‖QJ‖b) = eĴQJ
ab , (9.162)

whereupon (9.161) becomes

(HF‖QJ‖coll) = (−1)J+1Ĵ
e

Q

∑
ab

(QJ
ab)

2 = (−1)J+1ĴeQ . (9.163)

Let us check whether the collective TDA state satisfies the sum rule
(9.103). With (9.163) the left-hand side of (9.103) gives∣∣(coll‖QJ‖HF)

∣∣2 = Ĵ 2e2Q2 . (9.164)

With (9.162) the right-hand side is∑
ab

∣∣(a‖QJ‖b)
∣∣2 = e2Ĵ 2

∑
ab

(QJ
ab)

2 = Ĵ 2e2Q2 , (9.165)

so the sum rule is satisfied by the collective state alone; the trapped states
make no contribution.

We have here considered the coupling constant of a given magnitude |χJ |
with a definite sign, say χJ < 0. In this case the collective state is the lowest
state and has T = 0. In the case χJ > 0 the collective state is the highest
state and has T = 1. In both cases all the multipole strength is carried by the
collective state, as described by the extreme schematic model.

9.5.2 Application to Electric Dipole Transitions in 4He

In Subsect. 9.2.4 we found the energies of the 1− states of 4
2He2 by the

schematic TDA and the SDI. Let us now continue the example and compute
the reduced transition probabilities for the E1 transitions 1− → 0+gs.



www.manaraa.com

9.5 Electric Transitions on the Schematic Model 281

The squares of the Q1
ab(SDI) are given in (9.81). Equation (9.53) then

yields for the normalization

N−2n =
16
3

(21.0MeV− En)2
+

8
3

(27.0MeV− En)2
, (9.166)

where we only quote the eigenvalue index n since the multipolarity is fixed
at Jπ = 1−. The energies En of the schematic model are given in Tables
9.5 and 9.6 for two different interaction strengths, namely A = 1.0MeV and
A = 2.0MeV. Substituting into (9.155) we obtain

(HF‖Q1‖1−n ) = −
√
3

eeff
4
√

π
Nn

( 16
3

21.0MeV− En
R(1)

0p0s

+
8
3

27.0MeV− En
R(1)

0p0s

)
. (9.167)

Table 6.2 gives the radial integral as

R(1)
0p0s = bR̃(1)

0p0s =
√

3
2b . (9.168)

We evaluate the decay amplitudes (9.155) with the En for A = 1.0MeV.
Equations (3.45) and (3.43) give b = 1.499 fm. From the transition amplitudes
we compute the reduced transition probabilities B(E1 ; 1−n → 0+gs). The results
are stated in Table 9.9. For comparison, the table also gives the exact TDA
values for B(E1), calculated as a follow-up to Subsect. 9.3.2.

Table 9.9. Reduced E1 matrix elements (HF‖Q1‖1−n ) and transition probabilities
B(E1 ; 1−n → 0+gs) for

4
2He2 computed by the schematic and exact TDA

Schematic Exact

n En (MeV) (‖Q1‖) (fm) B(E1) (fm2) B(E1) (fm2)

1 19.5 −0.798e+ 0.21e2+ 0.231e2+
2 22.2 0.631e− 0.13e2− 0.178e2−
3 26.5 −0.420e+ 0.06e2+ 0.036e2+
4 27.8 0.631e− 0.13e2− 0.089e2−

The SDI parameters are A = 1.0MeV (schematic) and A0 = A1 = 1.0MeV
(exact). Note abbreviations e± ≡ epeff ± eneff

We see that the schematic model produces results in surprisingly good
agreement with the exact TDA, just as was the case for the energies in Tables
9.5 and 9.6. Based on this and other cases we can say that the schematic
model reliably predicts the order of magnitude of both the excitation energies
and the electric multipole transition rates in doubly magic N = Z nuclei.
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Epilogue

In this chapter we have learned the first level of treating the mixing of one-
particle–one-hole configurations. This level constitutes what is known as the
TDA. In the TDA one diagonalizes the residual Hamiltonian in the combined
proton-particle–proton-hole and neutron-particle–neutron-hole basis without
touching the structure of the particle–hole ground state of the doubly magic
nucleus under study.

In the following chapter the notion of configuration mixing of charge-
conserving particle–hole excitations is extended to a description of charge-
changing proton–neutron particle–hole excitations in the framework of the
proton–neutron TDA. The TDA also paves the way to a more sophisticated
particle–hole theory, the RPA. The RPA treats charge-conserving particle–
hole excitations of a correlated ground state which itself contains complicated
particle–hole configurations.

Exercises

9.1. Derive the relation (9.9) by using the methods of Sect. 4.4.

9.2. Complete the details of the derivation of (9.17).

9.3. Verify the symmetry property (9.24).

9.4. Derive the relation (9.25).

9.5. Assume the result (9.25) known and derive the relation (9.26).

9.6. Consider the expression (9.45) for the two-body particle–hole matrix el-
ement in the form D − E as stated in (9.58). Using the valence space (9.79)
compute the direct terms D and the exchange terms E. Compare the terms
in light of the assertion in Subsect. 9.2.2 that E ≈ D. Taking all multipole
strengths χλ as equal to − 1

4A1, check your complete matrix elements D − E
against the entries in the matrix (9.91).

9.7. Solve analytically the second-order equations (9.82) and compare the
results with the graphical solutions in Tables 9.5 and 9.6.

9.8. Verify the numbers in the matrix (9.91).

9.9. Verify the numbers in the isospin matrices (9.93) and (9.94).

9.10. Using an available computer routine, diagonalize the matrix (9.91).
Check that you get the numbers quoted in Tables 9.5 and 9.6.

9.11. Verify the numbers in the matrix (9.97).
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9.12. Calculate the approximate energies of the 3− states in 16O by using
the TDA dispersion equation (9.55) in the (0d5/2-1s1/2)-(0p)−1 particle–hole
valence space. Take the single-particle energies from Fig. 9.2 (a) and choose
the SDI parameter A as
(a) A = 1.0MeV,
(b) A = 2.0MeV.

9.13. Calculate the energies of the 3− states in 16O by exact diagonalization.
Use the valence space of Exercise 9.12 and the SDI with parameters
(a) A0 = A1 = 1.0MeV,
(b) A0 = A1 = 2.0MeV.
Compare the results with those of Exercise 9.12 and comment.

9.14. Calculate the approximate energies of the 3− states in 40Ca by using the
TDA dispersion equation (9.55) in the 0f7/2-(0d-1s)−1 particle–hole valence
space. Take the single-particle energies from Fig. 9.2 (b) and choose the SDI
parameter A as
(a) A = 1.0MeV,
(b) A = 2.0MeV.

9.15. Calculate the energies of the 3− states in 40Ca by exact diagonalization.
Use the valence space of Exercise 9.14 and the SDI with parameters
(a) A0 = A1 = 1.0MeV,
(b) A0 = A1 = 2.0MeV.
Compare the results with those of Exercise 9.14 and comment.

9.16. Calculate the energies of the 2+ and 3− states in 48Ca by exact diagonal-
ization in the particle–hole valence space 0f7/2-(0d3/2)−1 for the protons and
(1p-0f5/2)-(0f7/2)−1 for the neutrons. Take the single-particle energies from
Fig. 9.2 (c) and use the SDI with parameters A0 = A1 = 1.0MeV.

9.17. Verify the numbers in the matrix (9.133).

9.18. Verify the numbers in Table 9.7 by performing the diagonalization in-
dicated and proceeding with the wave functions thus obtained.

9.19. Verify the numbers in Table 9.9.

9.20. Continue Exercise 9.12 and compute the reduced E3 transition proba-
bilities for the ground-state decays of the 3− states in 16O on the schematic
model.

9.21. Continue Exercise 9.13 and compute the reduced E3 transition proba-
bilities for the ground-state decays of the 3− states in 16O by using the exact
wave functions. Check that the TDA sum rule is satisfied. Compare the results
with those of Exercise 9.20 and comment.
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9.22. Continue Exercise 9.14 and compute the reduced E3 transition proba-
bilities for the ground-state decays of the 3− states in 40Ca on the schematic
model.

9.23. Continue Exercise 9.15 and compute the reduced E3 transition prob-
abilities for the ground-state decays of the 3− states in 40Ca by using the
exact wave functions. Check that the TDA sum rule is satisfied. Compare the
results with those of Exercise 9.22 and comment.

9.24. Continue Exercise 9.16 and determine the electric polarization constant
for neutrons, χn, by studying the E2 decay of the 2+1 state of

48Ca.

9.25. By using the χn of Exercise 9.24 and the experimental gamma energy
calculate the decay half-life of the first 4+ state in 48Ca. Compare with ex-
perimental data and comment.

9.26. Calculate the energies of the 3− and 5− states of 40Ca in the 0f7/2-
(0d3/2)−1 particle–hole valence space by exact diagonalization. Take the
single-particle energies from Fig. 9.2 (b) and use the SDI. Determine A0 and
A1 such that they best reproduce the experimental energies.

9.27. The nucleus 126C6 can be viewed as doubly magic in the 0p1/2-(0p3/2)
−1

particle–hole valence space. Set up a calculation of the eigenenergies by exact
diagonalization. Take 6.0MeV as the spin-orbit splitting and use the SDI.
Determine the parameters A0 and A1 such that they best reproduce the ex-
perimental energies. How good is the approximation of double magicity?

9.28. The nucleus 32
16S16 can be viewed as doubly magic in the 0d3/2-(0d5/2-

1s1/2)−1 particle–hole valence space. Adopt the single-particle energies (8.124)
and calculate the eigenenergies by exact diagonalization using the SDI with
A0 = A1 = 1.0MeV. Compare with the experimental spectrum. How good is
the approximation of double magicity?

9.29. Continue Exercise 9.27 and compute the reduced E2 transition proba-
bilities for the ground-state decays of the 2+ states in 12C. Check the TDA
sum rule. Determine the electric polarization constant χ by using available
experimental data.

9.30. Continue Exercise 9.28 and compute the reduced E2 transition proba-
bilities for the ground-state decays of the 2+ states in 32S. Check the TDA
sum rule. Determine the electric polarization constant χ by using available
experimental data.

9.31. Continue Exercises 9.28 and 9.30. Compute the decay half-life of the 4+1
state of 32S by using the experimental energies and taking the value of χ from
Exercise 9.30. Compare your result with the experimental half-life.
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9.32. Calculate the energies of the 4− and 5− states in 40Ca by exact diag-
onalization in the complete 0f7/2-(0d-1s)−1 particle–hole valence space. Take
the single-particle energies from Fig. 9.2 (b) and use the SDI with parameters
A0 = A1 = 1.0MeV. Compute the decay half-life of the 4−1 state by using
the experimental energies and an electric polarization constant of the order
of (9.151) and (9.152). Compare your results with experimental data.

9.33. Calculate the decay half-life of the 3−1 state of 48Ca by assuming that
it decays to the 2+1 state and to the ground state (see the experimental level
scheme in Fig. 9.5). Use the wave functions from Exercise 9.16, the electric
polarization constant from Exercise 9.24 and the experimental energies. Com-
pare with the experimental half-life.
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Charge-Changing Particle–Hole Excitations
and the pnTDA

Prologue

In this chapter we extend the Tamm–Dancoff approximation (TDA) to charge-
changing particle–hole excitations. Such excitations consist of a proton par-
ticle and a neutron hole, or a neutron particle and a proton hole. These ex-
citations of the doubly magic Hartree–Fock vacuum are nuclear states in the
adjacent odd–odd nuclei. This formalism is well suited to describe beta-decay
transitions from the states of one of the odd–odd nuclei to the ground and
excited states of the even–even reference nucleus.

10.1 The Proton–Neutron Tamm–Dancoff
Approximation

In this section we formulate the proton–neutron Tamm–Dancoff approxima-
tion (pnTDA) and cast it into an explicit matrix form. We then apply the
pnTDA to a few selected examples.

10.1.1 Structure of the pnTDA Matrix

The pnTDA is based on neutron-to-proton or proton-to-neutron conversions.
These are the proton-particle–neutron-hole and neutron-particle–proton-hole
excitations discussed in Sect. 5.4. They are expressed as

|p n−1 ; J M〉 =
[
c†ph
†
n

]
JM
|HF〉 , (10.1)

|np−1 ; J M〉 =
[
c†nh
†
p

]
JM
|HF〉 , (10.2)

where |HF〉 is the ground state of the even–even reference nucleus Z,N . Equa-
tions (10.1) and (10.2), respectively, describe the generation of the states of
the Z + 1, N − 1 nucleus and the Z − 1, N + 1 nucleus.
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We can immediately extend (9.35) to the charge-changing case and write∑
p′n′
〈p n−1 ; Jπ|H|p′ n′−1 ; Jπ〉Xω

p′n′ = EωX
ω
pn , (10.3)

∑
n′p′
〈np−1 ; Jπ|H|n′ p′−1 ; Jπ〉Xω

n′p′ = EωX
ω
np , (10.4)

where ω = nJπM . It remains to compute the matrix elements of the nuclear
Hamiltonian H = HHF +HRES in (10.3) and (10.4).

Proceeding as in Subsect. 9.1.2 we derive for the one-body part of the
Hamiltonian the expressions

〈p n−1 ; J |HHF|p′ n′−1 ; J〉 = δpp′δnn′(const. + εp − εn) ,

〈np−1 ; J |HHF|n′ p′−1 ; J〉 = δnn′δpp′(const. + εn − εp) .
(10.5)

As in (9.15), the constants in these equations are irrelevant for energies relative
to the particle–hole vacuum |HF〉. They are therefore omitted in the subse-
quent discussion. Continuing as in Subsect. 9.1.2 we obtain for the two-body
part the formula

〈p1 n−12 ; J |VRES|p3 n−14 ; J〉

= − 1
2

∑
J ′

Ĵ ′
2
{

jp1 jn2 J
jp3 jn4 J ′

}
[〈a1 a4 ; J ′ T = 1|V |a3 a2 ; J ′ T = 1〉

+ 〈a1 a4 ; J ′ T = 0|V |a3 a2 ; J ′ T = 0〉]
= 1

2 [A1Ma1a2a3a4(J1) +A0Ma1a2a3a4(J0)]

= 〈n1 p−12 ; J |VRES|n3 p−14 ; J〉 ,
(10.6)

where the quantities Ma1a2a3a4(JT ) are defined in (9.27) and tabulated in
Tables 9.1–9.4.

The pnTDA wave functions satisfy the orthonormality and completeness
relations (9.39) and (9.43). Also the relation (9.33) between the CS and BR
phases of particle–hole matrix elements is valid for the pnTDA.

Solving the proton-particle–neutron-hole eigenvalue problem (10.3) amounts
to diagonalizing the matrix⎛⎜⎜⎜⎝

εpn1 + V pn
11 V pn

12 · · · V pn
1N

V pn
21 εpn2 + V pn

22 · · · V pn
2N

...
...

. . .
...

V pn
N1 V pn

N2 · · · εpnN + V pn
NN

⎞⎟⎟⎟⎠ , (10.7)

where the particle–hole configurations are labelled with i = 1, 2, . . . , N and

εpni ≡ εpi − εni , V pn
ij ≡ 〈pi n−1i ; J |VRES|pj n−1j ; J〉 . (10.8)
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An analogous matrix can be built for the neutron-particle–proton-hole eigen-
value problem (10.4). The proton–neutron and neutron–proton modes of the
pnTDA give the same eigenenergies and eigenfunctions of the same structure
if the relative single-particle energies of protons and neutrons are equal, i.e.
εpni = εnpi .

Examples of the application of the pnTDA are given in the following sub-
sections.

10.1.2 Application to 4
1H3 and

4
3Li1

Consider the energy spectra of the nuclei 4
1H3 and

4
3Li1 in the 0p-(0s1/2)

−1

particle–hole valence space. The basis states for 4
1H3 are

|ν1π〉J=1,2 ≡
[
c†ν0p3/2h

†
π0s1/2

]
1−,2− |HF〉 , (10.9)

|ν2π〉J=0,1 ≡
[
c†ν0p1/2h

†
π0s1/2

]
0−,1− |HF〉 , (10.10)

and those for 4
3Li1 are

|π1ν〉J=1,2 ≡
[
c†π0p3/2h

†
ν0s1/2

]
1−,2− |HF〉 , (10.11)

|π2ν〉J=0,1 ≡
[
c†π0p1/2h

†
ν0s1/2

]
0−,1− |HF〉 . (10.12)

The particle–hole vacuum |HF〉 is the ground state of 42He2.
In the notation of (10.7) the neutron–proton single-particle energy differ-

ences are
εnp1 ≡ ε0p3/2 − ε0s1/2 , εnp2 ≡ ε0p1/2 − ε0s1/2 . (10.13)

We construct the Hamiltonian matrices of the type (10.7) for 4
1H3. For the

Jπ = 0− and 2− states Eqs. (10.5) and (10.6) and Table 9.1 give

0〈ν2π|H|ν2π〉0
= εnp2 + 1

2 [A1Mp1/2s1/2p1/2s1/2(01) +A0Mp1/2s1/2p1/2s1/2(00)]

= εnp2 + 1
2 (1.000A1 + 1.000A0) , (10.14)

2〈ν1π|H|ν1π〉2
= εnp1 + 1

2 [A1Mp3/2s1/2p3/2s1/2(21) +A0Mp3/2s1/2p3/2s1/2(20)]

= εnp1 + 1
2 (1.000A1 + 1.000A0) . (10.15)

These are the only elements of the 0− and 2− matrices, so the matrices are
trivially diagonal. For the 1− states we obtain

HpnTDA(1−) =
(
1〈ν1π|H|ν1π〉1 1〈ν1π|H|ν2π〉1
1〈ν2π|H|ν1π〉1 1〈ν2π|H|ν2π〉1

)
=

(
εnp2 + 1

2 (−0.333A1 + 2.333A0) 1
2 (0.943A1 − 0.943A0)

1
2 (0.943A1 − 0.943A0) εnp1 + 1

2 (0.333A1 + 1.667A0)

)
. (10.16)
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Generally the matrix (10.16) would have to be diagonalized, but with our
standard choice of the SDI parameters, A0 = A1, the matrix is fortuitously
diagonal. Then we can write all the eigenenergies immediately:

E(0−) = εnp2 +A0 , E(2−) = εnp1 +A0 ,

E1(1−) = εnp1 +A0 , E2(1−) = εnp2 +A0 , (10.17)

where the decimal numbers have been replaced by the obvious exact values.
As noted after (10.8), the eigenenergies are the same for 4

3Li1 when we take
εpni = εnpi . The degeneracies among the energies (10.17) are broken by taking
A0 	= A1.

Inspection of the matrix (9.94) shows that the Jπ = 1−, T = 1 states of
4
2He2 given by the TDA are the same as the 1− states obtained here for the
odd–odd neighbours of 4

2He2. This general feature of the TDA and pnTDA
stems from isospin symmetry, which in turn results from the same proton and
neutron single-particle energies and the same proton–proton, proton–neutron
and neutron–neutron interactions. The nucleus 4He, with MT = 0, has also
T = 0 states, which were calculated in Subsect. 9.3.2. The neighbouring odd–
odd nuclei have MT = ±1 and thus cannot have states with T = 0.

To compute the energy spectra we need to choose the single-particle energy
differences and the SDI strength parameters. On the basis of experimental
data we take

εnp1 = 24.0MeV , εnp2 = 29.0MeV . (10.18)

These differ somewhat from the values used in Subsect. 9.2.4 and were chosen
for an improved description of the experimental spectra. For the SDI parame-
ters we use A0 = A1 = 2.0MeV. The results of the calculations are shown in
Fig. 10.1. Note that the same 1− states are present here as in Tables 9.5 and
9.6, only with somewhat different energies.

In overall structure and energy scale, the computed spectra of Fig. 10.1
agree with the experimental ones in Fig. 5.9. The degeneracies due to our
choice A0 = A1 are split by some 1–2MeV in the experimental spectra. How-
ever, not all of our predicted states are seen experimentally, and experiment
shows states not accounted for by our simple theory. In particular, the exper-
imental spectrum of 4He has two extra 0− states around 20MeV.

10.1.3 Further Examples: States of 167N9 and
40
19K21

Figure 10.2 shows the results of pnTDA calculations for 16
7N9 in two particle–

hole valence spaces, namely (0d5/2-1s1/2)-(0p1/2)−1 and (0d-1s)-(0p)−1. The
calculations used the single-particle energies of Fig. 9.2(a) and the SDI para-
meters A0 = A1 = 1.0MeV.

On the whole, the computed states correspond very well with the exper-
imental ones shown on the right in Fig. 10.2. In particular, as a group the
first four levels are correctly described. The deviations in their detailed order
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Fig. 10.1. Computed spectra of 4H, 4He and 4Li. The TDA and pnTDA were
applied in the 0p-(0s1/2)

−1 particle–hole valence space. The single-particle energies
were ε0s1/2 = 0, ε0p3/2 = 24.0MeV and ε0p1/2 = 29.0MeV, and the SDI parameters
A0 = A1 = 2.0MeV

are a minor discrepancy because they lie so close to each other that small
perturbations can change their relative positions. As expected from isospin
symmetry, the same conclusions apply to169F7, whose first four energies are
E(0−) = 0, E(1−) = 0.19MeV, E(2−) = 0.42MeV and E(3−) = 0.72MeV.

Figure 10.3 shows the results of pnTDA calculations for 40
19K21 in the

particle–hole valence spaces 0f7/2-(0d3/2)−1 and 0f7/2-(0d-1s)−1. The single-
particle energies and SDI parameters were the same as for 40

20Ca20 in Fig. 9.4,
namely from Fig. 9.2 (b), and A0 = 0.85MeV and A1 = 0.90MeV.

The correspondence between the lowest four theoretical and experimental
states is excellent. The higher-lying states, contained in the larger valence
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Fig. 10.2. Energy spectra of 16N computed in the pnTDA in the particle–hole
valence spaces (0d5/2-1s1/2)-(0p1/2)

−1 and (0d-1s)-(0p)−1. The single-particle ener-
gies are from Fig. 9.2 (a) and the SDI parameters are A0 = A1 = 1.0MeV. The
experimental energy spectrum is shown on the right for comparison

space, are predicted somewhat too high. The computed spectra also apply to
40
21Sc19, whose tentatively known first four experimental energies are virtually
identical to those of 4019K21.
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Fig. 10.3. Energy spectra of 40K computed in the pnTDA in the particle–hole
valence spaces 0f7/2-(0d3/2)

−1 and 0f7/2-(0d-1s)
−1. The single-particle energies are

from Fig. 9.2 (b) and the SDI parameters are A0 = 0.85MeV and A1 = 0.90MeV.
The experimental energy spectrum is shown on the right for comparison
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10.2 Electromagnetic Transitions in the pnTDA

Electromagnetic decays within the pnTDA framework describe transitions
between states of an odd–odd nucleus. Experimentally such transitions are
not particularly well known. The reduced transition probabilities and half-
lives can be obtained by using the formalism of Sect. 6.1.

10.2.1 Transition Amplitudes

We treat electromagnetic transitions within the pnTDA by extending the
formalism of Subsect. 6.4.3 to include configuration mixing in the charge-
changing particle–hole excitations. The configuration mixing in the TDA is
described by the eigenvectors (9.34). In the pnTDA they take the form

|ω〉 =
∑
pn

Xω
pn|p n−1 ; J M〉 for pn−1 nuclei ,

|ω〉 =
∑
np

Xω
np|np−1 ; J M〉 for np−1 nuclei .

(10.19)

With the wave functions (10.19) the electromagnetic decay amplitudes
can be expressed for the electric (Mσλ = Qλ) and magnetic (Mσλ = Mλ)
transition operators of Subsect. 6.1.3 as

(ωf‖Mσλ‖ωi) =
∑
pini
pfnf

X
ωf∗
pfnfX

ωi
pini(pf n−1f ; Jf‖Mσλ‖pi n−1i ; Ji) ,

(ωf‖Mσλ‖ωi) =
∑
nipi
nfpf

X
ωf∗
nfpfX

ωi
nipi(nf p−1f ; Jf‖Mσλ‖ni p−1i ; Ji) ,

(10.20)

where the first equation applies to a proton-particle–neutron-hole nucleus and
the second equation to a neutron-particle–proton-hole nucleus. The particle–
hole transition matrix elements are given in (6.147)–(6.150).

10.2.2 Application to the E2 Transition 0−
1 → 2−

gs in
16
7N9

Consider the decay of the first 0− state to the 2− ground state in 16
7N9 by an

E2 transition. This example was discussed in Subsect. 6.4.4 with the simple,
unmixed wave functions (6.151) and (6.152). The relevant formula for the
particle–hole transition matrix elements is (6.150).

We take the configuration-mixed np−1 wave functions (10.19) from the
large-space calculation of Fig. 10.2. With the 0− particle–hole basis

{|1〉0 , |2〉0} = {|ν1s1/2 (π0p1/2)−1 ; 0−〉 , |ν0d3/2 (π0p3/2)−1 ; 0−〉} , (10.21)
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the 0−1 state is

|16N ; 0−1 〉 = X
0−1
1 |1〉0 +X

0−1
2 |2〉0 = 0.993|1〉0 + 0.121|2〉0 . (10.22)

The 2− particle–hole basis states are

{|1〉2 , |2〉2 , |3〉2 , |4〉2 , |5〉2}
= {|ν0d5/2 (π0p3/2)−1 ; 2−〉 , |ν0d5/2 (π0p1/2)−1 ; 2−〉 ,
|ν1s1/2 (π0p3/2)−1 ; 2−〉 , |ν0d3/2 (π0p3/2)−1 ; 2−〉 ,
|ν0d3/2 (π0p1/2)−1 ; 2−〉} . (10.23)

The 2−1 state is

|16N ; 2−1 〉 = X
2−1
1 |1〉2 +X

2−1
2 |2〉2 +X

2−1
3 |3〉2 +X

2−1
4 |4〉2 +X

2−1
5 |5〉2

= 0.116|1〉2 + 0.986|2〉2 + 0.116|3〉2 + 0.037|4〉2 + 0.010|5〉2 .
(10.24)

To be able to use (6.150) for the np−1 matrix elements we first calculate
the 2− → 0− transition amplitude, as was done in Subsect. 6.4.4. Table 6.4
gives the single-particle matrix elements needed in (6.150); effective charges
are included. The wave-function amplitudes (10.22) and (10.24) and the np−1

matrix elements are then inserted into the second equation (10.20) to give the
transition amplitude

(0−1 ‖Q2‖2−1 ) =
2∑

i=1

5∑
j=1

X
0−1
i X

2−1
j 0(i‖Q2‖j)2

= 0×X
0−1
1 X

2−1
1 − 1.545b2eneffX

0−1
1 X

2−1
2 − 0.997b2e

p
effX

0−1
1 X

2−1
3

+ 0×X
0−1
1 X

2−1
4 + 1.261b2eneffX

0−1
1 X

2−1
5 − 0.647b2eneffX

0−1
2 X

2−1
1

+ 0×X
0−1
2 X

2−1
2 − 0.892b2eneffX

0−1
2 X

2−1
3

+ (0.705epeff − 0.988eneff)b2X
0−1
2 X

2−1
4 + 0.705b2epeffX

0−1
2 X

2−1
5

= −0.111b2epeff − 1.526b2eneff = −(0.330 + 4.871χ)e fm
2 .
(10.25)

The oscillator length b = 1.725 fm from Subsect. 6.4.4 and the definition (6.26)
of the electric polarization constant were used in the last step.

By the symmetry relation (2.32) the 2− → 0− transition amplitude (10.25)
is equal to the one for 0− → 2−. Equation (6.4) then gives the reduced tran-
sition probability

B(E2 ; 0−1 → 2−gs) = (0.330 + 4.871χ)
2 e2fm4 . (10.26)

Comparison with the experimental result 4.3 e2fm4 given in (6.155) leads to
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χ = 0.36 . (10.27)

This is not far from the value χ = 0.45 obtained in the unmixed case of Sub-
sect. 6.4.4, which is not surprising because the leading amplitudes in the wave
functions (10.22) and (10.24) are very near unity. Nevertheless, configuration
mixing does reduce the polarization constant.

10.3 Beta-Decay Transitions in the pnTDA

The pnTDA states of an odd–odd nucleus allow for two kinds of beta-decay
transition. The first kind consists of decays to the ground state of the reference
nucleus. The second kind consists of transitions from a pnTDA state to a TDA
state, i.e. from a state in an odd–odd nucleus to excited states of the reference
nucleus.

10.3.1 Transitions to the Particle–Hole Vacuum

Consider beta decay to the particle–hole vacuum, i.e. the ground state of the
even–even pnTDA reference nucleus. The initial state is in a neighbouring
odd–odd nucleus and is described by one of the wave functions (10.19). The
transition amplitudes are then

(HF‖β−L‖ω) =
∑
np

Xω
np(HF‖β−L‖np−1 ; J) , (10.28)

(HF‖β+
L‖ω) =

∑
pn

Xω
pn(HF‖β+

L‖p n−1 ; J) . (10.29)

Equations (7.70) and (7.59) give the reduced matrix element on the right-hand
side of (10.28) as

(HF‖β−L‖np−1 ; J) = L̂−1
∑
p′n′

(p′‖βL‖n′)(HF‖
[
c†p′ c̃n′

]
L
‖np−1 ; J)

= δLJ(−1)jn−jp+J(p‖βL‖n) . (10.30)

This relation is true for a generic tensor operator β−L describing beta-minus
decay.1 For allowed decay we identify the single-particle matrix element as
(p‖βL‖n) = L̂ML(pn) according to (7.73) and (7.74); the two values of L
are L = 0 for Fermi transitions and L = 1 for Gamow–Teller transitions. The
single-particle symmetry relations (7.22) and (7.23) then simplify (10.30) to

(HF‖β−L‖np−1 ; J) = δLJ(−1)J ĴMJ(np) . (10.31)

1 The value of L is not sufficient to identify the type of decay because of the
possibility of forbidden non-unique decay; see Table 7.10. However, to keep the
notation simple we ignore this possibility.
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Similarly we obtain

(HF‖β+
L‖p n−1 ; J) = δLJ(−1)J ĴMJ(pn) . (10.32)

Substitution of (10.31) and (10.32) into (10.28) and (10.29) results in the
formulas

(HF‖β−L‖ω) = δLJ(−1)J Ĵ
∑
np

Xω
npMJ (np) ,

(HF‖β+
L‖ω) = δLJ(−1)J Ĵ

∑
pn

Xω
pnMJ (pn) ,

(10.33)

valid for allowed beta decay.
Let us next consider Kth-forbidden unique beta decay (K = 1, 2, 3, . . .).

Equation (7.201), transcribed into the present notation, gives

(HF‖β−K+1‖np−1 ; J) = δK+1,J(−1)J ĴM(Ku)(np) . (10.34)

The analogous relation for β+ decay is

(HF‖β+
K+1‖p n−1 ; J) = δK+1,J(−1)J ĴM(Ku)(pn) . (10.35)

For Kth-forbidden unique beta decay the equations corresponding to (10.33)
become

(HF‖β−K+1‖ω) = δK+1,J(−1)J Ĵ
∑
np

Xω
npM(Ku)(np) ,

(HF‖β+
K+1‖ω) = δK+1,J(−1)J Ĵ

∑
pn

Xω
pnM(Ku)(pn) .

(10.36)

The following example illustrates application of the theory to first-forbidden
unique beta decay.

10.3.2 First-Forbidden Unique Beta Decay of 167N9

Subsection 7.6.3 treats the first-forbidden unique β− decay of the 2− ground
state of 16

7N9 to the 0
+ ground state of 16

8O8 with unmixed states. We now
extend the treatment to include configuration mixing in the initial 2− state
by using the pnTDA wave function given in (10.23) and (10.24).

We apply the first equation (10.36). The single-particle matrix elements
M(1u)(np) are given by (7.168) and (7.169). With our usual value b = 1.725 fm
for A = 16, (7.168) gives

M(1u)(np) = 5.158× 10−3m(1u)(np) . (10.37)

Using the labels i = 1–5 of (10.23) for the np and taking the m(1u)(i) from
Table 7.6, we have
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(HF‖β−2 ‖2−1 ) =
√
5
∑
i

X
2−1
i M(1u)(i)

=
√
5× 5.158× 10−3

(
−
√

21
5 X

2−1
1 + 2

√
6
5X

2−1
2 −

√
2X2−1

3

− 2√
5
X

2−1
4 + 1√

5
X

2−1
5

)
= 0.0200 . (10.38)

With the relations (7.165) this gives

B1u =
1.252

5
× 0.02002 = 1.25× 10−4 , log f1ut = 8.77 . (10.39)

The new log ft value 8.8 is to be compared with the unmixed value 8.6
given in (7.180) and the experimental value 9.1. The improvement comes from
the small negative contributions to the transition amplitude (10.38) domi-
nated by the first positive term.

10.3.3 Transitions between Particle–Hole States

Beta-decay transitions between two particle–hole excitations were addressed
in Subsect. 7.4.3 and all decay matrix elements were derived. When configura-
tion mixing is included at the TDA level of approximation, the initial pnTDA
state is given by (10.19) and the final TDA state by

|ωf 〉 =
∑
pfp′f

X
ωf
pfp′f
|pf p′f

−1 ; Jf Mf 〉+
∑
nfn′

f

X
ωf
nfn′

f
|nf n′f

−1 ; Jf Mf 〉 , (10.40)

where we have explicitly separated the proton and neutron particle–hole com-
ponents.

For β− decay to the final state (10.40), the initial state is the neutron-
particle–proton-hole state in (10.19). This gives the decay amplitude

(ωf‖β−L‖ωi) =
∑
nipi
pfp

′
f

X
ωf∗
pfp′f

Xωi
nipi(pf p′f

−1 ; Jf‖β−L‖ni pi−1 ; Ji)

+
∑
nipi
nfn

′
f

X
ωf∗
nfn′

f
Xωi

nipi(nf n′f
−1 ; Jf‖β−L‖ni p

−1
i ; Ji) ,

(10.41)

with the particle–hole transition matrix elements given by (7.76) and (7.72). In
β+ decay the initial state is the proton-particle–neutron-hole state in (10.19),
and the decay amplitude becomes

(ωf‖β+
L‖ωi) =

∑
pini
pfp

′
f

X
ωf∗
pfp′f

Xωi
pini(pf p′f

−1 ; Jf‖β+
L‖pi n

−1
i ; Ji)

+
∑
pini
nfn

′
f

X
ωf∗
nfn′

f
Xωi

pini(nf n′f
−1 ; Jf‖β+

L‖pi n
−1
i ; Ji) ,

(10.42)

with the particle–hole transition matrix elements given by (7.80) and (7.79).
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To illustrate the use of the formalism we revisit the example of Sub-
sect. 7.4.4 below.

10.3.4 Allowed Beta Decay of 167N9 to Excited States in
16
8O8

Referring to Fig. 7.7, consider the Gamow–Teller and Fermi β− decay of the
2− ground state of 167N9 to the 1

−
1 , 2

−
1 and 3

−
1 states in

16
8O8. The decay rates

for these transitions were calculated in Subsect. 7.4.4 in the mean-field ap-
proximation, i.e. without configuration mixing. We now extend that treatment
by assuming the particle–hole valence space (0d-1s)-(0p1/2)−1.

The initial 2−gs state is to be constructed in the 2
− pnTDA basis

{|ν1π〉2 , |ν2π〉2} = {|ν0d5/2 (π0p1/2)−1 ; 2−〉 , |ν0d3/2 (π0p1/2)−1 ; 2−〉} .
(10.43)

Note that in the absence of the 0p3/2 proton-hole orbital this is a smaller basis
than (10.23).

To find the wave function of the 2−gs state, we turn to Subsect. 9.1.3.
From (5.128) we see that the state has T = 1, so the SDI matrix element
is given by (9.32). The relevant entries in Table 9.2 are M1232(21) = 0 and
M1232(20) = 0, whence

2〈ν1π|VRES|ν2π〉2 = 0 . (10.44)

The initial state thus remains unmixed in this valence space, i.e. unchanged
from (7.86).

The TDA basis states for J = 3− in 16O are

{|π〉3 , |ν〉3} = {|π0d5/2 (π0p1/2)−1 ; 3−〉 , |ν0d5/2 (ν0p1/2)−1 ; 3−〉} .
(10.45)

These are precisely the basis states appearing in the mean-field wave function
(7.87), which then remains valid in the present basis. Since the 2−gs initial state
also remained unchanged it follows that the decay amplitude for the 2−gs → 3−1
transition is given by (7.97).

For 2− states the TDA basis becomes

{|π1〉2 , |π2〉2 , |ν1〉2 , |ν2〉2}
= {|π0d5/2 (π0p1/2)−1 ; 2−〉 , |π0d3/2 (π0p1/2)−1 ; 2−〉 ,
|ν0d5/2 (ν0p1/2)−1 ; 2−〉 , |ν0d3/2 (ν0p1/2)−1 ; 2−〉} . (10.46)

However, for our standard choice A0 = A1 of the SDI parameters, the Hamil-
tonian matrix is diagonal because the off-diagonal matrix elements (9.28)–
(9.30) with substitutions from Table 9.2 are zero. This means that the mean-
field wave function (7.87) is recovered also for 2−1 . Consequently, the 2

−
gs → 2−1

Gamow–Teller transition amplitude (7.96) remains valid, and the Fermi am-
plitude (7.98) remains zero.
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The mean-field 1−1 state (7.88) gave a zero transition amplitude (7.95) for
2−gs → 1−1 . Configuration mixing is therefore needed for a non-vanishing decay
rate. Our current particle–hole space provides the 1− basis

{|π1〉1 , |π2〉1 , |ν1〉1 , |ν2〉1}
= {|π1s1/2 (π0p1/2)−1 ; 1−〉 , |π0d3/2 (π0p1/2)−1 ; 1−〉 ,
|ν1s1/2 (ν0p1/2)−1 ; 1−〉 , |ν0d3/2 (ν0p1/2)−1 ; 1−〉} . (10.47)

With the single-particle energies from Fig. 9.2 (a) the Hamiltonian matrix
becomes

HTDA(1−) =⎛⎜⎜⎝
12.47 + 0.333A1 −0.943A1

1
2
(0.333A1 − 1.667A0)

1
2
(−0.943A1 − 0.943A0)

−0.943A1 16.68− 0.333A1
1
2
(−0.943A1 − 0.943A0)

1
2
(−0.333A1 − 2.333A0)

. . . . . . 12.47 + 0.333A1 −0.943A1

. . . . . . −0.943A1 16.68− 0.333A1

⎞⎟⎟⎠ ,

(10.48)

Diagonalizing this matrix with A0 = A1 = 1.0MeV yields

|16O ; 1−1 〉 = 0.634|π1〉1 + 0.314|π2〉1 + 0.634|ν1〉1 + 0.314|ν2〉1 . (10.49)

As noted above, the leading components |π1〉1 and |ν1〉1 do not connect to
the initial 2− ground state via Gamow–Teller single-particle matrix elements.
Equations (7.76) and (7.72) with Table 7.3 give the matrix elements for the
remaining components as(

π0d3/2 (π0p1/2)
−1 ; 1−‖β−GT‖ν0d5/2 (π0p1/2)−1 ; 2−

)
=

6√
5

, (10.50)(
ν0d3/2 (ν0p1/2)

−1 ; 1−‖β−GT‖ν0d5/2 (π0p1/2)−1 ; 2−
)
= 0 . (10.51)

Now from (10.41) we can obtain the decay amplitude

(1−1 ‖β−GT‖2−gs) = 0.314× 1.0×
6√
5
= 0.843 . (10.52)

By (7.14) and (7.33) the reduced transition probability and log ft value be-
come

BGT(2−gs → 1−1 ) =
1.252

5
× 0.8432 = 0.222 , log ft = 4.44 . (10.53)

Figure 7.7 gives the experimental log ft value as 5.1. We conclude that con-
figuration mixing indeed produces a finite 2−gs → 1−1 transition rate, which is
a radical improvement over the mean-field description.

With the log ft values (7.101), (7.102) and (10.53) for the Gamow–Teller
decays and (10.39) for the first-forbidden unique decay, and the vanishing
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Fermi transition rate, we proceed to compute the partial and total decay
half-lives. The phase-space factors for the Gamow–Teller decays are given by
(7.30). The phase space factor (7.174) for the first-forbidden unique decay we
already have from (7.181); its value 4.62× 107 contains the Primakoff–Rosen
factor 1.19 needed also for the Gamow–Teller decays.

Using (7.17) and extracting the experimental partial half-lives from the
decay branchings by (7.39) we arrive at the numbers collected into Table 10.1.
The computed partial half-lives are too short, especially for the transitions to
the 1−1 and 2

−
1 states. The theoretical total half-life resulting from the partial

half-lives of Table 10.1 by use of (7.37) is

t
(tot)
1/2 (th) = 2.75 s . (10.54)

In view of the wide range of beta-decay half-lives, this is not far from the
experimental total half-life of 7.13 s shown in Fig. 7.7.

Table 10.1. Calculated and experimental data for the beta decay of the 2− ground
state of 167N9 to the

16
8O8 states 0

+
gs, 3

−
1 , 1

−
1 and 2

−
1 ; see Fig. 7.7

Jπf E0 log f (−) log ft(th) log ft(exp) t1/2(th) (s) t1/2(exp) (s)

0+gs 21.39 7.66 8.77 9.1 12.9 27.4
3−1 9.39 3.46 4.07 4.5 4.1 10.5
1−1 7.46 2.95 4.44 5.1 31 146
2−1 4.03 1.58 3.59 4.3 102 648

The decay to 0+gs is first-forbidden unique; the other three are Gamow–Teller
decays. The experimental quantity E0 is the dimensionless endpoint energy

used in calculating the phase-space factor f (−).

Epilogue

In this chapter we have formulated the proton–neutron TDA. It serves to
generate states in an odd–odd nucleus by starting from the adjacent doubly
magic even–even reference nucleus. This formulation enabled us to calculate
electromagnetic transitions in an odd–odd nucleus and beta-decay transitions
from an odd–odd nucleus to its doubly even reference nucleus. In the following
chapter we reach the climax of particle–hole theories when formulating the
random phase approximation, RPA. The RPA produces a correlated ground
state, which increases the collectivity of transitions beyond the TDA results.

Exercises

10.1. Derive Eq. (10.5).
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10.2. Verify the numbers in the matrix (10.16).

10.3. Verify the numbers in the matrix (10.48).

10.4. Verify the wave function (10.49).

10.5. Verify the value of the particle–hole transition matrix element (10.50).

10.6. Verify the numbers in Table 10.1.

10.7. Compute the energies of the 0−, 1−, 2− and 3− states of 16
7N9 in the

(0d5/2-1s1/2)-(0p)−1 particle–hole valence space. Use the single-particle en-
ergies of Fig. 9.2 (a) and the SDI. Try to fit the parameters A0 and A1 to
reproduce the experimental energy levels.

10.8. Compute the energies of the 0− and 3− states of 167N9 in the complete
(0d-1s)-(0p)−1 particle–hole valence space by using the single-particle energies
of Fig. 9.2 (a) and the SDI with parameters A0 = A1 = 1.0MeV.

10.9. Compute the energies of the 2− states of 167N9 under the conditions of
Exercise 10.8.

10.10. Compute the energies of the 2−, 3−, 4− and 5− states of 4019K21 in the
0f7/2-(0d3/2)−1 particle–hole valence space. Assume an energy gap of 6.0MeV
between the two single-particle levels and use the SDI. Try to fit the parame-
ters A0 and A1 to reproduce the experimental energies.

10.11. Treat the nucleus 32
16S16 as doubly magic in the 0d3/2-(0d5/2-1s1/2)

−1

particle–hole valence space. Use it as the reference nucleus for 32
15P17. Com-

pute all states of 3215P17 in this valence space. Use the single-particle energies
(8.124) and the SDI with parameters A0 = A1 = 1.0MeV. Compare with
experimental data and comment.

10.12. Calculate the structure of the 4− ground state of 4021Sc19 by diagonal-
izing the pnTDA matrix in the complete 0f7/2-(0d-1s)−1 particle–hole valence
space. Take the single-particle energies from Fig. 9.2 (b) and use the SDI with
parameters A0 = A1 = 1.0MeV.

10.13. Calculate the log ft values of the β+ transitions from the 4− ground
state of 40Sc to the 5−1 , 4

−
1 and 4−2 states of 40Ca. Use the wave functions

from Exercises 10.12 and 9.32. Compare with the experimental data shown in
Fig. 7.12 and comment.

10.14. Using the wave function of Exercise 10.12 compute the log ft value of
the third-forbidden unique beta-decay transition 4−gs(

40Sc)→ 0+gs(
40Ca).

10.15. Using the wave functions of Exercise 10.7 compute the reduced tran-
sition probability B(E2 ; 0−1 → 2−1 ) in

16N. Deduce from the experimental
half-life the value of the electric polarization constant χ.



www.manaraa.com

Exercises 303

10.16. Using the wave functions of Exercise 10.11 compute the reduced tran-
sition probability B(M1 ; 2+1 → 1+1 ) in

32P. Use the bare g factors (6.25).
Compute the half-life of the 2+1 state by taking the gamma energy from ex-
periment. Compare with the data and comment.

10.17. Using the wave functions of Exercise 10.10 compute the half-life of the
3−1 state in 40K. Use the bare g factors (6.25) and the experimental gamma
energy. Compare with the data and comment.

10.18. Using the wave functions of Exercise 10.10 and the experimental
gamma energies compute the half-lives of the 2−1 and 5−1 states in 40K. As-
sume the bare g factors (6.25) and the value χ = 1 for the electric polarization
constant. Compare with the data and comment.
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The Random-Phase Approximation

Prologue

In this chapter we extend the TDA particle–hole formalism of Chap. 9 to in-
clude correlations in the nuclear ground state. This sophisticated particle–hole
formalism is called the random-phase approximation (RPA). In this descrip-
tion the simple Hartree–Fock particle–hole vacuum is replaced by a corre-
lated ground state involving many-particle–many-hole excitations of the sim-
ple particle–hole vacuum. The resulting configuration mixing in excited states
is more involved in the RPA than it is in the TDA. The ground-state corre-
lations induce both particle–hole and hole–particle components in the RPA
wave function.

The correlations of the RPA ground state can lead to strong collectivity of
calculated electromagnetic decay rates. The traditional example is the electric
octupole decay of the first 3− state in 16O. As in the case of the TDA, a
schematic separable model can be devised for the RPA. The schematic model
is convenient for discussing general features of the RPA solutions of excitation
energies and electromagnetic decay rates.

11.1 The Equations-of-Motion Method

An instructive way to arrive at a more sophisticated particle–hole theory
than the TDA of Chap. 9 is to use the so-called equations-of-motion (EOM)
method. This method can be used to derive the mean-field Hartree–Fock equa-
tion and the TDA, but also more sophisticated theories like the RPA, higher-
RPA theories, etc. The basic idea behind the EOM is to avoid an explicit
calculation of the ground state, which may be very complicated. Instead, the
ground state is written implicitly and the excited states are obtained by per-
forming simple operations on it. This enables a relatively easy calculation of
the energy spectra and transition matrix elements between the ground and
excited states.
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In the previously discussed many-body approaches the ground state and
the excited states were calculated separately, independently of each other.
This is the thread of the shell-model philosophy. To simplify this scheme of
calculation, the EOM lets the chosen form of excitations dictate the compat-
ible form of the ground state. Hence the calculation of the ground state and
that of the excited states are not independent. In fact, the relation between
these two determines the excitation energies and the amplitudes for transitions
between the ground and excited states. Operating with the relation between
the ground state and the excited states enables one to avoid writing down the
explicit form of the ground state.

The EOM method was introduced by Rowe [14]. Its derivation is analogous
to the derivation of the method for solving the harmonic oscillator problem
by using the so-called ladder operators (see, e.g. [3,6]). These operators create
excited states from the oscillator vacuum, whose explicit form is not needed
for obtaining the excitation spectrum or transition matrix elements.

11.1.1 Derivation of the Equations of Motion

By analogy to the harmonic oscillator problem, we can start from a postulated
basic relation between the ground state and an excited state, written as

|ω〉 = Q†ω|0〉 . (11.1)

It is required that the annihilation operator Qω, which corresponds to the
creation operator Q†ω, deletes the vacuum |0〉, i.e.

Qω|0〉 = 0 for all ω . (11.2)

Furthermore, the excitation is assumed to satisfy the Schrödinger equation

H|ω〉 = Eω|ω〉 . (11.3)

The above relations allow us to write

[H,Q†ω]|0〉 = (Eω − E0)Q†ω|0〉 , (11.4)

where E0 is the energy of the ground state, i.e.

H|0〉 = E0|0〉 . (11.5)

Equation (11.4) constitutes the equation of motion of the excitation creation
operator Q†ω.

Consider the operator Q†ω as composed of a set of blocks δQ†, such that
all δQ|0〉 = 0, with certain amplitudes. In what follows, we refer to δQ† as
the variation of the basic excitation Q†ω. To compute the amplitudes we form
the overlap between δQ†|0〉 and the relation (11.4):

〈0|δQ[H,Q†ω]|0〉 = (Eω − E0)〈0|δQQ†ω|0〉 . (11.6)
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The evaluation of (11.6) can be simplified by writing it in the commutator
form

〈0|
[
δQ, [H,Q†ω]

]
|0〉 = (Eω − E0)〈0|[δQ,Q†ω]|0〉 . (11.7)

The simplification results from the fact that the commutator of any two op-
erators is of a lower particle rank than is their product. What this means is,
for example, that a commutator of the type [cc, c†c†] consists of terms of the
type cc†. We can simplify (11.7) further by letting Eω denote the excitation
energy.

Equation (11.7) is derived from a variational principle, namely δQ|0〉 = 0,
and is exact. However, the vacuum state |0〉 is usually not known exactly, so
we are led to replace it with some approximate vacuum state |Ψ0〉. Even with
an approximate vacuum state it is necessary to guarantee the orthogonality
of the basic excitations, i.e.

〈Ψ0|QωQ
†
ω′ |Ψ0〉 = δωω′ . (11.8)

It turns out that to satisfy the condition (11.8) we have to symmetrize the
double commutator in (11.7), as discussed in [14]. Furthermore, we must then
consider two different situations, namely where the basic excitations Q†ω are
either Fermi-like or Bose-like. In the Fermi case, Q†ω contains an odd number
of the particle operators c† and c, and in the Bose case an even number of
them. This is schematically represented as

O†F = c† + c†c†c† + c†c†c+ . . . , (11.9)

O†B = c†c+ c†c† + c†c†cc+ . . . . (11.10)

The Fermi-like excitations can be imagined to behave roughly as fermions and
the Bose-like roughly as bosons.

The resultant final form of the equations of motion can be written as

〈Ψ0|[δQ,H,Q†ω]±|Ψ0〉 = Eω〈Ψ0|[δQ,Q†ω]±|Ψ0〉 , (11.11)

where the symmetrized double commutator is defined as

[A,B,C]± ≡
1
2

([
A, [B,C]

]
± +

[
[A,B], C

]
±
)

. (11.12)

Here the notation is
[A,B]± ≡ AB ±BA , (11.13)

which relates to the standard notation for commutators and anticommutators
as

[A,B]− = [A,B] , [A,B]+ = {A,B} . (11.14)

If the basic excitations are Fermi-like (Bose-like), anticommutators (commu-
tators) are used in (11.11). Unless |Ψ0〉 = |0〉, the equation of motion (11.11)
is not derived from a variational principle and is not exact.



www.manaraa.com

308 11 The Random-Phase Approximation

The motivation for the commutator formalism is to reduce the dependence
of (11.11) on the structure of the ground state as much as possible. This is
achieved by reducing the particle rank of the operators through commutation,
because the smaller the particle rank the more accurate is the replacement
|0〉 → |Ψ0〉. In particular, if the double commutator yields a c-number, the
EOM is exact because normalization is assumed preserved in the replacement.
If the double commutator yields a one-body operator then the accuracy of the
EOM depends on the goodness of the approximation

〈Ψ0|cc†|Ψ0〉 ≈ 〈0|cc†|0〉 . (11.15)

The EOM is a very general and useful method. It can be used to derive all
nuclear many-body theories in common use. This situation is schematically
depicted in Fig. 11.1. Many of these theories are listed also in Table 11.1,
where the structure of the basic excitation and its variation(s) is given. Also
the approximate ground state used in deriving the equations of motion is
stated.

Table 11.1 contains the particle–hole and pair creation operators

A†ab(JM) ≡
[
c†ah
†
b

]
JM

, (11.16)

A†ab(JM) ≡ Nab(J)
[
a†aa
†
b

]
JM

(11.17)

MQPM RPA

QTDA TDA

TDHFQRPA

BCS MAVA

HFB HF

EOM

HIGHER−ORDER RPA’s

Fig. 11.1. The genealogy of many-body theories derivable by the equations-of-
motion (EOM) method. The abbreviations are: HF = Hartree–Fock, TDHF = time-
dependent Hartree–Fock, TDA = Tamm–Dancoff approximation, RPA = random-
phase approximation, BCS = Bardeen–Cooper–Schrieffer theory of nucleon pairing,
HFB = Hartree–Fock–Bogoliubov self-consistent pairing theory, QTDA = quasipar-
ticle TDA, QRPA = quasiparticle RPA, MQPM=microscopic quasiparticle–phonon
model [65], MAVA = microscopic anharmonic vibrator approach [66]
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Table 11.1. The basic excitation and its variation(s) for a number of widely used
nuclear many-body theories listed in Fig. 11.1. (Also the approximate ground state
|Ψ0〉 is given)

Theory Q†
ω δQ |Ψ0〉

HF c†ω =
∑

l Uωlb
†
l bl |HF〉

TDA Q†
ω =

∑
abX

ω
abA†

ab(JM) Aab(JM) |HF〉
RPA Q†

ω =
∑

ab[X
ω
abA†

ab(JM) Aab(JM)

− Y ω
abÃab(JM)] Ã†

ab(JM) |HF〉
BCS a†ω = uωc

†
ω + vω c̃ω cω, c̃

†
ω |BCS〉

HFB a†ω =
∑

l(Uωlc
†
l + Vωlc̃l) cl, c̃

†
l |HFB〉

QTDA Q†
ω =

∑
abX

ω
abA

†
ab(JM) Aab(JM) |BCS〉

QRPA Q†
ω =

∑
ab[X

ω
abA

†
ab(JM) Aab(JM)

− Y ω
abÃab(JM)] Ã†

ab(JM) |BCS〉

with the normalization constant Nab(J) given by (5.21). The operators a† and
a are quasiparticle creation and annihilation operators defined either through
the Bogoliubov–Valatin or the Hartree–Fock–Bogoliubov transformation (see,
e.g. [16]). The former transformation is taken up when dealing with the BCS
theory in Part II of this book. The adjoint tensor operators are defined as

Ãab(JM) ≡ (−1)J+M
(
A†ab(J −M)

)†
= (−1)J+MAab(J −M) = −

[
c̃ah̃b

]
JM

, (11.18)

Ãab(JM) ≡ (−1)J+M
(
A†ab(J −M)

)†
= (−1)J+MAab(J −M) = −Nab(J)

[
ãaãb

]
JM

. (11.19)

Let us review the general principle of approximation in the EOM. The
state |Ψ0〉 in (11.11) is intended to be an approximation of the exact ground
state |0〉. In comparison with (11.2), Qω|0〉 = 0, this means that Qω|Ψ0〉 	= 0.
Therefore (11.11) does not satisfy a variational principle, and the calculated
ground state can lie below the exact one. If, however, a theory is formulated
from (11.11) with |0〉 in place of |Ψ0〉, the theory does satisfy a variational
principle and the calculated ground state is exact.

Of the theories in Fig. 11.1 and Table 11.1 that are discussed in this
book, the HF, TDA, BCS and QTDA approaches emerge from a variational
principle; this is implied by the last column of the table. The other theories
discussed in the book, namely the RPA and QRPA, do not satisfy variational
principles. However, this flaw does not significantly detract from the usefulness
of these theories.

To end this subsection, we list some commutator and anticommutator
relations that are useful when evaluating (11.11). They read
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[AB,C] = A[B,C] + [A,C]B = A{B,C} − {A,C}B , (11.20)
[A,BC] = [A,B]C +B[A,C] = {A,B}C −B{A,C} , (11.21)

[AB,CD] = A[B,C]D +AC[B,D] + [A,C]DB + C[A,D]B
= A{B,C}D −AC{B,D}+ {A,C}DB − C{A,D}B , (11.22)

{A,BC} = {A,B}C −B[A,C] = [A,B]C +B{A,C} . (11.23)

Note that the compound commutators are stated in terms either of the basic
commutators or the basic anticommutators. If the basic operators A, B, C
and D obey commutation (anticommutation) rules then one should use the
expansion given in terms of commutators (anticommutators).

We discuss next a non-trivial example illustrating how to use the EOM
when starting from the postulated form of a basic excitation.

11.1.2 Derivation of the Hartree–Fock Equations by the EOM

To illustrate the EOM, we derive the Hartree–Fock equations by it. We start
from the basic excitation and its variation

c†ω =
∑
l

Uωlb
†
l , δc = bl (11.24)

given in Table 11.1. In this case the label ω carries the quantum numbers
of a single-particle orbital. The basic excitation postulated in (11.24) is a
linear combination of operators each of which creates a particle into a single-
particle state φl(x). The amplitudes U of the basic excitation can be viewed
as elements of a unitary transformation between the optimal particle creation
operators c†ω of the Hartree–Fock single-particle basis and the initial, arbitrary
particle creation operators b†l .

The basic excitations are now Fermi-like, so that anticommutators are used
in (11.11). Expressed in the initial basis, the nuclear Hamiltonian is

H = T + V =
∑
αβ

tαβb
†
αbβ +

1
4

∑
αβγδ

v̄αβγδb
†
αb
†
βbδbγ . (11.25)

This gives for the commutators[
T, c†ω

]
=

∑
αβ

tαβUωβb
†
α , (11.26)

[
V, c†ω

]
= 1

4

∑
αβγδ
l

v̄αβγδb
†
αb
†
β(Uωγbδ − Uωδbγ)

= − 1
2

∑
αβγδ

v̄αβγδUωδb
†
αb
†
βbγ , (11.27)

[δc, T ] =
∑
β

tlβbβ , (11.28)
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[δc, V ] = 1
2

∑
βγδ

v̄lβγδb
†
βbδbγ , (11.29)

where we have used the commutator formulas (11.20) and (11.21) and the
symmetry relations (4.29).

We proceed to compute the anticommutators and write down the HF ma-
trix elements:

〈HF|
{
δc,

[
T, c†ω

]}
|HF〉 =

∑
β

tlβUωβ , (11.30)

〈HF|
{
δc,

[
V, c†ω

]}
|HF〉 =

∑
αγδ

v̄αlγδUωδ〈HF|b†αbγ |HF〉 , (11.31)

〈HF|
{
[δc, T ], c†ω

}
|HF〉 =

∑
β

tlβUωβ , (11.32)

〈HF|
{
[δc, V ], c†ω

}
|HF〉 =

∑
αγδ

v̄αlγδUωδ〈HF|b†αbγ |HF〉 , (11.33)

where we have used (11.21), (11.23) and (4.29). Collecting the terms (11.30)–
(11.33) into the left-hand side of (11.11) and inserting the matrix element

〈HF|
{
δc, c†ω

}
|HF〉 = Uωl (11.34)

into the right-hand side, we finally obtain the equations of motion∑
β

Uωβ

(
tlβ +

∑
αγ

v̄αlγβ〈HF|b†αbγ |HF〉
)
= EωUωl . (11.35)

Since |HF〉 is the particle–hole vacuum of the b operators (11.35) becomes∑
β

Uωβ

(
tlβ +

∑
α

εα≤εF

v̄αlαβ

)
=

∑
β

UωβTlβ = EωUωl , (11.36)

where the two-body operator Tlβ is the same as that defined in (4.63). The
one-body and two-body parts of the Hamiltonian are separately Hermitian,
so we have Tlβ = (T †)lβ = T ∗βl. In the normal case that the Tlβ are real we
then have Tlβ = Tβl. Substituting this into (11.36), multiplying its both sides
from the right by U∗ω′l and summing over l, we obtain∑

βl

UωβTβlU
∗
ω′l = Eω

∑
l

UωlU
∗
ω′l . (11.37)

In matrix notation this reads

(UTU†)ωω′ = Eω(UU†)ωω′ = Eωδωω′ , (11.38)
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where we have used the unitarity of U. The left-hand side represents the
diagonalized matrix T′ of (4.67). Equation (11.38) gives directly the Hartree–
Fock equation (4.69), in the current notation

tωω′ +
∑
α

εα≤εF

v̄αωαω′ = Eωδωω′ . (11.39)

11.2 Sophisticated Particle–Hole Theories: The RPA

The basic difference between the relatively simple TDA and the more sophis-
ticated RPA is the replacement of the simple particle–hole vacuum |HF〉 of
the TDA by the correlated ground state in the RPA. This correlated ground
state consists of the particle–hole vacuum and components with two-particle–
two-hole, four-particle–four-hole, etc., correlations. Simple particle–hole cor-
relations cannot occur in the RPA ground state, as is stated by Brillouin’s
theorem (9.8).

The RPA equations can be derived in numerous ways:

• by the so-called quasiboson approximation, where the commutators of
particle–hole operators are replaced by their vacuum expectation values
in the uncorrelated particle–hole state;

• by linearization of two-particle–two-hole excitations, with substitutions
like c†c†cc→ c†c〈HF|c†c|HF〉;

• by time-dependent Hartree–Fock theory;

• by the Green function formalism;

• by the EOM.

In the following we use the EOM to derive the RPA equations.

11.2.1 Derivation of the RPA Equations by the EOM

We choose to use the EOM to derive the RPA equations because it can also
be readily applied to derive higher-RPA theories. In this case Table 11.1 gives
the basic excitation as

Q†ω =
∑
ab

[
Xω

abA
†
ab(JM)− Y ω

abÃab(JM)
]
, (11.40)

where ω = nJπM . From (11.40) we obtain by Hermitian conjugation

Qω =
∑
ab

[
Xω∗

ab Aab(JM)− Y ω∗
ab Ã

†
ab(JM)

]
(11.41)

with the particle–hole operator and its adjoint defined in (11.16) and (11.18).
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The variations of the first and the second term, respectively, of the basic
excitation are given by

δQ = Aab(JM) , δQ = Ã†ab(JM) . (11.42)

They are Bose-like, so (11.11) gives the equation of motion1

〈HF|
[
δQ,H,Q†ω

]
|HF〉 = Eω〈HF|

[
δQ,Q†ω

]
|HF〉 . (11.43)

Note that we have here |Ψ0〉 = |HF〉, which is not the true ground state.
As discussed in Subsect. 11.1.1, this means that the RPA does not satisfy a
variational principle.

To evaluate the right-hand side of (11.43) we need commutator relations
for the particle–hole operators (11.16) and (11.18). The identity (11.22) and
various relations of Chap. 4 give

〈HF|
[
Aab(JM),A†cd(J ′M ′)

]
|HF〉 = δacδbdδJJ ′δMM ′ , (11.44)

〈HF|
[
Ãab(JM), Ã†cd(J ′M ′)

]
|HF〉 = δacδbdδJJ ′δMM ′ , (11.45)

while the expectation values of all other commutators vanish. Note that in
these expectation values the Bose-like particle–hole operators behave as exact
boson operators.

We substitute (11.40) and the variation δQ = Aab(JM) into (11.43). Use
of (11.44) then gives∑

cd

〈HF|
[
Aab,H,A†cd

]
|HF〉Xω

cd −
∑
cd

〈HF|
[
Aab,H, Ãcd

]
|HF〉Y ω

cd = EωX
ω
ab .

(11.46)
The variation δQ = Ã†ab(JM) yields similarly∑

cd

〈HF|
[
Ã†ab,H,A†cd

]
|HF〉Xω

cd −
∑
cd

〈HF|
[
Ã†ab,H, Ãcd

]
|HF〉Y ω

cd = EωY
ω
ab .

(11.47)
To deal with the left-hand side of (11.46) in short-hand notation we define

matrices A(J) and B(J) with elements

Aab,cd(J) ≡ 〈HF|
[
Aab(JM),H,A†cd(JM)

]
|HF〉 ,

Bab,cd(J) ≡ −〈HF|
[
Aab(JM),H, Ãcd(JM)

]
|HF〉 .

(11.48)

An examination of the tensor rank resulting from the relations (11.16) and
(11.18) shows that the matrix elements (11.48) do not depend on M . The
defining equation (11.12) of the double commutator gives the identities

[A,B,C]† = [C†, B†, A†] , [A,B,C] = [C,B,A] . (11.49)
1 All the following double commutators involve Bose-like excitations, so the sub-
script ‘−’ in the defining equation (11.12) is omitted.
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With (11.18) and (11.49), and noting that H† = H, the double commutators
in (11.47) can be related to those in (11.46) according to[

Ã†ab(JM),H,A†cd(JM)
]
=

[
Acd(JM),H, Ãab(JM)

]†
, (11.50)[

Ã†ab(JM),H, Ãcd(JM)
]
=

[
Acd(J −M),H,A†ab(J −M)

]
. (11.51)

To simplify the notation we omit JM for the time being and identify

〈HF|
[
Ã†ab,H,A†cd

]
|HF〉 = −B∗cd,ab = −

(
B†

)
ab,cd

, (11.52)

〈HF|
[
Ã†ab,H, Ãcd

]
|HF〉 = Acd,ab =

(
AT

)
ab,cd

. (11.53)

By means of (11.48), (11.52) and (11.53), Eqs. (11.46) and (11.47) become∑
cd

Aab,cdX
ω
cd +

∑
cd

Bab,cdY
ω
cd = EωX

ω
ab , (11.54)

−
∑
cd

(
B†

)
ab,cd

Xω
cd −

∑
cd

(
AT

)
ab,cd

Y ω
cd = EωY

ω
ab , (11.55)

or in matrix form

AXω + BYω = EωX
ω , (11.56)

−B†Xω − ATYω = EωY
ω . (11.57)

From the defining equations (11.48) and the identities (11.49) one can
show that the matrices A and B have the properties

A† = A , BT = B , (11.58)

i.e. A is Hermitian and B is symmetric. The square matrices in (11.57) are
thus complex conjugate matrices of A and B: AT = A∗, B† = B∗. Equation
(11.57) now becomes

−B∗Xω − A∗Yω = EωY
ω . (11.59)

The two matrix equations (11.56) and (11.59) can be combined into a single
matrix equation whose elements themselves are matrices:(

A B
−B∗ −A∗

)(
Xω

Yω

)
= Eω

(
Xω

Yω

)
. (11.60)

This is the RPA matrix equation. The matrix containing A and B is not
Hermitian, and the RPA eigenvalue problem is indeed non-Hermitian.

To study the contents of the A matrix we expand the commutators in the
defining expression in (11.48) and obtain
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Aab,cd = 1
2

(
2〈HF|AabHA†cd|HF〉− 〈HF|AabA†cdH|HF〉− 〈HF|HA

†
cdAab|HF〉

+ 2〈HF|A†cdHAad|HF〉 − 〈HF|HAabA†cd|HF〉 − 〈HF|A
†
cdAabH|HF〉

)
.

(11.61)

In the third, fourth and sixth terms an annihilation operator operates on
the particle–hole vacuum, so the terms vanish. The second and fifth terms
are diagonal and give a constant contribution of −EHF; see (4.73). Without
changing the notation, we drop these terms since we are interested in the
excitation energies. This leaves us with the first term, which gives

Aab,cd(J) = 〈HF|Aab(JM)HA†cd(JM)|HF〉 = 〈a b−1 ; J M |H|c d−1 ; J M〉 .
(11.62)

Comparison with (9.35) shows that the matrix A is nothing but the TDA
matrix given by (9.17) and (9.22). In our current matrix notation, (9.35)
reads AXω = EωX

ω. From Chap. 9 we know how to construct matrix A in
detail.

The new matrix B is called the correlation matrix, and it is discussed in
detail in the following subsection.

11.2.2 Explicit Form of the Correlation Matrix

Here we derive the correlation matrix B explicitly. We expand the double com-
mutator in the defining equation in (11.48). The result is similar to (11.61)
except that now there are no diagonal terms. In four terms an annihilation op-
erator operates on the particle–hole vacuum, so they are zero. The remaining
two terms combine into

Bab,cd(J) = 〈HF|Aab(JM)Ãcd(JM)H|HF〉 . (11.63)

Expanding the angular momentum couplings in (11.63) results in

Bab,cd(J) = (−1)J+M
∑

mαmβ
mγmδ

(ja mα jb mβ |J M)(jc mγ jd mδ|J −M)

× 〈HF|hβcαhδcγH|HF〉 . (11.64)

The Hamiltonian is given by (4.70)–(4.72), and with the constant term omitted
the matrix element in (11.64) becomes

〈HF|hβcαhδcγH|HF〉 =
∑
α′

εα′〈HF|hβcαhδcγc†α′cα′ |HF〉

+ 1
4

∑
α′β′γ′δ′

v̄α′β′γ′δ′〈HF|hβcαhδcγN
[
c†α′c

†
β′cδ′cγ′

]
|HF〉 . (11.65)

From (4.72) we see that c†α′cα′ in the one-body term is diagonal. The remain-
ing string of operators hβcαhδcγ makes the term vanish. The normal-ordered
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product in the two-body term has to contain two particle-creation and two
hole-creation operators for the matrix element not to vanish. From (4.46) and
(4.47) we have cβ = (−1)jb−mβh†−β . Making this substitution and performing
the contractions, we obtain

(−1)jd′−mδ′+jc′−mγ′ 〈HF|hβcαhδcγc†α′c
†
β′h
†
−δ′h

†
−γ′ |HF〉

= (−1)jd′−mδ′+jc′−mγ′ (δαα′δγβ′δβ,−γ′δδ,−δ′ − δαα′δγβ′δβ,−δ′δδ,−γ′

+ δγα′δαβ′δβ,−δ′δδ,−γ′ − δγα′δαβ′δβ,−γ′δδ,−δ′) . (11.66)

Substituting this into (11.65) and using the symmetry properties (4.29) of v̄,
we arrive at the simple expression

〈HF|hβcαhδcγH|HF〉 = (−1)jb+mβ+jd+mδ v̄αγ,−β,−δ . (11.67)

To express (11.67) in terms of coupled two-body matrix elements we use
(8.17) and the Clebsch–Gordan symmetry (1.31). The result is

〈HF|hβcαhδcγH|HF〉 =
∑
J ′M ′

(−1)J ′+M ′
[Nac(J ′)Nbd(J ′)]−1

× (ja mα jc mγ |J ′M ′)(jb mβ jd mδ|J ′ −M ′)〈a c ; J ′|V |b d ; J ′〉 . (11.68)

We substitute this into (11.64), convert all the Clebsch–Gordan coefficients to
3j symbols, and sum over M and divide by 2J + 1. This yields

Bab,cd(J) =
∑
J ′

Ĵ ′
2
[Nac(J ′)Nbd(J ′)]−1〈a c ; J ′|V | b d ; J ′〉

×
∑

mαmβM

mγmδM
′

(−1)J+M+J′+M ′
(

ja jb J
mα mβ −M

)(
jc jd J
mγ mδ M

)

×
(

ja jc J ′

mα mγ −M ′

)(
jb jd J ′

mβ mδ M ′

)
. (11.69)

By means of (1.39) and (1.40) the 3j symbols can be rearranged so that they
sum into a 6j symbol according to (1.59). In addition, the two-body matrix
elements take care of the selection of J ′ values, so that the normalization
factors, in explicit form, can be brought outside the sum over J ′. The final
result is

Bab,cd(J) = (−1)jb+jc+J
√
(1 + δac)(1 + δbd)

×
∑
J ′
(−1)J ′

Ĵ ′
2
{

ja jb J
jd jc J ′

}
〈a c ; J ′|V |b d ; J ′〉 . (11.70)

An analogous expression applies in the isospin formalism:
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Bab,cd(JT ) = (−1)jb+jc+J+1+T
√
(1 + δac)(1 + δbd)

×
∑
J ′T ′

(−1)J ′+T ′
Ĵ ′

2
T̂ ′

2
{

ja jb J
jd jc J ′

}{ 1
2

1
2 T

1
2

1
2 T ′

}
× 〈a c ; J ′ T ′|V |b d ; J ′ T ′〉 .

(11.71)

11.2.3 Numerical Tables of Correlation Matrix Elements

For SDI, the elements of the A matrix are given in a convenient form by
Eqs. (9.28)–(9.32) and Tables 9.1–9.4. We now state the elements of the B
matrix similarly through Eqs. (11.74)–(11.78) and Tables 11.2–11.5. The aux-
iliary matrix elements analogous to those defined by (9.27) are

M̃abcd(JT ) ≡ (−1)jb+jc+J
√
(1 + δac)(1 + δbd)

×
∑
J ′
(−1)J ′

Ĵ ′
2
{

ja jb J
jd jc J ′

}
〈a c ; J ′ T |VSDI|b d ; J ′ T 〉AT=1 . (11.72)

The chosen SDI strength parameters AT are to be inserted as shown in
Eqs. (11.74)–(11.78). The CS phase convention is used in the tables. The
BR matrix elements can be obtained from the CS ones by the relation

B
(BR)
ab,cd

(
J(T )

)
= (−1) 12 (lb+ld−la−lc)B(CS)

ab,cd

(
J(T )

)
. (11.73)

This is identical in form to (9.33) applicable to the A matrix elements.
In proton–neutron representation the correlation matrix elements are given

by (11.70). Via (8.25) and (8.26) they are expressed in terms of the isospin-
dependent auxiliary matrix elements (11.72). The result is

Bp1p2,p3p4(J) = A1M̃a1a2a3a4(J1) , (11.74)

Bn1n2,n3n4(J) = A1M̃a1a2a3a4(J1) , (11.75)

Bp1p2,n3n4(J) =
1
2

{
A1

√
[1 + (−1)Jδa1a2 ][1 + (−1)Jδa3a4 ]M̃a1a2a3a4(J1)

+A0

√
[1− (−1)Jδa1a2 ][1− (−1)Jδa3a4 ]M̃a1a2a3a4(J0)

}
. (11.76)

These matrix elements are analogous to (9.28)–(9.30).
The matrix elements Bab,cd(JT ), analogous to (9.31) and (9.32), are ob-

tained directly from (11.71) and (11.72) as

Bab,cd(J T = 0) = 1
2 [3A1M̃abcd(J1) +A0M̃abcd(J0)] , (11.77)

Bab,cd(J T = 1) = 1
2 [−A1M̃abcd(J1) +A0M̃abcd(J0)] . (11.78)
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Table 11.2 lists the auxiliary particle–hole matrix elements (11.72) for
excitations from the 0s to the 0p shell; the notation is essentially the same
as in Table 9.1. Table 11.3 gives them for excitations from the 0p shell to the
0d-1s shell, Table 11.4 from the 0d-1s shells to the 0f7/2 shell and Table 11.5
from the 0f7/2 shell to the 0p-0f5/2 shells.

Table 11.2. Quantities M̃abcd(JT ) in the CS phase convention

abcd JT M̃ JT M̃ JT M̃ JT M̃
1111 10 1 .6667 11 1 .0000 20 −1 .0000 21 1 .0000
1121 10 −1 .8856 11 0
2121 00 −1 .0000 01 1 .0000 10 0 .3333 11 1 .0000

The particle states are numbered 1 = 0p3/2 and 2 = 0p1/2, and the hole state is
numbered 1 = 0s1/2. The first column gives the particle-hole–particle-hole labels,

and the following columns give the JT combinations and values of M̃. The zero
recorded does not result from conservation laws.

11.3 Properties of the RPA Solutions

The solutions of the RPA equations are more intricate than those of the TDA
equations. This is due to the additional complication arising from the replace-
ment of the simple particle–hole vacuum of the TDA by a correlated ground
state in the RPA. In addition, the non-Hermiticity of the RPA eigenvalue prob-
lem produces an overcomplete set of solutions. The overcompleteness leads to
positive- and negative-energy solutions as discussed below.

11.3.1 RPA Energies and Amplitudes

RPA excitations are created by the operator (11.40) and annihilated by its
Hermitian conjugate (11.41). Thus the ground state satisfies, for all ω,

Qω|RPA〉 = 0 . (11.79)

Note that we started the RPA derivation from (11.11) with |Ψ0〉 = |HF〉 but
Qω|HF〉 	= 0. This signifies the non-variational nature of the RPA, as discussed
earlier in this chapter. The wave function of a single excitation with its set of
quantum numbers labelled by ω is

|Ψ(RPA)
ω 〉 ≡ |ω〉 = Q†ω|RPA〉 , (11.80)

Such an excitation is called a phonon of type ω.
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Table 11.3. Quantities M̃abcd(JT ) in the CS phase convention

abcd JT M̃ JT M̃ JT M̃ JT M̃ JT M̃
1111 10 3.0000 11 1.8000 20 −0.8857 21 0.8857 30 1.0000
1111 31 0.3714 40 −1.2857 41 1.2857
1112 20 0.8552 21 −0.8552 30 1.0222 31 0.5111
1121 10 3.1305 11 0.4472 20 −0.9165 21 0.9165
1122 10 1.2649 11 1.2649
1131 10 −2.0000 11 0.4000 20 −0.2619 21 0.2619 30 −1.3997
1131 31 −0.2799
1132 10 3.1305 11 0.4472 20 0.3928 21 −0.3928
1212 20 −1.0000 21 1.0000 30 0.7143 31 1.0000
1221 20 0.9798 21 −0.9798
1231 20 0.4899 21 −0.4899 30 −2.0344 31 0.1565
1232 20 0 21 0
2121 10 1.6667 11 1.0000 20 −1.0000 21 1.0000
2122 10 1.8856 11 0
2131 10 −0.2981 11 −0.8944 20 −0.4000 21 0.4000
2132 10 1.6667 11 1.0000 20 0.2000 21 −0.2000
2222 00 −1.0000 01 1.0000 10 0.3333 11 1.0000
2231 00 1.4142 01 −1.4142 10 −1.4757 11 0.6325
2232 10 1.8856 11 0
3131 00 −2.0000 01 2.0000 10 −0.6667 11 1.2000 20 −0.4000
3131 21 0.4000 30 0.8571 31 1.2000
3132 10 −0.2981 11 −0.8944 20 −0.4000 21 0.4000
3232 10 1.6667 11 1.0000 20 −1.0000 21 1.0000

The particle states are numbered 1 = 0d5/2, 2 = 1s1/2 and 3 = 0d3/2 and the hole
states are numbered 1 = 0p3/2 and 2 = 0p1/2. The first column gives the particle-
hole–particle-hole labels, and the following columns give the JT combinations and
values of M̃. The zeros recorded do not result from conservation laws.

The phonon creation operator Q†ω contains the TDA type of components
with amplitudes Xω

ab, generated by the TDA part A of the RPA equation
(11.60). It also contains the terms with amplitudes Y ω

ab, describing the ground-
state correlations generated by the B matrix in (11.60).

The correlation part of (11.40) yields zero when it acts on the particle–
hole vacuum |HF〉. However, as shown below, the correlated ground state
|RPA〉 has 2n-particle–2n-hole components with n = 1, 2, 3, . . .. It follows
that action of the correlation part on |RPA〉 produces non-zero contributions.
For example, action by Ã on the two-particle–two-hole components produces
one-particle–one-hole terms. They are of the same particle–hole order as the
terms produced by A† acting on the particle–hole vacuum. In this way the
excited RPA states have one-particle–one-hole, three-particle–three-hole, etc.,
components. The magnitudes of the Y ω amplitudes are a measure of the
amount of correlation in |RPA〉.
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Table 11.4. Quantities M̃abcd(JT ) in the CS phase convention

abcd JT M̃ JT M̃ JT M̃ JT M̃ JT M̃
1111 10 4.2857 11 2.5714 20 −1.0476 21 1.0476 30 1.6667
1111 31 0.6190 40 −0.8961 41 0.8961 50 0.7706 51 0.2684
1111 60 −1.5151 61 1.5151
1112 30 1.5714 31 0.7143 40 −0.9343 41 0.9343
1113 20 1.1429 21 −1.1429 30 0.8248 31 0.4949 40 0.4882
1113 41 −0.4882 50 1.1109 51 0.4761
1212 30 1.2857 31 1.0000 40 −1.0000 41 1.0000
1213 30 0.4949 31 0.8248 40 0.5634 41 −0.5634
1313 20 −1.7143 21 1.7143 30 0 31 0.7619 40 −0.3809
1313 41 0.3809 50 1.0909 51 1.3333

The particle state is numbered 1=0f7/2, and the hole states are numbered 1=0d5/2,
2 = 1s1/2 and 3 = 0d3/2. The first column gives the particle-hole–particle-hole labels,

and the following columns give the JT combinations and values of M̃. The zero
recorded does not result from conservation laws

Table 11.5. Quantities M̃abcd(JT ) in the CS phase convention

abcd JT M̃ JT M̃ JT M̃ JT M̃ JT M̃
1111 20 −2.4000 21 −1.7143 30 0.7619 31 −0.7619 40 −0.8889
1111 41 −0.3809 50 1.3333 51 −1.3333
1121 30 0.8248 31 −0.8248 40 0.9391 41 0.5634
1131 20 0.2286 21 1.1429 30 0.4949 31 −0.4949 40 0.6604
1131 41 0.4882 50 0.4761 51 −0.4761
2121 30 1.0000 31 −1.0000 40 −0.7778 41 −1.0000
2131 30 0.7143 31 −0.7143 40 −0.4247 41 −0.9343
3131 10 2.5714 11 −2.5714 20 0.5905 21 −1.0476 30 0.6190
3131 31 −0.6190 40 −0.1429 41 −0.8961 50 0.2684 51 −0.2684
3131 60 −1.2820 61 −1.5151

The particle states are numbered 1 = 1p3/2, 2 = 1p1/2 and 3 = 0f5/2, and the hole
state is numbered 1 = 0f7/2. The first column gives the particle-hole–particle-hole

labels, and the following columns give the JT combinations and values of M̃

Normalization and orthogonality

We require orthonormality of the RPA states |ω〉. With the phonon operator
(11.40) we then have
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δωω′ = 〈ω|ω′〉 = 〈RPA|QωQ
†
ω′ |RPA〉 = 〈RPA|

[
Qω, Q

†
ω′

]
|RPA〉

QBA
≈ 〈HF|

[
Qω, Q

†
ω′

]
|HF〉 =

∑
ab
cd

(
Xω∗

ab Xω′
cd 〈HF|

[
Aab,A†cd

]
|HF〉

+ Y ω∗
ab Y ω′

cd 〈HF|
[
Ã†ab, Ãcd

]
|HF〉

)
.

(11.81)

The approximation designated as QBA is the quasiboson approximation. It
involves the replacement of the expectation value of a commutator in the true
ground state |RPA〉 by its expectation value in the uncorrelated ground state
|HF〉. Our application of the EOM in fact relies on the QBA through the
presence of |HF〉 in the equation of motion (11.43).

Equation (11.81) also demonstrates the endeavour in the RPA (and its
extensions) to replace products of operators with their commutators wherever
possible. This technique guarantees that the Y amplitudes do not disappear
from the expectation values in the particle–hole vacuum |HF〉.

Substituting (11.44) and (11.45) into (11.81) we find∑
ab

(
XnJπ∗

ab Xn′Jπ
ab − Y nJπ∗

ab Y n′Jπ
ab

)
= δnn′ (RPA orthonormality) . (11.82)

This contains the normalization condition

〈ω|ω〉 =
∑
ab

(
|Xω

ab|2 − |Y ω
ab|2

)
= 1 . (11.83)

This normalization applies only to the physical, positive-energy solutions of
the RPA equations (11.60). The meaning of the positive- and negative-energy
solutions is discussed below.

Completeness

Within given values of the quantum numbers JπM , the RPA wave functions
satisfy the completeness, or closure, relations∑

n
En>0

(
XnJπ

ab XnJπ∗
cd − Y nJπ∗

ab Y nJπ

cd

)
= δacδbd ,

∑
n

En>0

(
XnJπ

ab Y nJπ∗
cd − Y nJπ∗

ab XnJπ

cd

)
= 0 .

(11.84)

The derivation of these relations is similar to that of the corresponding
quasiparticle-RPA (QRPA) relations in Subsect. 18.2.1.

The relations (11.84) can be written in matrix form as
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n

En>0

[(
Xω

Yω

)(
Xω†,−Yω†)− (

Yω∗

Xω∗

)(
YωT,−XωT

)]
=

(
1 0
0 1

)
. (11.85)

This form turns out to be handy when deriving the energy-weighted sum rule
(EWSR) of the RPA in Subsect. 11.6.3.

Positive- and negative-energy states

Inspection of (11.60) shows that if the triplet Eω, Xω, Yω of energy and
amplitudes constitutes a solution of the RPA equations, then also

Eω′ = −Eω , Xω
′
= Yω∗ , Yω′

= Xω∗ (11.86)

is a solution. This means that every solution with energy Eω has a partner
with energy −Eω.

Let us compute the squared norm of the negative-energy solution |ω−〉
corresponding to the positive-energy solution |ω+〉. Equation (11.83) gives∣∣|ω−〉∣∣2 = 〈ω−|ω−〉 =∑

ab

(
|Xω−

ab |2 − |Y
ω−
ab |2

)
=

∑
ab

(
|Y ω+

ab |2 − |X
ω+
ab |2

)
= −〈ω+|ω+〉 = −

∣∣|ω+〉
∣∣2 = −1 . (11.87)

An absolute value cannot be negative, so this is an obvious contradiction.
Furthermore, according to (11.84) the positive-energy solutions constitute a
complete set of eigenstates. We conclude that only the positive-energy so-
lutions have physical meaning and the negative-energy solutions are to be
discarded as unphysical. The sign of the squared norm serves to distinguish
between physical and unphysical solutions in practical applications. The dou-
bling of solutions is a special property of the non-Hermiticity of the RPA
‘supermatrix’ (11.60).

The RPA represents a refinement of the TDA. Thus it is to be expected
that

|Y ω
ab| � 1 for all ω, ab . (11.88)

This expectation is borne out by the Y ω+
ab but not by the Y ω−

ab , which is another
consequence of the unphysical nature of the negative-energy states.

11.3.2 The RPA Ground State

The RPA ground state |RPA〉 is derived from its defining condition (11.79),

Qω|RPA〉 = 0 (11.89)

with Qω given by (11.41) as
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Qω =
∑
ab

[
Xω∗

ab Aab(JM)− Y ω∗
ab Ã

†
ab(JM)

]
. (11.90)

The derivation is carried out by means of the Thouless theorem.2 The theorem
states that the RPA ground state is given by

|RPA〉 = N0eS |HF〉 , (11.91)

where N0 is a normalization factor and

S = 1
2

∑
abcd
JM

Cabcd(J)A†ab(JM)Ã†cd(JM) (11.92)

with certain amplitudes Cabcd(J) having the symmetry property

Ccdab(J) = Cabcd(J) . (11.93)

We proceed to determine the Cabcd(J). For any operators O and S one
can show that

OeS = eS
(
O + [O, S] +

1
2!

[
[O, S], S

]
+ . . .

)
. (11.94)

With O = Qω and S given by (11.92), Eqs. (11.89) and (11.91) imply(
Qω + [Qω, S] +

1
2!

[
[Qω, S], S

]
+ . . .

)
|HF〉 = 0 . (11.95)

The second commutator gives

[Qω, S] = 1
2

∑
ab

cdc′d′
J ′M ′

Ccdc′d′(J ′)

×
[
Xω∗

ab Aab(JM)− Y ω∗
ab Ã

†
ab(JM),A†cd(J ′M ′)Ã

†
c′d′(J ′M ′)

]
= 1

2

∑
ab

cdc′d′
J ′M ′

Ccdc′d′(J ′)Xω∗
ab

([
Aab(JM),A†cd(J ′M ′)

]
Ã†c′d′(J ′M ′)

+A†cd(J ′M ′)
[
Aab(JM), Ã†c′d′(J ′M ′)

])
. (11.96)

To simplify (11.96) we turn to the QBA, which we already used in (11.81).
We now apply another aspect of the QBA, namely replacing the basic [A,A†]
commutator by its HF expectation value stated in (11.44):[
Aab(JM),A†cd(J ′M ′)

] QBA−→ 〈HF|
[
Aab(JM),A†cd(J ′M ′)

]
|HF〉

= δacδbdδJJ ′δMM ′ . (11.97)

2 For further details see [16]
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An analogous relation applies to the commutator in (11.45).
By using (11.18), renaming summation indices and applying (11.93), we

can combine the two terms of (11.96) to read

[Qω, S]
QBA
≈

∑
abcd

Xω∗
ab Cabcd(J)Ã†cd(JM) . (11.98)

Substitution of the QBA result (11.98) into the double commutator in
(11.95) results in an outer commutator involving creation operators only. The
double commutator thus vanishes, and consequently all later terms in the
expansion (11.95) also vanish. Equation (11.95) then reduces to(

Qω + [Qω, S]
)
|HF〉 = 0 , (11.99)

and substitution from (11.90) and (11.98) yields∑
cd

[
− Y ω∗

cd +
∑
ab

Xω∗
ab Cabcd(J)

]
Ã†cd(JM)|HF〉 = 0 . (11.100)

This can be satisfied only if∑
ab

Xω∗
ab Cabcd(J) = Y ω∗

cd for all ω, cd . (11.101)

The amplitudes Xω
ab and Y ω

ab are solved from (11.60); the ground state is not
needed at that stage. Equations (11.101) are thus a set of linear equations
with known coefficients from which the unknown quantities Cabcd(J) can be
solved to constitute the RPA ground state according to (11.91).

The QBA is an essential part of the RPA. Therefore approximate equali-
ties resulting from the QBA are denoted as equalities after the introductory
relation such as (11.98).

As was noted already in connection with (11.44) and (11.45), the QBA
makes the particle–hole operators A†,A behave as genuine boson operators.
The resultant commutation relations for the RPA phonon operators Q†, Q
similarly obey boson commutation relations within the QBA. Calling them
‘phonon’ operators comes from the macroscopic interpretation of the excita-
tion Q†|RPA〉 as a quantum of vibration of the nuclear surface.

11.3.3 RPA One-Particle Densities

We next derive expressions, in terms of the RPA amplitudes X and Y , for the
one-particle densities

〈RPA|c†αcα|RPA〉 , 〈RPA|h†βhβ |RPA〉 , (11.102)

where the c’s operate on particle states and the h’s on hole states. These
densities are useful because they form the basis for extensions of the RPA.
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Using (11.22) we find∑
mα′

[
c†α′cα′ ,A†ab(JM)

]
= δa′aA†ab(JM) . (11.103)

This relation, together with (11.18) and (11.93), leads to∑
mα′

[
c†α′cα′ , S

]
= 1

2

∑
mα′
abcd
JM

Cabcd(J)
[
c†α′cα′ ,A†ab(JM)Ã†cd(JM)

]

= 1
2

∑
abcd
JM

Cabcd(J)
[
δa′aA†ab(JM)Ã†cd(JM)

+ δa′cÃ†ab(J −M)A†cd(J −M)
]

=
∑
bcd
JM

Ca′bcd(J)A†a′b(JM)Ã†cd(JM) . (11.104)

Because all m substates are occupied with equal weight, we can write

(2ja′ + 1)〈RPA|c†α′cα′ |RPA〉 =
∑
mα′

〈RPA|c†α′cα′ |RPA〉

= N0

∑
mα′

〈RPA|c†α′cα′eS |HF〉

= N0

∑
mα′

〈RPA|eS
(
c†α′cα′ +

[
c†α′cα′ , S

]
+
1
2!

[[
c†α′cα′ , S

]
, S

]
+ . . .

)
|HF〉

=
∑
bcd
JM

Ca′bcd(J)〈RPA|A†a′b(JM)Ã†cd(JM)|RPA〉 , (11.105)

where we have used (11.92) and (11.94). Only the second term in the expansion
contributes: the first term gives zero when acting on |HF〉, and the outer
commutator in the third term is seen to vanish when (11.104) is inserted into
the inner commutator.

In basic form, the RPA completeness relations (11.84), for fixed JπM , are∑
n

En>0

|nJπM〉〈nJπM | =
∑
n

En>0

Q†nJπM |RPA〉〈RPA|QnJπM = 1 . (11.106)

We insert this into the matrix element in (11.105) and use (11.40), (11.41),
(11.44), (11.45) and (11.84):



www.manaraa.com

326 11 The Random-Phase Approximation

〈RPA|A†a′b(JM)Ã†cd(JM)|RPA〉 = 〈RPA|Ã†cd(JM)A†a′b(JM)|RPA〉

=
∑
n

En>0

〈RPA|Ã†cd(JM)Q†nJπM |RPA〉〈RPA|QnJπMA†a′b(JM)|RPA〉

=
∑
n

En>0

〈RPA|
[
Ã†cd(JM), Q†nJπM

]
|RPA〉〈RPA|

[
QnJπM ,A†a′b(JM)

]
|RPA〉

QBA
≈

∑
n

En>0

〈HF|
[
Ã†cd(JM), Q†nJπM

]
|HF〉〈HF|

[
QnJπM ,A†a′b(JM)

]
|HF〉

=
∑
n

En>0

Y nJπ

cd XnJπ∗
a′b =

∑
n

En>0

XnJπ∗
cd Y nJπ

a′b . (11.107)

Equation (11.105) now becomes

ĵa′
2
〈RPA|c†α′cα′ |RPA〉 =

∑
bcd
JM

Ca′bcd(J)
∑
n

En>0

XnJπ∗
cd Y nJπ

a′b

=
∑
bJn
En>0

Ĵ 2Y nJπ

a′b

∑
cd

XnJπ∗
cd Ccda′b(J) =

∑
bJn
En>0

Ĵ 2
∣∣Y nJπ

a′b

∣∣2 , (11.108)

where (11.101) was used in the final step.
A derivation analogous to that of (11.108) gives for hole operators the

result
ĵa′

2
〈RPA|h†α′hα′ |RPA〉 =

∑
aJn
En>0

Ĵ 2
∣∣Y nJπ

aa′
∣∣2 . (11.109)

In summary, we rewrite the one-particle densities in (11.108) and (11.109)
as

〈RPA|c†αcα|RPA〉 = ĵa
−2 ∑

bnJ
En>0

Ĵ 2
∣∣Y nJπ

ab

∣∣2 ,

〈RPA|h†βhβ |RPA〉 = ĵb
−2 ∑

anJ
En>0

Ĵ 2
∣∣Y nJπ

ab

∣∣2 .
(11.110)

If the structure of the RPA ground state |RPA〉 is to be dominated by the
structure of the particle–hole ground state |HF〉, the sums in (11.110) have to
be small. In that case the implication is that∣∣Y nJπ

ab

∣∣� 1 for all nJ, ab . (11.111)

This repeats the statement in (11.88). If the condition (11.111) applies, we
can expect the quasiboson approximation to be good.

The expressions (11.110) for the one-particle densities open up a way to
improve the RPA. In particular they help to better take into account the



www.manaraa.com

11.4 RPA Solutions of the Schematic Separable Model 327

Pauli principle, which is partly lost in the quasiboson approximation. The
deterioration of the Pauli principle can in fact cause excessive, unphysical
correlations in the RPA ground state (see Subsect. 11.4.2). To go beyond
the RPA level of approximation means that we must upgrade the definitions
(11.48) of the A and B matrices to

Aab,cd ≡ 〈RPA|
[
Aab,H,A†cd

]
|RPA〉 , (11.112)

Bab,cd ≡ −〈RPA|
[
Aab,H, Ãcd

]
|RPA〉 . (11.113)

When evaluating these expressions we encounter the one-particle densities
(11.110) in addition to the standard terms in (11.60). The matrix equation
replacing (11.60) has the structure(

A(Xω,Yω) B(Xω,Yω)
−B∗(Xω,Yω) −A∗(Xω,Yω)

)(
Xω

Yω

)
= Eω

(
Xω

Yω

)
. (11.114)

Unlike the linear matrix equation (11.60), this equation is nonlinear, which
means that it has to be solved iteratively.

The equations contained in (11.114) can be solved to various degrees of ac-
curacy. The solution methods constitute variations of what is generally known
as higher RPA. Examples are the self-consistent RPA (SCRPA) and the renor-
malized RPA (RRPA). For more information on this subject see, e.g. [14,16].

11.4 RPA Solutions of the Schematic Separable Model

We can solve the RPA equations with a general separable force similar to the
treatment of the TDA equations in Sect. 9.2. The schematic solutions allow
an assessment of the similarities and differences between the TDA and RPA,
both for the energy spectrum and for the electric decay rates. In particular, the
schematic model provides a straightforward comparison between the collective
features of the two models.

11.4.1 The RPA Dispersion Equation

The general separable force is treated within the schematic model similar to
the TDA study in Sect. 9.2. The schematic A matrix of the RPA can be read
off the TDA equation (9.49) as

Aab,cd = δacδbdεab + χJQ
J
abQ

J
cd . (11.115)

To derive the schematic B matrix we start from the expression (11.70) and
substitute into it the matrix element of the separable force as given by (8.55)
and (8.56). This leads to
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Bab,cd(J) = (−1)jb+jc+J
√
(1 + δac)(1 + δbd)

∑
J ′
(−1)J ′

Ĵ ′
2
{

ja jb J
jd jc J ′

}
×Nac(J ′)Nbd(J ′)

[∑
λ

χλ(−1)ja+jc+J′
{

ja jc J ′

jd jb λ

}
(b‖Qλ‖a)(c‖Qλ‖d)

− (−1)jb+jd+J′ ∑
λ

χλ(−1)ja+jc+J′
{

ja jc J ′

jb jd λ

}
(d‖Qλ‖a)(c‖Qλ‖b)

]
.

(11.116)

The interaction strengths χλ are included here similarly to (9.44). As in the
case of (11.69), the normalization factors can be taken outside the J ′ sum.
They then cancel against the square-root factor in the first line of (11.116).
Using the properties (1.66) and (1.67) of the 6j symbols we obtain

Bab,cd(J) = (−1)ja+jb+J+1χJ Ĵ
−2(b‖QJ‖a)(c‖QJ‖d)

+ (−1)ja+jd+1
∑
λ

(−1)λχλ

{
ja jb J
jc jd λ

}
(d‖Qλ‖a)(c‖Qλ‖b)

≈ (−1)JχJQ
J
abQ

J
cd . (11.117)

In the final step the second, exchange term was neglected as in the schematic
TDA, and the symmetry property (6.27) and the definition (9.47) were used
to simplify the expression.

Written out, (11.60) gives the RPA matrix equations

AXω + BYω = EωX
ω , (11.118)

B∗Xω + A∗Yω = −EωY
ω . (11.119)

Substituting the A matrix from (11.115) and the B matrix from (11.117) we
have, with the QJ

ab being real,∑
cd

(δacδbdεab + χJQ
J
abQ

J
cd)X

ω
cd +

∑
cd

(−1)JχJQ
J
abQ

J
cdY

ω
cd = EωX

ω
ab ,

(11.120)∑
cd

(−1)JχJQ
J
abQ

J
cdX

ω
cd +

∑
cd

(δacδbdεab + χJQ
J
abQ

J
cd)Y

ω
cd = −EωY

ω
ab .

(11.121)

We define, similarly to the TDA definition in (9.50),

Nω ≡ −χJ

∑
cd

[
QJ
cdX

ω
cd + (−1)JQJ

cdY
ω
cd

]
. (11.122)

Equations (11.120) and (11.121) then give the RPA amplitudes as

Xω
ab =

QJ
ab

εab − Eω
Nω , Y ω

ab = (−1)J
QJ
ab

εab + Eω
Nω . (11.123)



www.manaraa.com

11.4 RPA Solutions of the Schematic Separable Model 329

Like the TDA case, Eq. (9.52), Nω is evaluated from the normalization con-
dition (11.83) of the RPA solutions.

Substituting from (11.123) into (11.122) results in

Nω = −χJ

∑
cd

[
QJ
cd

QJ
cd

εcd − Eω
Nω + (−1)JQJ

cd(−1)J
QJ
cd

εcd + Eω
Nω

]
. (11.124)

The quantity Nω cancels out, and the final result is the RPA dispersion equa-
tion

− 1
χJ

= 2
∑
ab

(
QJ
ab

)2
εab

ε2ab − E2
ω

. (11.125)

This is a transcendental equation, similar to the TDA dispersion equation
(9.55), to be solved numerically or graphically. The graphical method was
presented in Subsect. 9.2.4. For the SDI the interaction strength χJ is given
by (9.77). To illustrate the RPA and its difference from the TDA, we repeat
the TDA example of Subsect. 9.2.4 now in the RPA.

11.4.2 Application to 1− Excitations in 4He

Consider the 1− excitation spectrum of 42He2 within the 0s-0p valence space.
These excitations were treated in Subsect. 9.2.4 within the schematic TDA
using the SDI. Here we take the coupling constant as in Subsect. 9.2.3 and
use it in the RPA dispersion equation (11.125).

As in the TDA case, we take the energy difference between the 0s and 0p
shells as ΔE(0p-0s) = 21.0MeV and within the 0p shell as ε0p1/2-ε0p3/2 =
6.0MeV. The matrix elements QJ

ab are given by (9.80), and substituting them
and the energies into (11.125) gives

− 1
∓ 1

4A
= 2

[ 16
3 × 21.0MeV

(21.0MeV)2 −E2
+

8
3 × 27.0MeV

(27.0MeV)2 − E2

]
, (11.126)

where the upper sign is for T = 0 and the lower for T = 1. This simplifies to

± 1
A
=
4
3

[
42.0MeV

(21.0MeV)2 − E2
+

27.0MeV
(27.0MeV)2 − E2

]
. (11.127)

Graphical solutions of the two equations (11.127) are shown in Fig. 11.2.
There the common right-hand side and the left-hand sides (horizontal lines)
are plotted as functions of E for two values of A, namely A = 1.0MeV and
A = 2.0MeV. The abscissas of the intersection points give the solutions En,
separately for each T . The solutions read off the figure are collected into Tables
11.6 and 11.7, and there compared with non-schematic, numerical solutions
from Subsect. 11.5.4. The solutions of the schematic model are seen to be
rather close to the exact solutions, but the difference increases with increasing
interaction strength.
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Fig. 11.2. Graphical solution of the transcendental equation (11.127) for the 1−

states in 4He. All energies are given in Mega-electron volts. Solutions of the T = 0
and T = 1 eigenenergies are shown for two interaction strengths A. The unperturbed
particle–hole energies are shown as vertical dash-dotted lines

Table 11.6. RPA eigenenergies En of J
π = 1−, T = 0 particle–hole states in 4He

obtained by graphical solution of the schematic model and by exact diagonalization

A (MeV) E1 (MeV) E2 (MeV)
Schematic Exact Schematic Exact

1.0 19.4 18.668 26.4 27.083
2.0 17.5 15.180 26.0 27.633

The SDI is used for both

Table 11.7. RPA eigenenergies En of J
π = 1−, T = 1 particle–hole states in 4He

obtained by graphical solution of the schematic model and by exact diagonalization

A (MeV) E1 (MeV) E2 (MeV)
Schematic Exact Schematic Exact

1.0 22.1 21.980 27.8 27.980
2.0 22.9 22.922 28.9 28.924

The SDI is used for both

The lowest T = 0 solution, interpreted as collective, is typical of TDA and
RPA theory. The collectivity is seen as a lowering of the energy E1 from the
non-interacting particle–hole energy with increasing strength of the two-body
interaction. Figure 11.2 shows that the lowering occurs without bound to zero
value. The lowering is related to the attractive nature of the T = 0 particle–
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hole interaction. The collectivity of the first T = 0 state is displayed also by
its electromagnetic decay properties, to be discussed in Sect. 11.6.

The highest T = 1 solution also behaves collectively. Its energy increases
without bound with increasing interaction strength. The energy E2 in Table
11.7 does not show a conspicuous increase but Fig. 11.2 does. This behaviour
is due to the repulsive nature of the T = 1 particle–hole interaction. As noted
in Subsect. 9.2.4, the collective T = 1 state is known as the giant dipole
resonance. The rest of the RPA states, other than the two collective ones, are
bound in energy by the unperturbed particle–hole energies εab.

Comparison of Tables 11.6 and 11.7 with the corresponding TDA Tables
9.5 and 9.6 reveals that the RPA and TDA results are quite close to each other,
both for the schematic model and for exact diagonalization. Only the lowest
TDA and RPA solutions differ notably with increasing interaction strength.
Although the RPA and TDA solutions are rather similar, they have the fol-
lowing conspicuous differences:

• The solutions of the TDA are doubled by the RPA. The negative-energy
solutions of the RPA are, however, unphysical. As seen in Subsect. 11.3.1,
the positive-energy RPA solutions form a complete set of states.

• Figure 11.2 shows that the lowest RPA energy approaches zero with in-
creasing interaction strength. Beyond a certain critical value the hori-
zontal line no longer intersects the curve; formally the energy becomes
imaginary. This never happens in the TDA and is related to the non-
Hermitian nature of the RPA supermatrix. Since the RPA is not derived
from a variational principle, the ground-state correlations increasing with
the interaction strength can push the first excited state below the ground
state. This means that the excessive ground-state correlations make the
particle–hole ground state |HF〉 unstable. The critical value of the inter-
action strength corresponds to the breaking point of the RPA. As it turns
out, this instability can only be avoided by letting the ground state build
a static deformation.

11.4.3 The Degenerate Model

Same as the discussion of the TDA at the end of Subsect. 9.2.1, let us consider
the RPA in the degenerate limit εab → ε for all ab. For the TDA and RPA
alike, there are two untrapped collective solutions. In the RPA their energy is
obtained from (11.125), which now becomes

− 1
χJ

=
2εQ2

ε2 − E2
coll

, Q2 ≡
∑
ab

(
QJ
ab

)2
. (11.128)

Solving for Ecoll gives

Ecoll = ±
√

ε(ε+ 2χJQ2) . (11.129)
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Taking the physical positive-energy solution and using (9.77) for the SDI gives
finally

Ecoll(T = 0) =
√

ε
(
ε− 1

2AQ2
)
, Ecoll(T = 1) =

√
ε
(
ε+ 1

2AQ2
)
. (11.130)

Let us examine limiting values of the interaction strength. For small values
of |χJ | the positive solution (11.129) becomes Ecoll ≈ ε+ χJQ

2, which is the
TDA result (9.57). This indicates that for |χJ | � ε/Q2 the RPA does not
differ significantly from the TDA. In addition we observe that(

ERPA
coll

)2
= ε2 + 2εχJQ

2 =
(
ETDA
coll

)2 − χ2
JQ

4 <
(
ETDA
coll

)2
, (11.131)

so that for the two untrapped solutions the RPA energy is always lower than
the corresponding TDA energy.

The result (11.130) implies that the lowest T = 0 solution breaks down at
the point where the interaction strength A exceeds 2ε/Q2. For the energy of
the giant resonance this critical value yields an upper limit of

√
2 ε.

11.5 RPA Description of Doubly Magic Nuclei

In this section we solve the RPA matrix equations starting from the two-body
interaction matrix elements of the SDI. First we have to construct the RPA
matrices A and B in a way similar to that used for the A matrix of the TDA.
What is more elaborate in the RPA than in the TDA is the diagonalization of
the RPA supermatrix. This is due to the fact that the associated eigenvalue
problem is non-Hermitian and half of the solutions are unphysical. One special
method to deal with this problem is exhaustively discussed in Subsect. 11.5.2.

11.5.1 Examples of the RPA Matrices

Let us first discuss two simple examples of applying the RPA formalism to
the excitation spectra of doubly magic nuclei.

Lowest 3− state in 48Ca solved

Consider the lowest 3− state in 48
20Ca28 in the proton 0f7/2-(0d3/2)

−1 particle–
hole valence space. This is the simplest particle–hole valence space where a 3−

state can be constructed; the neutron particle–hole space (1p-0f5/2)-(0f7/2)−1

produces no negative-parity states. In our valence space the matrix A in the
RPA matrix equation (11.60) only consists of one element,

A0f7/20d3/2,0f7/20d3/2(3) ≡ a . (11.132)

We take the single-particle energies from Fig. 9.2 (c) and the SDI matrix
element from (9.28) and Table 9.3, with the result
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a = ε0f7/2 − ε0d3/2 + 0.3809A1 = 5.0MeV + 0.3809A1 . (11.133)

Similarly, the only element of the B matrix in the RPA matrix equation
(11.60) is

B0f7/20d3/2,0f7/20d3/2(3) ≡ b . (11.134)

Equation (11.74) and Table 11.4 give

b = 0.7619A1 . (11.135)

Equation (11.60) now becomes(
a b
−b −a

)(
Xω

Y ω

)
= Eω

(
Xω

Y ω

)
. (11.136)

We solve this equation for the eigenenergies and the corresponding wave
functions. The energy eigenvalues are given by the secular equation

0 =
∣∣∣∣a− Eω b
−b −a− Eω

∣∣∣∣ = −(a2 − E2
ω) + b2 . (11.137)

Solving for Eω we obtain

Eω = ±
√

a2 − b2 = ±
√
(5.0MeV + 0.3809A1)2 − (0.7619A1)2 . (11.138)

Keeping only the physical positive-energy solution and inserting the default
SDI strength A1 = 1.0MeV, we have for the energy of the lowest 3− state

E(3−1 ) = 5.33MeV . (11.139)

For the eigenvector of the 3−1 state we obtain from (11.136)

Y =
E − a

b
X =

√
a2 − b2 − a

b
X . (11.140)

We assume real amplitudes X and Y . The normalization condition (11.83)
then reduces to X2 − Y 2 = 1, and we find

X =
b√
2

(
b2 − a2 + a

√
a2 − b2

)−1/2
, (11.141)

Y =
√

a2 − b2 − a√
2

(
b2 − a2 + a

√
a2 − b2

)−1/2
. (11.142)

Equations (11.133) and (11.135) show that b� a. Expanding the square roots
we find to order b2/a2

X ≈ 1 + b2

8a2
, Y ≈ − b

2a
. (11.143)



www.manaraa.com

334 11 The Random-Phase Approximation

This shows that values of X can exceed unity and that the ground-state
correlations, related to the Y amplitudes, arise from the elements of the B
matrix. We also see that as b→ 0 we recover the TDA: X = 1, Y = 0.

In the present case we have b/a = 0.142, which gives the amplitudes
(11.143) as

X ≈ 1.0025 , Y ≈ −0.0710 . (11.144)
These are excellent approximations; the exact equations (11.141) and (11.142)
give X = 1.0025 and Y = −0.0713.

Setting up the problem for 1− excitations in 4He

Consider the 1− excitations of 42He2 in the particle–hole valence space 0p3/2-
(0s1/2)−1, with the single-particle energy difference ε0p3/2−ε0s1/2 = 21.0MeV
used in Chap. 9. The basis states are

{|π1〉 , |ν1〉} = {|π0p3/2 (π0s1/2)−1 ; 1−〉 , |ν0p3/2 (ν0s1/2)−1 ; 1−〉} .
(11.145)

The TDA matrix A can be extracted from the matrix (9.91). The rows
and columns in the matrix (9.89) containing the proton or neutron label 2 are
discarded. From the first and third rows and columns of (9.91) we then have

A(1−) =
(

21.0MeV− 0.333A1
1
2 (−0.333A1 − 2.333A0)

1
2 (−0.333A1 − 2.333A0) 21.0MeV− 0.333A1

)
. (11.146)

The correlation matrix B of the RPA is constructed by using the relations
(11.74)–(11.76) and Table 11.2. The result, with three decimal places, is

B(1−) =
(

1.000A1
1
2 (A1 + 1.667A0)

1
2 (A1 + 1.667A0) 1.000A1

)
. (11.147)

In the previous example the matrices A and B were trivial in that their
dimension was 1-by-1. In the present case we have the non-trivial 2-by-2 ma-
trices A and B stated in (11.146) and (11.147). The task is to diagonalize the
supermatrix (11.60). This diagonalization has to be carried out in a special
way because the matrix is non-Hermitian, or non-symmetric in the case of a
real matrix.

In addition, we have to take care of the normalization condition (11.83),
which is not the usual Euclidean dot product of two vectors. There are several
ways to perform the diagonalization. For example, we can use a suitable com-
mercial code designed to diagonalize non-Hermitian matrices with general
orthogonality criteria. We can also use methods by which a non-Hermitian
eigenvalue problem is converted to a Hermitian one.

In the following we discuss a diagonalization method due to Ullah and
Rowe [67]. The method is suitable for real RPA matrices with real eigenvalues,
or with at most one pair of imaginary eigenvalues. It is based on similarity
transformations which turn the original problem into a symmetric one. The
resulting matrices are of the TDA type and can be diagonalized by the usual
methods.
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11.5.2 Diagonalization of the RPA Supermatrix
by Similarity Transformations

To be able to proceed with the 4He example mentioned above, we digress to
develop a general matrix method of solving the RPA equations. We assume
that the A and B matrices are real. According to the relations (11.58) both
A and B are then symmetric: AT = A, BT = B. We can now write the RPA
supermatrix equation (11.60) as the pair of matrix equations

AXω + BYω = EωX
ω , (11.148)

−BXω − AYω = EωY
ω . (11.149)

We form the difference and sum of these equations:

M+U
ω
+ = EωU

ω
− , (11.150)

M−Uω
− = EωU

ω
+ , (11.151)

where we have defined the new matrices and amplitudes as

M± ≡ A± B , Uω
± ≡ Xω ± Yω . (11.152)

To solve Eqs. (11.150) and (11.151) we can first diagonalize the matrix
M− by an orthogonal similarity transformation T, i.e. T−1 = TT. The result
of the diagonalization is

D− = TTM−T , (11.153)

where D− is a diagonal matrix. In this transformation, the symmetric matrix
M+ is carried over to the symmetric matrix

M′+ = TTM+T (11.154)

and Eqs. (11.150) and (11.151) become

M′+V
ω
+ = EωV

ω
− , (11.155)

D−Vω
− = EωV

ω
+ , (11.156)

where
Vω
± ≡ TTUω

± . (11.157)

By substituting from (11.156) into (11.155) we can eliminate Vω
+ and find for

Vω
− the equation

M′+D−V
ω
− = E2

ωV
ω
− . (11.158)

The matrix M′+D− is not symmetric. Equation (11.158) is therefore not
an eigenvalue problem for a symmetric matrix. However, it can be turned into
one by defining a square-root matrix D1/2

− through

D
1/2
− D

1/2
− = D− . (11.159)
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The matrix D1/2
− is diagonal and its elements are the square roots of the cor-

responding elements of D−. Inserting (11.159) into (11.158) and multiplying
by D1/2

− from the left we create a symmetric matrix D1/2
− M′+D

1/2
− . With the

notation
M′′+ ≡ D

1/2
− M′+D

1/2
− , Rω− ≡ D

1/2
− Vω

− (11.160)

we now have the real symmetric eigenvalue problem

M′′+R
ω
− = E2

ωR
ω
− . (11.161)

Instead of proceeding from (11.153) we could have started by diagonalizing
M+ by an orthogonal transformation T (not the same as for M−). Then all
the + and − subscripts are reversed. The result analogous to (11.161) is

M′′−R
ω
+ = E2

ωR
ω
+ . (11.162)

Suppose we have solved (11.161) and found the eigenenergies Eω and eigen-
vectors Rω−. We proceed to find the RPA amplitudes Xω and Yω. Equations
(11.152), (11.156) and (11.157) give

Xω = 1
2T

(
D−
Eω

+ 1
)

V ω
− , Yω = 1

2T

(
D−
Eω
− 1

)
V ω
− . (11.163)

From (11.160) we can write

Vω
− = D

−1/2
− Rω− , (11.164)

where the diagonal matrix D−1/2− is defined through D1/2
− D

−1/2
− = 1, i.e. the

elements of D−1/2− are the inverses of the corresponding elements of D1/2
− . The

solutions for Xω and Yω can now be written as

Xω = Gω+R
ω
− , Yω = Gω−R

ω
− , (11.165)

where

Gω± ≡ 1
2T

(
1
Eω

D
1/2
− ± D−1/2−

)
. (11.166)

Similarly, when we have the eigenvalues Eω and eigenvectors Rω+ from
(11.162) we obtain

Xω = Fω+R
ω
+ , Yω = Fω−R

ω
+ , (11.167)

where

Fω± ≡ 1
2T

(
D
−1/2
+ ± 1

Eω
D
1/2
+

)
. (11.168)

Let us discuss next the implications of the normalization condition (11.83)
for the transformed equations (11.161) and (11.162). In matrix form the con-
dition is
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XωTXω − YωTYω = 1 . (11.169)

Inverting Eq. (11.152) for Xω and Yω transforms the RPA normalization con-
dition into

1 = XωTXω − YωTYω

= 1
4

[(
Uω
+
T + Uω

−
T)(

Uω
+ + Uω

−
)
−

(
Uω
+
T − Uω

−
T)(

Uω
+ − Uω

−
)]

= Uω
+
TUω
− . (11.170)

We solve Uω
+ from (11.151) and substitute the result into (11.170), which

leads to the normalization condition

1 =
1
Eω

Uω
−
TMT
−U

ω
− . (11.171)

Equation (11.153) yields
M− = TD−TT , (11.172)

and M− = MT
−. Substituting for M

T
− in (11.171) and using (11.157), (11.159)

and (11.160), we have

1 =
1
Eω

Uω
−
TTD−TTUω

− =
1
Eω

Vω
−
TD−Vω

− =
1
Eω

Rω−
TRω− . (11.173)

The normalization condition for the eigenvectors Rω− is thus

Rω−
TRω− = Eω . (11.174)

The normalization condition for the eigenvectors Rω+ of (11.162) is derived
in the same way as (11.174). The analogous result is

Rω+
TRω+ = Eω . (11.175)

11.5.3 Application to 1− Excitations in 4He Carried Through

Let us apply the method derived in the preceding subsection to solve the
RPA equations for the 1− excitations in 4

2He2. This is continuation of the
example set up at the end of Subsect. 11.5.1. The A and B matrices were
constructed in the proton–neutron formalism. They can also be constructed
in the isospin formalism, whereupon the subsequent diagonalization becomes
straightforward, as shown at the end of this subsection.
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Diagonalization in the proton–neutron formalism

We start from the A matrix (11.146) and the B matrix (11.147), constructed
in the proton–proton and neutron–neutron basis (11.145). With A0 = A1 =
1.0MeV these matrices become3

A(1−) =
(
20.667 −1.333
−1.333 20.667

)
MeV , B(1−) =

(
1.000 1.333
1.333 1.000

)
MeV .

(11.176)
The sum and difference matrices (11.152) become

M+ =
(
21.667 0
0 21.667

)
MeV , M− =

(
19.667 −2.667
−2.667 19.667

)
MeV . (11.177)

We observe that M+ is already in diagonal form (and in this special
case even proportional to the unit matrix 12). This means that the relevant
equations are (11.153)–(11.160) with reversed ± subscripts. It follows that
D+ = M+ and T = 12, i.e. the 2-by-2 unit matrix. The square-root matrix
becomes

D
1/2
+ =

(
4.655 0
0 4.655

) √
MeV . (11.178)

The matrix to be diagonalized according to (11.162) is

M′′− = D
1/2
+ M−D

1/2
+ =

(
426.11 −57.778
−57.778 426.11

)
MeV2 . (11.179)

The eigenvalues E2
ω of M

′′
− are

E2
1 = 368.33MeV

2 , E2
2 = 483.89MeV

2 , (11.180)

and their positive square roots are

E1 = 19.192MeV , E2 = 21.997MeV . (11.181)

Here the label ω = n only enumerates the solutions, while it is understood
that the states in question are 1−.

We proceed to find the amplitudes X1, Y1 by means of Eqs. (11.167) and
(11.168). To do so, we need first the vector R1+. To within normalization it is
obtained from (11.162) as

(M′′− − E2
11)R

1
+ = 0 . (11.182)

Substituting the value of E2
1 from (11.180) into (11.182) with the matrix M′′−

given by (11.179), we find4

3 The calculation is carried out by greater accuracy than is displayed.
4 This result is exact because the diagonal elements of the matrix (11.179) are
equal.



www.manaraa.com

11.5 RPA Description of Doubly Magic Nuclei 339

R1+ = N
(
1
1

)
. (11.183)

The normalization constant N is found from (11.175) as N =
√

E1/2, so that

R1+ =

√
E1

2

(
1
1

)
=

(
3.098
3.098

) √
MeV . (11.184)

Next we evaluate the matrices (11.168). The matrix T is simply the unit
matrix and D1/2

+ is given by (11.178). The inverse matrix D−1/2+ is

D
−1/2
+ =

(
0.215 0
0 0.215

)
1√
MeV

. (11.185)

With this input the matrices (11.168) become

F1+ =
(
0.229 0
0 0.229

)
1√
MeV

, F1− =
(
−0.014 0
0 −0.014

)
1√
MeV

. (11.186)

Equations (11.167), with R1+ given by (11.184), now give the amplitudes

X1 =
(
0.708
0.708

)
, Y1 =

(
−0.043
−0.043

)
. (11.187)

As a check we note that these amplitudes satisfy the normalization condition
(11.169).

Finding the amplitudes X2 and Y2 is relegated to Exercise 11.33.

Diagonalization in the isospin formalism

The above mentioned problem can also be solved in the isospin formalism.
The A matrix is given by the single-particle energy 21.0 MeV, Eqs. (9.31) and
(9.32) and Table 9.1. The B matrix is given by Eqs. (11.77) and (11.78) and
Table 11.2. Now the matrices are 1-by-1 in dimension, and we denote

A0p3/20s1/2,0p3/20s1/2(1T ) ≡ aT , B0p3/20s1/2,0p3/20s1/2(1T ) ≡ bT . (11.188)

The values of these are

a0 = 21.0MeV + 1
2 [3(−0.333A1)− 2.333A0] = 19.334MeV , (11.189)

b0 = 1
2 [3(1.000A1) + 1.667A0] = 2.334MeV , (11.190)

a1 = 21.0MeV + 1
2 [−0.333A1 + 2.333A0] = 22.000MeV , (11.191)

b1 = 1
2 [−(1.000A1) + 1.667A0] = 0.334MeV , (11.192)

where we have inserted A0 = A1 = 1.0MeV.
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Because the matrices A and B are now single numbers, the RPA super-
matrix equation (11.60) reduces to a pair of normal matrix equations, one
for T = 0 and one for T = 1. For distinction from the proton–neutron case,
we now call the amplitudes XT , YT and the energies ET . Substituting from
(11.189)–(11.192) we then have(

19.334 2.334
−2.334 −19.334

)(
X0

Y0

)
MeV = E0

(
X0

Y0

)
, (11.193)(

22.000 0.334
−0.334 −22.000

)(
X1

Y1

)
MeV = E1

(
X1

Y1

)
. (11.194)

These matrix equations have the form of (11.136), and the resulting secu-
lar equations are like (11.137) with solutions (11.138). The positive, physical
solutions are

E0 =
√
19.3342 − 2.3342MeV = 19.193MeV , (11.195)

E1 =
√
22.0002 − 0.3342MeV = 21.997MeV . (11.196)

These eigenenergies are in agreement with the energies (11.181), and we can
identify the proton–neutron states n = 1 and n = 2 with the isospin states
T = 0 and T = 1, respectively.

Equations (11.141) and (11.142) serve to give the amplitudes XT and YT .
The results are

X0 = 1.002 , Y0 = −0.061 , (11.197)
X1 = 1.000 , Y1 = −0.008 . (11.198)

In conclusion we note that the solution in the isospin formalism is much
easier than in the proton–neutron formalism. This kind of simplification re-
sults whenever a symmetry reduces matrix sizes.

11.5.4 The 1− Excitations of 4He Revisited

Let us extend the example of the 1− states in 4He to the 0p-(0s1/2)−1 valence
space. This particular example was discussed at the TDA level of approxima-
tion in Subsect. 9.3.2. We use the single-particle energies of that example and
the particle–hole basis (9.88). Equations (11.74)–(11.76) and Table 11.2 give
the symmetric B matrix as

B(1−) =

⎛⎜⎜⎝
1.000A1 0A1

1
2 (1.000A1 + 1.667A0) 1

2 (0A1 − 1.886A0)
0A1 1.000A1

1
2 (0A1 − 1.886A0) 1

2 (1.000A1 + 0.333A0)
. . . . . . 1.000A1 0A1

. . . . . . 0A1 1.000A1

⎞⎟⎟⎠ .

(11.199)
The A matrix is given by (9.91).
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Inserting the interaction strengths A0 = A1 = 1.0MeV into the A and B
matrices, we obtain the difference and sum matrices M∓ ≡ A∓ B as

M− =

⎛⎜⎜⎝
19.667 0.943 −2.667 1.886
0.943 26.333 1.886 −1.333
−2.667 1.886 19.667 0.943
1.886 −1.333 0.943 26.333

⎞⎟⎟⎠ MeV , (11.200)

M+ =

⎛⎜⎜⎝
21.667 0.943 0 0
0.943 28.333 0 0
0 0 21.667 0.943
0 0 0.943 28.333

⎞⎟⎟⎠ MeV . (11.201)

We diagonalize M−, with the resulting diagonal matrix

D− = diag(16.101, 22.172, 25.899, 27.828)MeV . (11.202)

The matrix T that affects the orthogonal similarity transformation according
to (11.153) is composed of the normalized column eigenvectors of M− as

T =

⎛⎜⎜⎝
0.674 0.697 −0.214 0.120
−0.214 0.120 −0.674 −0.697
0.674 −0.697 −0.214 −0.120
−0.214 −0.120 −0.674 0.697

⎞⎟⎟⎠ . (11.203)

The transformed sum matrix (11.154) then becomes

M′+ = TTM+T =

⎛⎜⎜⎝
21.734 0 1.155 0
0 22.172 0 −2.000

1.155 0 28.266 0
0 −2.000 0 27.828

⎞⎟⎟⎠ MeV . (11.204)

The square roots of the elements in (11.202) constitute the matrix D1/2
−

defined by (11.159). With D1/2
− we build the matrix in (11.160):

M′′+ = D
1/2
− M′+D

1/2
− =

⎛⎜⎜⎝
349.940 0 23.580 0
0 491.579 0 −49.679

23.580 0 732.060 0
0 −49.679 0 774.422

⎞⎟⎟⎠ MeV2 .

(11.205)
The eigenvalues of this matrix are

E2
n = (348.490, 483.107, 733.510, 782.893)MeV

2 , (11.206)

and their square roots are

En = (18.668, 21.980, 27.083, 27.980)MeV . (11.207)
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These are the exact energy eigenvalues quoted in Tables 11.6 and 11.7.
To obtain the eigenvector belonging to the energy E1 = 18.668MeV we

construct the matrices G1
± defined in (11.166). The result is

G1
+ =

⎛⎜⎜⎝
0.156 0.162 −0.050 0.028
−0.050 0.028 −0.158 −0.165
0.156 −0.162 −0.050 −0.028
−0.050 −0.028 −0.158 0.165

⎞⎟⎟⎠ 1√
MeV

, (11.208)

G1
− =

⎛⎜⎜⎝
−0.012 0.014 −0.008 0.006
0.004 0.002 −0.026 −0.032
−0.012 −0.014 −0.008 −0.006
0.004 −0.002 −0.026 0.032

⎞⎟⎟⎠ 1√
MeV

. (11.209)

The diagonalization of (11.205) gives the eigenvectors Rn− according to (11.162).
With the normalization (11.174), the R1− vector becomes

R1− =
√
18.668

⎛⎜⎜⎝
0.998
0.000
−0.061
0.000

⎞⎟⎟⎠ √MeV . (11.210)

Equations (11.165) give the RPA amplitude vectors as

X1 = G1
+R

1
− =

⎛⎜⎜⎝
−0.688
0.172
−0.688
0.172

⎞⎟⎟⎠ , Y1 = G1
−R

1
− =

⎛⎜⎜⎝
0.048
−0.023
0.048
−0.023

⎞⎟⎟⎠ . (11.211)

These are seen to satisfy the normalization condition (11.169).

11.5.5 Further Examples

Let us compute the RPA energies of the 3− states of 16O in the 0d5/2-(0p1/2)−1

particle–hole valence space (9.95) and with the single-particle energies of
Fig. 9.2(a). The TDA matrix A is stated in (9.97). The RPA correlation matrix
B is given by the relations (11.74)–(11.76) and Table 11.3 as

B(3−) =
(

1.000A1
1
2 (1.000A1 + 0.714A0)

1
2 (1.000A1 + 0.714A0) 1.000A1

)
. (11.212)

The calculation proceeds as in the previous examples. With A0 = A1 =
1.0MeV we obtain the eigenenergies

E1(3−) = 10.726MeV , E2(3−) = 12.599MeV . (11.213)

We can continue the RPA calculations in successively larger particle–hole
valence spaces, and also include the 2− states, as was done in the TDA and
shown in Fig. 9.3. Figure 11.3 shows the corresponding RPA results.
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Fig. 11.3. RPA energies of the 2− and 3− states in 16O, computed in the particle–
hole valence spaces indicated in Fig. 9.2 and compared with experiment. The SDI
parameters are A0 = A1 = 1.0MeV

Comparing Figs. 9.3 and 11.3 we observe that the RPA energies are only
slightly lower than their TDA counterparts. In fact, the only appreciable dif-
ferences occur for the lowest 3− states. The differences increase with the in-
creasing valence space, yet the largest of them is only 0.45MeV. The best 3−1
prediction is still 3.7MeV above the experimental energy, but the SDI pa-
rameters have not been optimized. In general, an increase in the interaction
strength increases the differences between the TDA and RPA energies.

Further comparison between the TDA and RPA energies can be seen in
Figs. 9.4 and 9.5 for 40Ca and 48Ca, respectively. The differences in 40Ca are
large for the lowest 3− and 5− states, which become quite collective in the
RPA description. In addition, there is a dramatic decrease in the energy of the
first 1− state. A small increase in SDI interaction strength would lead to an
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imaginary 1− RPA energy. The steep descent stems from the spurious centre-
of-mass contributions to the wave function of the 1−1 state and is therefore
completely unphysical.

In 48Ca the differences between the TDA and RPA energies are moderate.
However, the collectivity of the lowest states can be quite different depending
on the description. Striking differences appear in the electromagnetic decay
rates, as discussed in the following section.

11.6 Electromagnetic Transitions in the RPA Framework

Following the pattern of Sect. 9.4, we divide the electromagnetic transitions
within the RPA framework into transitions to the ground state and transitions
between two excited states. Transitions to the ground state are discussed
first. As in the previous chapters, we take the oscillator parameter b from
the relations (3.43) and (3.45) and use the formalism of Sect. 6.1 to deduce
reduced transition probabilities and half-lives.

11.6.1 Transitions to the RPA Ground State

Our aim is to evaluate the electromagnetic transition amplitude

〈RPA|Mσλμ|ω〉 , (11.214)

where |RPA〉 is the correlated RPA ground state,Mσλ is the electromagnetic
operator (6.5) and ω represents the quantum numbers nJπ(M). The excited
initial state is

|ω〉 = Q†ω|RPA〉 =
∑
ab

[
Xω

abA
†
ab(JM)− Y ω

abÃab(JM)
]
|RPA〉 , (11.215)

as given by (11.40).
To evaluate the amplitude (11.214) we start by writing (11.214) as

〈RPA|Mσλμ|ω〉 = 〈RPA|MσλμQ
†
ω|RPA〉 = 〈RPA|

[
Mσλμ, Q

†
ω

]
|RPA〉 ,
(11.216)

where the commutator could be introduced since Qω|RPA〉 = 0, as stated in
(11.89). The method of introducing commutators on every possible occasion
in the RPA is general and comes from the EOM background of the RPA. This
matter was already discussed when introducing the quasiboson approximation
in the derivation of the RPA orthonormality condition (11.82).

With the commutator present in (11.216), we can immediately make the
QBA by replacing the RPA ground state |RPA〉 by the particle–hole ground
state |HF〉 as we did in (11.81):

〈RPA|
[
Mσλμ, Q

†
ω

]
|RPA〉

QBA
≈ 〈HF|

[
Mσλμ, Q

†
ω

]
|HF〉 . (11.217)
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We calculate the contributions of the A† and Ã terms of Q†ω separately.
With the electromagnetic operator given by (4.22) as

Mσλμ = λ̂−1
∑
ab

(a‖Mσλ‖b)
[
c†ac̃b

]
λμ

, (11.218)

we first calculate the commutator
[
Mσλμ,A†cd(JM)

]
and then take its expec-

tation value in the state |HF〉. The result, obtained with operator relations
from Chap. 4 and angular momentum relations from Chap. 1, is

〈HF|
[
Mσλμ,A†cd(JM)

]
|HF〉

= λ̂−1
∑
ab

(a‖Mσλ‖b)δλJδμ,−M (−1)ja+jb+M+1δbcδad . (11.219)

The Ã contribution is calculated similarly, with the result

〈HF|
[
Mσλμ, Ãcd(JM)

]
|HF〉

= λ̂−1
∑
ab

(a‖Mσλ‖b)δλJδμ,−M (−1)J+M+1δacδdb . (11.220)

Substituting (11.219) and (11.220) into (11.217) yields for (11.216) in the
quasiboson approximation

〈RPA|Mσλμ|ω〉 = λ̂−1
∑
ab

(a‖Mσλ‖b)δλJδμ,−M

×
[
Xω

ba(−1)ja+jb+M+1 − Y ω
ab(−1)J+M+1

]
. (11.221)

We now apply the Wigner–Eckart theorem (2.27) to the left-hand side of
(11.216) and find

(RPA‖Mσλ‖ω) = δλJ
∑
ab

(a‖Mσλ‖b)
[
(−1)ja+jb+J+1Xω

ba + Y ω
ab

]
. (11.222)

With use of the symmetry properties (6.27)–(6.30) we can write this as

(RPA‖Mσλ‖ω) = δλJ
∑
ab

(a‖Mσλ‖b)
[
ζ(λ)Xω

ab + Y ω
ab

]
,

ζ(λ) =

⎧⎪⎨⎪⎩
(−1)λ CS phase convention ;
±1 BR phase convention,

+ for σ = E , − for σ = M .

(11.223)

The reduced transition probability (6.4) becomes

B(σλ ; ω → 0+gs)RPA = Ĵ −2
∣∣(RPA‖Mσλ‖ω)

∣∣2 . (11.224)
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For Y ω
ab = 0 the RPA transition amplitude (11.223) reduces to the TDA

result (9.100). In the RPA also the Y amplitudes contribute to the de-
cay strength. They are small relative to the X amplitudes; see (11.88) and
(11.111). Nevertheless, the Y amplitudes can enhance collective transitions
beyond the enhancement created by the TDA. This is demonstrated by the
‘extreme collective model’ of the following subsection.

11.6.2 Extreme Collective Model

The RPA amplitude (11.223) can produce considerable enhancement of the
decay strength of a collective state |ω〉. This happens when the products of
wave-function amplitudes and single-particle matrix elements sum coherently.
To demonstrate this we assume that∣∣Xω

ab

∣∣ = X ,
∣∣Y ω

ab

∣∣ = Y for all ab . (11.225)

If the number of contributing particle–hole configurations ab is N , the nor-
malization condition (11.83) yields

X2 − Y 2 =
1
N

, whence X2 =
1
N
+ Y 2 . (11.226)

Equation (11.226) implies

X � 1√
N

. (11.227)

We assume that for the collective state |ω〉 ≡ |coll〉 the transition ampli-
tude (11.223) sums coherently over the particle–hole contributions. It follows
that ∣∣(RPA‖Mσλ‖coll)

∣∣ ≈ (X + Y )
∑
ab

∣∣(a‖Mσλ‖b)
∣∣

�
(

1√
N
+ Y

)∑
ab

∣∣(a‖Mσλ‖b)
∣∣ . (11.228)

The corresponding expression for the TDA reads∣∣(HF‖Mσλ‖coll)
∣∣ ≈ 1√

N

∑
ab

∣∣(a‖Mσλ‖b)
∣∣ . (11.229)

The schematic model giving rise to the estimates (11.228) and (11.229)
can be called the extreme collective model. The ratio of the reduced transition
probabilities is

B(σλ ; coll→ gs)RPA
B(σλ ; coll→ gs)TDA

�
(

1√
N
+ Y

1√
N

)2

∼
N→∞

NY 2 . (11.230)

This shows that very large RPA transition amplitudes can be obtained when
the number N of contributing particle–hole excitations increases. A concrete
example of this enhancement is given in the following subsection.
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11.6.3 Octupole Decay in 16O

Let us consider the electric octupole decay of the lowest 3− state in 16O in
two different particle–hole valence spaces. This decay was discussed within the
TDA in Subsect. 9.4.3. We now quote the earlier results and compare them
with their RPA counterparts.

The two particle–hole valence spaces are (0d5/2-1s1/2)-(0p)−1 and (0d-1s)-
(0p)−1. In each space the proton and neutron contributions are proportional
to the respective effective charges epeff and eneff, and it is convenient to use the
abbreviations (9.109)

e± = epeff ± eneff . (11.231)

The TDA wave functions, i.e. the amplitudes X(TDA), are given by (9.114)
and (9.120) for the two spaces. The RPA wave functions, with amplitudes
X(RPA) and Y (RPA), come from the calculations whose energy spectra are
shown in Fig. 11.3. The single-particle energies of Fig. 9.2 (a) and the SDI
parameters A0 = A1 = 1.0MeV were used in all the calculations.

The numbers substituted into the right-hand sides of (9.100) and (11.223)
for each kind of nucleon and the resulting total decay amplitudes are listed
in Tables 11.8 and 11.9, respectively, for the smaller and the larger valence
space.5 The single-particle matrix elements are from Table 6.5. From the table
entries we obtain, according to (6.46),

(a‖Q3‖b) = eb3(a‖Q3‖b) (11.232)

with our usual A = 16 oscillator length b = 1.725 fm.
We note that the TDA parts of Tables 11.8 and 11.9 merely repeat the

work in Subsect. 9.4.3 leading to the results (9.115) and (9.121).

Table 11.8. Electric octupole decay amplitude of the 3−1 state in
16O calculated in

the particle–hole valence space (0d5/2-1s1/2)-(0p)
−1

a b (a‖Q3‖b) X
(TDA)
ab (ME3)TDA X

(RPA)
ab Y

(RPA)
ab (ME3)RPA

0d5/2 0p3/2 −3.420 0.117 0.400e+b3 0.133 −0.041 0.594e+b3

0d5/2 0p1/2 −3.824 0.697 2.665e+b3 0.699 −0.071 2.944e+b3

Total 3.065e+b3 3.538e+b3

The contributions of particle–hole configurations ab and the total are listed for
TDA and RPA.

Equations (9.101) and (11.224) give the TDA and RPA reduced transition
probabilities B(E3) for the decay of the 3−1 state to the 0+ ground state. We
have already calculated the transitions amplitudes, and they are stated as the
totals in Tables 11.8 and 11.9. Thus we find immediately
5 The numerical accuracy exceeded that recorded.
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Table 11.9. The same as Table 11.8 except that the particle–hole valence space is
(0d-1s)-(0p)−1

a b (a‖Q3‖b) X
(TDA)
ab (ME3)TDA X

(RPA)
ab Y

(RPA)
ab (ME3)RPA

0d5/2 0p3/2 −3.420 0.136 0.465e+b3 0.159 −0.051 0.718e+b3

0d5/2 0p1/2 −3.824 0.681 2.604e+b3 0.681 −0.083 2.922e+b3

0d3/2 0p3/2 4.189 −0.134 0.561e+b3 −0.149 0.040 0.792e+b3

Total 3.631e+b3 4.431e+b3

B(E3 ; 3−1 → 0+gs)TDA = 35.4e
2
+ fm

6 , space (0d5/2-1s1/2)-(0p)−1 ,

(11.233)

B(E3 ; 3−1 → 0+gs)RPA = 47.2e
2
+ fm

6 , space (0d5/2-1s1/2)-(0p)−1 ,

(11.234)

B(E3 ; 3−1 → 0+gs)TDA = 49.6e
2
+ fm

6 , space (0d-1s)-(0p)−1 , (11.235)

B(E3 ; 3−1 → 0+gs)RPA = 73.9e
2
+ fm

6 , space (0d-1s)-(0p)−1 . (11.236)

From these B(E3) values and from Tables 11.8 and 11.9 we can draw the
following conclusions about electromagnetic transitions in the RPA. It turns
out that these conclusions have general validity beyond the example studied.

• In a given particle–hole valence space the RPA develops more collectiv-
ity than does the TDA for the lowest-lying collective excitation, as was
also shown by the result (11.230) of the extreme collective model. Further-
more, the collectivity increases with an increasing number of contributing
particle–hole configurations, i.e. with the size of the particle–hole valence
space, again in agreement with (11.230).

• When the protons and neutrons have the same relative single-particle en-
ergies, electromagnetic transitions can be classified according to isospin.
As in the TDA, transitions are then of isoscalar or isovector character,
signified by the charge e+, or e−, respectively. The lowest, collective state
decays in isoscalar mode. Extending our RPA example to include all 3−

states, we obtain the results shown in Tables 11.10 and 11.11. From them
we see that isoscalar and isovector decays alternate.

Table 11.10. RPA energies and octupole strengths of 3− states in 16O for particle–
hole valence space (0d5/2-1s1/2)-(0p)

−1

n 1 2 3 4

En (MeV) 10.429 12.551 16.919 18.213∣∣(3−n ‖Q3‖RPA)
∣∣2 (fm6) 330.2e2+ 161.4e2− 109.6e2+ 179.6e2−
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Table 11.11. RPA energies and octupole strengths of 3− states in 16O for particle–
hole valence space (0d-1s)-(0p)−1

n 1 2 3 4 5 6

En (MeV) 9.833 12.519 16.686 18.192 22.547 24.053∣∣(3−n ‖Q3‖RPA)
∣∣2 (fm6) 517.7e2+ 156.9e2− 154.6e2+ 156.3e2− 115.3e2+ 227.1e2−

The energies En in Tables 11.10 and 11.11 can be recognized in Fig. 11.3.
For the decay strengths, we compare these tables with their TDA counter-
parts, Tables 9.7 and 9.8. For the 3−1 state the RPA provides 30–50% more
enhancement than does the TDA; this repeats our previous conclusion from
the B(E3) values in (11.233)–(11.236). However, for the other E3 decays there
is little difference between the TDA and the RPA. The TDA–RPA difference
is further demonstrated in Figs. 9.6 and 9.7. Figure 9.6 shows that the TDA–
RPA difference in B(E3) values in 16O clearly increases with increasing size
of the particle–hole valence space, most notably for the lowest 3− excitation.

Figure 9.7 shows the B(E3) values in 40Ca for the 0f7/2-(0d-1s)−1 particle–
hole valence space. Here the TDA–RPA difference is truly striking for the first
3− excitation, both in energy and B(E3) value. The differences are minor for
the other states.

11.6.4 The Energy-Weighted Sum Rule

In Subsect. 9.4.2 it was shown that the TDA satisfies the NEWSR. For
the RPA there exists no NEWSR, but rather an energy-weighted sum rule
(EWSR), which can be stated as∑

n

Eω

∣∣(nλπ‖Mσλ‖RPA)
∣∣2 = 1

2 λ̂
2〈HF|[M†σλμ,H,Mσλμ]|HF〉 , (11.237)

where ω = nλπ (since λ = J) and M†σλμ is the Hermitian conjugate of the
electromagnetic multipole operatorMσλμ. The double commutator is defined
in (11.12), and we omit the subscript ‘−’ from the notation.

We proceed to prove (11.237). In the CS phase convention Mσλ is a
Hermitian tensor operator as defined and discussed in Subsect. 2.2.1. In the
BR convention it is not, and an extra phase factor enters. Extended to both
conventions (see Exercise 11.50), the symmetry relation (2.32) gives

(nλπ‖Mσλ‖RPA) = ζ(λ)(RPA‖Mσλ‖nλπ)∗ (11.238)

with the phase factor ζ(λ) stated in (11.223). For the single-particle matrix
elements (6.23) and (6.24) we adopt the abbreviations

pλab ≡ ζ(λ)(a‖Mσλ‖b) , qλab ≡ (a‖Mσλ‖b) = ζ(λ)pλab , (11.239)
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where effective charges are included. The quantities pλab and qλab are real (see
Subsect. 6.1.3). Substituting them into (11.223) and using (11.238) we can
write

(nλπ‖Mσλ‖RPA) = ζ(λ)
∑
ab

(Xω∗
ab pλab + Y ω∗

ab qλab)

= ζ(λ)
(
Xω†, −Yω†)(

pλ

−qλ
)

. (11.240)

The complex conjugate of this is

(nλπ‖Mσλ‖RPA)∗ = (nλπ‖Mσλ‖RPA)† = ζ(λ)
(
pλ

T
, −qλT

)(
Xω

−Yω

)
,

(11.241)
and we form the left-hand side of (11.237):∑

n

Eω

∣∣(nλπ‖Mσλ‖RPA)
∣∣2

=
∑
n

Eω

(
pλ

T
, −qλT

)(
Xω

−Yω

)(
Xω†, −Yω†)(

pλ

−qλ
)

. (11.242)

Applying the RPA equation (11.60) to this we obtain∑
n

Eω

∣∣(nλπ‖Mσλ‖RPA)
∣∣2

=
(
pλ

T
, −qλT

)(
A B
B∗ A∗

)∑
n

(
Xω

Yω

)(
Xω†, −Yω†)(

pλ

−qλ
)

. (11.243)

The complex conjugate of (11.242) is∑
n

Eω

∣∣(nλπ‖Mσλ‖RPA)
∣∣2

=
∑
n

Eω

(
pλ

T
, −qλT

)(
Xω∗

−Yω∗

)(
XωT, −YωT

)(
pλ

−qλ
)

. (11.244)

Exchanging the p and q quantities according to (11.239) gives∑
n

Eω

∣∣(nλπ‖Mσλ‖RPA)
∣∣2

=
∑
n

Eω

(
qλ

T
, −pλT

)(
Xω∗

−Yω∗

)(
XωT, −YωT

)(
qλ

−pλ
)

=
∑
n

Eω

(
pλ

T
, −qλT

)(
Yω∗

−Xω∗
)(

YωT, −XωT
)(

pλ

−qλ
)

. (11.245)
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Similar to the step from (11.242) to (11.243), we again apply the RPA equation
and find∑

n

Eω

∣∣(nλπ‖Mσλ‖RPA)
∣∣2

= −
(
pλ

T
, −qλT

)(
A B
B∗ A∗

)∑
n

(
Yω∗

Xω∗

)(
YωT, −XωT

)(
pλ

−qλ
)

. (11.246)

We can combine (11.243) and (11.246) to read

∑
n

Eω

∣∣(nλπ‖Mσλ‖RPA)
∣∣2 = 1

2

(
pλ

T
, −qλT

)(
A B
B∗ A∗

)
×

∑
n

[(
Xω

Yω

)(
Xω†, −Yω†)− (

Yω∗

Xω∗

)(
YωT, −XωT

)](
pλ

−qλ
)

. (11.247)

The quantity in the square brackets is precisely the left-hand side of the RPA
completeness relation (11.85), which gives

∑
n

Eω

∣∣(nλπ‖Mσλ‖RPA)
∣∣2 = 1

2

(
pλ

T
, −qλT

)(
A B
B∗ A∗

)(
pλ

−qλ
)

= 1
2

(
pλ

T
Apλ − pλTBqλ − qλTB∗pλ + qλ

T
A∗qλ

)
. (11.248)

Let us now evaluate the right-hand side of (11.237). The particle–hole
part of the operator (11.218) can be expressed in terms of the RPA operators
A†ab(λμ) and Ãab(λμ) defined in (11.16) and (11.18), with a the particle index
and b the hole index. To proceed, we need the relations (4.46)–(4.48) between
particle and hole creation and annihilation operators. Expressing everything
in terms of the c†, c operators we then obtain

A†ab(λμ) =
[
c†ac̃b

]
λμ

, Ãab(λμ) = (−1)ja+jb−λ+1
[
c†bc̃a

]
λμ

. (11.249)

Multiplied by the appropriate single-particle matrix element to enter into
(11.218), the coupled operators become

ζ(λ)pλab
[
c†ac̃b

]
λμ
= ζ(λ)pλabA

†
ab(λμ) , (11.250)

qλba
[
c†bc̃a

]
λμ
= ζ(λ)qλabÃab(λμ) (11.251)

with use of the abbreviations (11.239) and the symmetry relations (6.27)–
(6.30). The multipole operator now becomes

Mσλμ = ζ(λ)λ̂−1
∑
ab

[
pλabA

†
ab(λμ) + qλabÃab(λμ)

]
+ particle–particle and hole–hole terms . (11.252)
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Only the particle–hole terms explicitly stated in (11.252) contribute to the
right-hand side of (11.237). Substitution then yields
1
2 λ̂

2〈HF|[M†σλμ,H,Mσλμ]|HF〉

= 1
2

∑
ab
cd

〈HF|
[
pλabAab + qλabÃ

†
ab,H, pλcdA

†
cd + qλcdÃcd

]
|HF〉

= 1
2

∑
ab
cd

(pλabAab,cdp
λ
cd − pλabBab,cdq

λ
cd − qλabB

∗
cd,abp

λ
cd + qλabAcd,abq

λ
cd)

= 1
2

(
pλ

T
Apλ − pλTBqλ − qλTB∗pλ + qλ

T
A∗qλ

)
, (11.253)

where we have used (11.48), (11.52), (11.53) and (11.58). This is equal to
the expression (11.248) for the left-hand side of (11.237), which concludes the
proof of the EWSR (11.237).

As a by-product of the proof, (11.248) provides a convenient expression for
the EWSR. Assuming that the A and B matrices are real and using (11.239),
we have ∑

n

Eω

∣∣(nλπ‖Mσλ‖RPA)
∣∣2 = pλ

T[
A− ζ(λ)B

]
pλ . (11.254)

As in the case of the NEWSR of the TDA, the left-hand side of the sum rule
involves the details of the energies and wave functions. The right-hand side in-
volves just the single-particle matrix elements of the electromagnetic operator
and the effect of the nuclear Hamiltonian through the A and B matrices.

11.6.5 Sum Rule for the Octupole Transitions in 16O

We continue the example of Subsect. 11.6.3 in the smaller basis (9.113) to
check whether the values in Table 11.10 satisfy the EWSR (11.254). In this
case the vector pλ = p3 reads (see Table 11.8)

p3 =

⎛⎜⎜⎝
3.420epeff
3.824epeff
3.420eneff
3.824eneff

⎞⎟⎟⎠ b3 . (11.255)

The A and B matrices, from the calculation quoted in Subsect. 11.6.3 , are

A(3) =

⎛⎜⎜⎝
17.486 −0.256 −0.686 −0.767
−0.256 11.743 −0.767 −0.857
−0.686 −0.767 17.486 −0.256
−0.767 −0.857 −0.256 11.743

⎞⎟⎟⎠ MeV , (11.256)

B(3) =

⎛⎜⎜⎝
0.371 0.511 0.686 0.767
0.511 1.000 0.767 0.857
0.686 0.767 0.371 0.511
0.767 0.857 0.511 1.000

⎞⎟⎟⎠ MeV . (11.257)
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Evaluating the right-hand side of (11.254) gives

p3
†
(A+ B)p3 = 402

[
(epeff)

2 + (eneff)
2
]
b6MeV

= 1.06× 104
[
(epeff)

2 + (eneff)
2
]
MeV fm6 . (11.258)

For the left-hand side of (11.254) Table 11.10 gives∑
n

En

∣∣(3−n ‖Q3‖RPA)
∣∣2 = (3443e2+ + 2026e2− + 1854e2+ + 3271e2−)MeV fm6

= 5297(e2+ + e2−)MeV fm
6

= 1.06× 104
[
(epeff)

2 + (eneff)
2
]
MeV fm6 . (11.259)

This agrees with (11.258), so the EWSR is indeed obeyed by our calculated
octupole transitions in 16O.

11.6.6 Electric Transitions to the RPA Ground State
on the Schematic Model

The schematic separable model was applied to the RPA in Sect. 11.4. We now
extend the description to electromagnetic transitions in a way parallel to the
TDA treatment in Subsect. 9.5.1. The scheme is to use (11.223) for an Eλ
transition with the single-particle matrix elements given by (9.154) as

(a‖Qλ‖b) = (−1)na+nb λ̂
eeff
4
√

π
Qλ
ab(SDI)R

(λ)
ab (11.260)

and the X and Y amplitudes given by (11.123). The effective charge to be
used here is defined by (9.156) for each isospin mode.

Substituting (11.260) and (11.123) into (11.223), with CS phases, gives

(RPA‖Qλ‖ω) = δλJ λ̂
eeff
4
√

π

∑
ab

(−1)na+nbQλ
ab(SDI)R

(λ)
ab

×
[
(−1)λQJ

ab(SDI)
εab − Eω

Nω + (−1)J
QJ
ab(SDI)

εab + Eω
Nω

]
(11.261)

with ω = nJπ. This simplifies to

(RPA‖Qλ‖ω) = δλJ(−1)J Ĵ
eeff
2
√

π
Nω

∑
ab

(−1)na+nb
[QJ

ab(SDI)]
2εab

ε2ab − E2
ω

R(J)
ab .

(11.262)
In the absence of the second term in (11.261) we have the TDA result (9.155).

To find the normalization constant Nω we have from (11.83) and (11.123)

1 =
∑
ab

(
|Xω

ab|2 − |Y ω
ab|2

)
=

∑
ab

{
[QJ

ab(SDI)]
2

(εab − Eω)2
− [Q

J
ab(SDI)]

2

(εab + Eω)2

}
|Nω|2 ,

(11.263)
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leading to

|Nω|−2 = 4Eω

∑
ab

[QJ
ab(SDI)]

2εab
(ε2ab − E2

ω)2
. (11.264)

The relations (11.262) and (11.264) are simple to use to obtain first approxi-
mations for electric decays to the ground state.

11.6.7 Electric Dipole Transitions in 4He on the Schematic Model

To demonstrate the above formalism we revisit the TDA example of Sub-
sect. 9.5.2 and compute the reduced E1 transition probabilities from the 1−

states to the ground state in 4
2He2.

Equation (11.264) gives for the normalization constant

N−2n = 4En

{ 16
3 × 21.0MeV

[(21.0MeV)2 − E2
n]2

+
8
3 × 27.0MeV

[(27.0MeV)2 − E2
n]2

}
. (11.265)

We apply the schematic model consistently and use the ‘schematic’ energies
En for A0 = A1 = 1.0MeV from Tables 11.6 and 11.7. The energies and the
normalization constants computed from (11.265) are recorded in Table 11.12.

Equation (11.262) gives the transition amplitude

(RPA‖Q1‖1−n ) = −
√
3

eeff
2
√

π
Nω

[ 16
3 × 21.0MeV

(21.0MeV)2 − E2
n

R(1)
0p0s

+
8
3 × 27.0MeV

(27.0MeV)2 − E2
n

R(1)
0p0s

]
. (11.266)

Inserting R(1)
0p0s =

√
3
2b with b = 1.499 fm, as in the TDA example, yields the

reduced transition probabilities in Table 11.12.
Table 11.12 shows good agreement between the B(E1) values from the

schematic model and those from the exact diagonalization. This agreement

Table 11.12. Reduced transition probabilities B(E1 ; 1−n → 0+gs) for
4
2He2 computed

by the schematic and exact RPA

Schematic Exact

n En (MeV) Nn (MeV) B(E1) (fm2) B(E1) (fm2)

1 19.4 0.686 0.24e2+ 0.272e2+
2 22.1 0.471 0.13e2− 0.171e2−
3 26.4 0.363 0.06e2+ 0.040e2+
4 27.8 0.483 0.12e2− 0.086e2−

The SDI parameters are A = 1.0MeV (schematic) and
A0 = A1 = 1.0MeV (exact).
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supports the fact that the schematic model is rather reliable both for excita-
tion energies and for Eλ transitions in doubly magic nuclei with good isospin.

Comparing the energies and B(E1) values in Tables 11.12 and 9.9 shows
hardly any difference between the RPA and TDA, schematic or exact. As re-
gards the B(E1) values, this is at odds with the general qualitative conclusion
drawn from the extreme collective model in Subsect. 11.6.2 and the degen-
erate model in Subsect. 11.6.8, as well as with the detailed E3 example in
Subsect. 11.6.3. The reason is that in the present case the particle–hole space
is small and the interaction is not very strong.

11.6.8 The Degenerate Model

In the limit of degenerate particle–hole energies, the lowest and highest, un-
trapped solutions of the RPA equations are given by (11.129) as

Ecoll =
√

ε(ε+ 2χJQ2) , Q2 =
∑
ab

(
QJ
ab

)2
. (11.267)

Equation (11.264) in this case becomes

|Ncoll|−2 =
√

ε(ε+ 2χJQ2)
εχ2

JQ
2

=
Ecoll

εχ2
JQ

2
. (11.268)

With the X and Y amplitudes from (11.123) and with the abbreviation
(9.162), the transition matrix element (11.223) in the CS phase convention
becomes

(RPA‖QJ‖coll) =
∑
ab

eĴQJ
ab

[
(−1)J QJ

ab

ε− Ecoll
+ (−1)J QJ

ab

ε+ Ecoll

]
Ncoll

= (−1)J Ĵe
2εQ2

ε2 − E2
coll

Ncoll . (11.269)

In the degenerate case the RPA dispersion equation (11.125) is reduced to

− 1
χJ

= 2
Q2ε

ε2 − E2
coll

. (11.270)

Substituting this and the normalization constant from (11.268) into (11.269)
we find

(RPA‖QJ‖coll) = (−1)J+1Ĵe

√
ε

Ecoll
Q . (11.271)

Comparison with the corresponding TDA result (9.163) shows that

(RPA‖QJ‖coll) =
√

ε

Ecoll
(HF‖QJ‖coll) . (11.272)
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The result (11.272) indicates that the RPA predicts a notable enhance-
ment of electric transitions over the predictions of the TDA. The enhance-
ment factor

√
ε/Ecoll can be large for the lowest collective RPA solution since

Ecoll → 0 for large interaction strengths. The same conclusion was reached in
(11.230) by using the extreme collective model.

11.6.9 Electromagnetic Transitions Between Two RPA Excitations

Electromagnetic transitions between two TDA excitations were discussed in
Subsect. 9.4.7, with the general result stated in (9.142). We now extend that
formalism to the RPA, where commutator techniques are important for in-
cluding the ground-state correlations via the Y amplitudes.

In the present case both the initial and final states are of the form
Q†ω|RPA〉, with Q†ω given by (11.40). The electromagnetic decay amplitude
is then

〈nf Jf Mf |Mσλμ|ni Ji Mi〉 = 〈RPA|QωfMσλμQ
†
ωi |RPA〉 . (11.273)

To evaluate the right-hand side we form the commutator[
Qω, Q

†
ω′

]
=

∑
ab
cd

{
Xω∗

ab Xω′
cd

[
Aab(JM),A†cd(J ′M ′)

]
+ Y ω∗

ab Y ω′
cd

[
Ã†ab(JM), Ãcd(J ′M ′)

]}
≈ δJJ ′δMM ′

∑
ab

(
Xω∗

ab Xω′
ab − Y ω∗

ab Y ω′
ab

)
= δJJ ′δMM ′δnn′δππ′ ,

(11.274)

where we have made the quasiboson approximation (11.97) and used the RPA
orthogonality relation (11.82). We have thus established the approximate com-
mutation relation [

Qω, Q
†
ω′

] QBA
≈ δωω′ . (11.275)

As our next step we calculate

〈RPA|
[
Qωf ,Mσλμ, Q

†
ωi

]
|RPA〉

= 1
2 〈RPA|Qωf

[
Mσλμ, Q

†
ωi

]
−

[
Mσλμ, Q

†
ωi

]
Qωf

+
[
Qωf ,Mσλμ

]
Q†ωi −Q†ωi

[
Qωf ,Mσλμ

]
|RPA〉

= 1
2 〈RPA|Qωf

[
Mσλμ, Q

†
ωi

]
+

[
Qωf ,Mσλμ

]
Q†ωi |RPA〉

= 〈RPA|QωfMσλμQ
†
ωi −

1
2QωfQ

†
ωiMσλμ − 1

2MσλμQωfQ
†
ωi |RPA〉 .

(11.276)

From (11.275) we have
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QωfQ
†
ωi ≈ Q†ωiQωf + δωiωf , (11.277)

so the second and third terms vanish in the QBA. Consequently the matrix
element (11.273) becomes

〈nf Jf Mf |Mσλμ|ni Ji Mi〉 ≈ 〈RPA|
[
Qωf ,Mσλμ, Q

†
ωi

]
|RPA〉

≈ 〈HF|
[
Qωf ,Mσλμ, Q

†
ωi

]
|HF〉 , (11.278)

where the second approximate equality results from the QBA in the form it
appears in (11.81). The continuation is understood to occur within the QBA,
so approximate equality will be denoted as equality.

With the electromagnetic operator (11.218) the matrix element (11.278)
becomes

〈nf Jf Mf |Mσλμ|ni Ji Mi〉

= λ̂−1
∑
ab

(a‖Mσλ‖b)〈HF|
[
Qωf , [c

†
ac̃b]λμ, Q

†
ωi

]
|HF〉 . (11.279)

In the standard RPA way, the calculation would continue with a straightfor-
ward evaluation of the double commutator. However, that would in effect in-
clude a rederivation of the particle–hole matrix element (6.124). It is therefore
more economical to keep the particle–hole creation and annihilation operators
A†,A intact and exploit (6.124). We proceed as follows.

To evaluate the expectation value of the double commutator (11.279) we
first expand the commutator:[

Qωf , [c
†
ac̃b]λμ, Q

†
ωi

]
= Qωf [c

†
ac̃b]λμQ

†
ωi +Q†ωi [c

†
ac̃b]λμQωf

− 1
2

(
QωfQ

†
ωi [c
†
ac̃b]λμ + [c

†
ac̃b]λμQ

†
ωiQωf

+ [c†ac̃b]λμQωfQ
†
ωi +Q†ωiQωf [c

†
ac̃b]λμ

)
. (11.280)

When Q†ωi and Qωf are substituted here from (11.40) and (11.41), most terms
disappear because A|HF〉 = 0 and 〈HF|A† = 0 and because two-particle–two-
hole states cannot connect to the particle–hole vacuum. We then have

〈HF|
[
Qωf , [c

†
ac̃b]λμ, Q

†
ωi

]
|HF〉

=
∑
aibi
af bf

{
X

ωf∗
af bf

Xωi
aibi
〈HF|Aaf bf [c

†
ac̃b]λμA

†
aibi
|HF〉

+ Y ωi
aibi

Y
ωf∗
af bf
〈HF|Ãaibi [c

†
ac̃b]λμÃ

†
af bf
|HF〉

− 1
2

(
X

ωf∗
af bf

Xωi
aibi
〈HF|Aaf bfA

†
aibi

[c†ac̃b]λμ|HF〉

+ Y ωi
aibi

Y
ωf∗
af bf
〈HF|[c†ac̃b]λμÃaibiÃ

†
af bf
|HF〉

+X
ωf∗
af bf

Xωi
aibi
〈HF|[c†ac̃b]λμAaf bfA

†
aibi
|HF〉

+ Y ωi
aibi

Y
ωf∗
af bf
〈HF|ÃaibiÃ

†
af bf

[c†ac̃b]λμ|HF〉
)}

. (11.281)
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The last four terms of (11.281) turn out to be zero. To see this, we calculate
the commutator

[
A,A†

]
. The result is[

Aab(JM),A†cd(J ′M ′)
]
= δacδbdδJJ ′δMM ′

− δac
∑

mαmβmδ

(ja mα jb mβ |J M)(ja mα jd mδ|J ′M ′)h†δhβ

− δbd
∑

mαmβmγ

(ja mα jb mβ |J M)(jc mγ jb mβ |J ′M ′)c†γcα . (11.282)

From (11.18) we also have[
Ãab(JM), Ã†cd(J ′M ′)

]
= (−1)J+M+J′+M ′[Aab(J −M),A†cd(J ′ −M ′)

]
.

(11.283)
Substituting Aaf bfA

†
aibi

and ÃaibiÃ
†
af bf

from here into (11.281) shows that
the last four terms of (11.281) indeed vanish. Note that the first term in
(11.282) also gives a vanishing contribution because λ ≥ 1 for a gamma tran-
sition.

The first matrix element on the right-hand side of (11.281) is recognized as
the one-body transition density for particle–hole states. With use of (11.218),
it leads to the electromagnetic matrix element

λ̂−1
∑
ab

(a‖Mσλ‖b)〈HF|Aaf bf (JfMf )
[
c†ac̃b

]
λμ
A†aibi(JiMi)|HF〉

= 〈af b−1f ; Jf Mf |Mσλμ|ai b−1i ; Ji Mi〉

= (−1)Jf−Mf

(
Jf λ Ji
−Mf μ Mi

)
(af b−1f ; Jf‖Mσλ‖ai b−1i ; Ji) , (11.284)

where the Wigner–Eckart theorem (2.27) was used in the second step. The
second term leads similarly to

λ̂−1
∑
ab

(a‖Mσλ‖b)〈HF|Ãaibi(JiMi)
[
c†ac̃b

]
λμ
Ã†af bf (JfMf )|HF〉

= (−1)Ji+Mi+Jf+Mf 〈ai b−1i ; Ji −Mi|Mσλμ|af b−1f ; Jf −Mf 〉

= (−1)Jf+Mf

(
Ji λ Jf
Mi μ −Mf

)
(ai b−1i ; Ji‖Mσλ‖af b−1f ; Jf )

= (−1)Jf−Mf

(
Jf λ Ji
−Mf μ Mi

)
× (−1)Ji−Jf

(
ζ(σλ)

)2(af b−1f ; Jf‖Mσλ‖ai b−1i ; Ji)∗ . (11.285)

The last step is due to the general symmetry relation (11.290) with the phase
factors ζ(σλ) defined in equations (6.10) and (6.11). The squared phase factor
(ζ(σλ))2 is unity in the CS phase convention; in the BR convention it is (−1)λ
for σ = E and (−1)λ+1 for σ = M. The complete phase factor in front of the
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reduced matrix element is thus equal to (−1)ΔJ+λζ(λ), where ΔJ = |Jf − Ji|
and ζ(λ) is given by (11.223).

The electromagnetic single-particle matrix elements are real in both phase
conventions (see Subsect. 6.1.3). It follows that the particle–hole matrix ele-
ment (6.124) that appears in (11.284) and (11.285) is also real. The asterisk
for complex conjugation in (11.285) can therefore be removed.

When the Wigner–Eckart theorem is applied to the left-hand side of
(11.279), the same phase factor and 3j symbol come in front of the reduced
matrix element as in (11.284) and (11.285). The reduced matrix element for
an electromagnetic transition between two excited RPA states is thus

(ωf‖Mσλ‖ωi)RPA =
∑
aibi
af bf

[
X

ωf∗
af bf

Xωi
aibi

+ (−1)ΔJ+λζ(λ)Y
ωf∗
af bf

Y ωi
aibi

]
× (af b−1f ; Jf‖Mσλ‖ai b−1i ; Ji) .

(11.286)
The convention-dependent phase factor is given through (11.223).

We can compare the transition amplitude (11.286) with the TDA result
(9.142). For vanishing Y amplitudes the RPA result is reduced to the TDA
expression. Since the Y amplitudes are generally small, we expect that the
RPA strength of an electromagnetic transition between two excited states only
moderately exceeds the TDA strength; there is no such relation as (11.272).
Application of the result (11.286) is illustrated in the following subsection.

11.6.10 The E2 Transition 5−
1 → 3−

1 in 40Ca

The example of Subsect. 9.4.8 presents a TDA calculation of the E2 transition
5−1 → 3−1 in 40

20Ca20. The calculation is now repeated in the RPA, using the
same particle–hole valence space 0f7/2-(0d-1s)−1 and the same single-particle
energies from Fig. 9.2 (b). We use the CS phase convention.

We compare the TDA and RPA results by listing the TDA (X) and RPA
(X and Y ) amplitudes of the initial and final states in Table 11.13; the X
values of the TDA are copied from (9.145). The X and Y amplitude products
appearing in the E2 decay amplitudes (9.142) and (11.286) are displayed in
Table 11.14. Note that the amplitudes in the tables are for one kind of nucleon,
so they are normalized to 0.5 rather than 1.

Comparison between the first and last lines of Table 11.14 shows that an
RPA contribution to the decay amplitude can be roughly twice the TDA value.
The enhancement comes from the increased values of the X amplitudes and
the finite Y amplitudes. The increased X amplitudes are allowed by the RPA
normalization condition (11.83), where they are compensated by the non-zero
Y values.

Equation (9.146) gives the E2 particle–hole matrix elements needed in
(11.280), and we insert the effective charges. Combining them with the num-
bers in the last line of Table 11.14 leads to the decay amplitude
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Table 11.13. TDA and RPA amplitudes for the 3−1 and 5−1 states in 40Ca in the
particle–hole valence space 0f7/2-(0d-1s)

−1

Model J−
1 X1 Y1 X2 Y2 X3 Y3

TDA 3−1 0.272 0.314 0.572
RPA 3−1 0.384 −0.187 0.467 −0.224 0.502 −0.179
TDA 5−1 0.150 0.691
RPA 5−1 0.187 −0.085 0.719 −0.210
The SDI parameters are A0 = 0.85MeV, A1 = 0.90MeV.

Table 11.14. TDA and RPA amplitude products in (9.142) and (11.280), with
amplitudes from Table 11.13

ij

Model Product 11 21 31 12 22 32

TDA X
3−1
i X

5−1
j 0.041 0.047 0.086 0.188 0.217 0.395

RPA X
3−1
i X

5−1
j 0.072 0.087 0.094 0.276 0.336 0.361

RPA Y
3−1
i Y

5−1
j 0.016 0.019 0.015 0.039 0.047 0.038

RPA Total 0.088 0.106 0.109 0.315 0.383 0.399

The last line gives the sum of the two previous lines, i.e. the term
inside the square brackets in (11.280).

(3−1 ‖Q2‖5−1 ) = (0.4388× 0.088 + 1.6204× 0.106− 1.1837× 0.109
+ 0.3915× 0.315 + 2.4752× 0.383 + 1.0978× 0.399)
× (epeff + eneff)b

2 = 1.59(epeff + eneff)b
2

= 5.98(epeff + eneff) fm
2 (11.287)

with the oscillator length b = 1.939 fm from Subsect. 9.4.8.
For the reduced transition probability, we then obtain

B(E2 ; 5−1 → 3−1 )RPA = 3.25(e
p
eff + eneff)

2 fm4 . (11.288)

This is 2.35 times the TDA value (9.148). From (6.26) and the experimental
B(E2) value (9.150) we can determine the electric polarization constant χ.
The result is

χ = 0.30 , (11.289)

to be compared with the TDA value χ = 0.72 given in (9.151). Our RPA result
(11.289) agrees with the value χ = 0.3 deduced by comparing experimental
and RPA values of B(E3 ; 3−1 → 0+gs). The E3 result is indicated in the caption
to Fig. 9.7.
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Epilogue

In this chapter we have developed a sophisticated theoretical framework to de-
scribe a correlated ground state and excited states with configuration mixing
consisting of particle–hole excitations. This RPA theory was found capable
of producing strong collective effects, in particular for the energy and decay
rate of the first RPA excitation. Having introduced the RPA, our sometimes
hard and weary but in the end rewarding path in the particle–hole territory
has ended. In Part II of this book we are challenged by the BCS-based qua-
siparticles to explore the wealth of new possibilities offered by them. The
neighbourhoods of closed shells, discussed thus far, will be extended further
towards the open-shell region to describe open-shell vibrational nuclei.

Exercises

11.1. Derive the relations (11.18) and (11.19).

11.2. Verify the commutator relations (11.20)–(11.23).

11.3. Verify the commutators (11.26)–(11.29).

11.4. Verify the relations (11.30)–(11.33).

11.5. Verify the ground-state expectation values (11.44) and (11.45).

11.6. Show that the quantities (11.48) do not depend on the projection quan-
tum number M .

11.7. Verify the double commutator identities (11.49).

11.8. Verify the relations (11.50) and (11.51).

11.9. Derive the matrix relations (11.58).

11.10. Derive the expression (11.63) for the matrix B.

11.11. Give a detailed derivation of (11.66) starting from (11.65).

11.12. Give a detailed derivation of (11.67) starting from (11.66).

11.13. Give a detailed derivation of (11.70) starting from (11.64) and (11.67).

11.14. Derive the result (11.71).

11.15. Verify the numbers in Table 11.2.

11.16. Derive the completeness relations (11.84). Hint: See Sect. 18.2.



www.manaraa.com

362 11 The Random-Phase Approximation

11.17. Show that if Eω, Xω and Yω form a solution of the RPA equations,
then also the quantities (11.86) constitute a solution.

11.18. Consider the operator e−SOeS , where S and O are arbitrary operators,
and derive (11.94).

11.19. Derive the relation (11.109).

11.20. Calculate the approximate energies of the 3− states in 16O by using
the RPA dispersion equation in the (0d5/2-1s1/2)-(0p)−1 particle–hole valence
space. Take the single-particle energies from Fig. 9.2 (a) and use the SDI with
parameter values
(a) A = 1.0MeV,
(b) A = 2.0MeV.
Compare with the TDA results of Exercise 9.12 and comment.

11.21. Calculate the approximate energies of the 3− states in 40Ca by us-
ing the RPA dispersion equation in the 0f7/2-(0d-1s)−1 particle–hole valence
space. Take the single-particle energies from Fig. 9.2 (b) and use the SDI with
parameter values
(a) A = 1.0MeV,
(b) A = 2.0MeV.
Compare with the TDA results of Exercise 9.14 and comment.

11.22. Solve the RPA equations for the energy of the 3− state in 48Ca. Use
the 0f7/2-(0d3/2)−1 particle–hole valence space, the single-particle energy dif-
ference ε0f7/2 − ε0d3/2 = 5.0MeV and the SDI with A0 = A1 = 1.0MeV.

11.23. Verify the numbers in the matrix (11.147).

11.24. Form the RPA matrices for
(a) the 2+ states,
(b) the 3− states
in 48Ca. Use the particle–hole valence space 0f7/2-(0d3/2)−1 for protons and
(1p-0f5/2)-(0f7/2)−1 for neutrons, the single-particle energies of Fig. 9.2 (c) and
the SDI parameters A0 = A1 = 1.0MeV.

11.25. Show that the following statements are true.

(a) The matrix M′′+ defined in (11.160) is symmetric, i.e. M
′′
+
T = M′′+.

(b) The column matrix Xω is obtained as Xω = Gω+R
ω
− with Gω+ defined in

(11.166).

11.26. Compute the energies of the 2+ states in 48Ca by diagonalizing the
RPA matrix constructed in Exercise 11.24 (a). Compare with the TDA results
of Exercise 9.16 and comment.

11.27. Compute the energies of the 3− states in 48Ca by diagonalizing the
RPA matrix constructed in Exercise 11.24 (b). Compare with the TDA results
of Exercise 9.16 and comment.
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11.28. Compute the wave functions of the 2+ states in 48Ca by using the
results of Exercise 11.26.

11.29. Compute the wave functions of the 3− states in 48Ca by using the
results of Exercise 11.27.

11.30. Consider 4+ excitations in 48Ca.

(a) Form the RPA matrix in the neutron particle–hole valence space (1p-
0f5/2)-(0f7/2)−1. Use the single-particle energies of Fig. 9.2 (c) and the
SDI with parameters A0 = A1 = 1.0MeV.

(b) Diagonalize the RPA matrix to find the wave function of the lowest state.
Compare the eigenenergies with experiment and comment.

11.31. Derive the matrix equation (11.162).

11.32. Derive the normalization condition (11.175).

11.33. Derive the X and Y vectors corresponding to the energy E2 in (11.181).

11.34. Verify the numbers in the matrix (11.199).

11.35. Verify the numbers in the matrix (11.203).

11.36. Verify the numbers in the matrices (11.204) and (11.205).

11.37. Verify Eqs. (11.208)–(11.211).

11.38. Derive the X and Y vectors corresponding to the energy E2 =
21.980MeV in (11.207).

11.39. Verify the numbers in the matrix (11.212).

11.40. Form the RPA supermatrix in (11.60) for the 3− states in 40Ca for the
two cases in Exercise 11.21.

11.41. Diagonalize the RPA matrices of Exercise 11.40 to find the eigenener-
gies and eigenfunctions of the 3− states in 40Ca. Compare with the results of
the schematic model of Exercise 11.21 and with the TDA results of Exercise
9.15, and comment.

11.42. The same task as in Exercise 9.27 but by using the RPA.

11.43. The same task as in Exercise 9.28 but by using the RPA.

11.44. Verify the numbers in Table 11.8.

11.45. Verify the numbers in the results (11.233) and (11.234).

11.46. Verify the numbers in Table 11.9.
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11.47. Verify the numbers in the results (11.235) and (11.236).

11.48. Verify the numbers of Table 11.10.

11.49. Verify the numbers of Table 11.11.

11.50. Consider a tensor operator OL = ζLTL, where TL is a Hermitian
tensor operator, as defined in (2.31), and ζL is a phase factor. Show that

(ξ j‖OL‖ξ′ j′) = (−1)j−j
′
(ζL)2(ξ′ j′‖OL‖ξ j)∗ . (11.290)

Apply this relation to the electromagnetic multipole operatorMσλ as defined
in the CS and BR phase conventions through (6.10) and (6.11), and derive
(11.238).

11.51. Carry out the application of the RPA supermatrix equation (11.60) to
go from (11.242) to (11.243), and from (11.245) to (11.246).

11.52. Verify the numbers in the matrices (11.256) and (11.257).

11.53. Check that the EWSR (11.254) is satisfied for the 2+ and 3− states
computed in Exercises 11.28 and 11.29.

11.54. Verify the numbers in Table 11.12.

11.55. Compute the reduced E3 transition probabilities for the ground-state
decays of the 3− states in 16O within the schematic model by using the ap-
proximate energies from Exercise 11.20(b). Compare with the results of the
TDA calculation in Exercise 9.20 and comment.

11.56. Compute the reduced E3 transition probabilities for the ground-state
decays of the 3− states in 40Ca within the schematic model by using the
approximate energies from Exercise 11.21. Compare with the results of the
TDA calculation in Exercise 9.22 and comment.

11.57. Compute the reduced E3 transition probabilities for the ground-state
decays of the 3− states in 40Ca by using the exact wave functions from Exercise
11.41. Compare with the results of Exercise 11.56 and with the TDA results
of Exercise 9.23. Comment on the similarities and differences. Check that the
RPA sum rule is satisfied.

11.58. Derive the result (11.281).

11.59. Derive the commutation relation (11.282).

11.60. Fill in the details in the development of (11.285).

11.61. Verify the numbers in Tables 11.13 and 11.14.
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11.62. Continue Exercise 11.42 and compute the reduced E2 transition prob-
abilities for the ground-state decays of the 2+ states in 12C. Check the RPA
sum rule. Determine the electric polarization constant χ by using available
experimental data. Compare with the TDA result of Exercise 9.29 and com-
ment.

11.63. Continue Exercise 11.43 and compute the reduced E2 transition prob-
abilities for the ground-state decays of the 2+ states in 32S. Check the RPA
sum rule. Determine the electric polarization constant χ by using available
experimental data. Compare with the TDA result of Exercise 9.30 and com-
ment.

11.64. Take the wave function of the 2+1 state in 48Ca from Exercise 11.28.
Compute the reduced E2 transition probability for the decay of this state to
the ground state. Determine the electric polarization constant χ from the ex-
perimental half-life of the 2+1 state. Compare with the TDA result of Exercise
9.24 and comment.

11.65. Take the wave functions of the 2+1 and 3
−
1 states in

48Ca from Exercises
11.28 and 11.29. Compute the decay half-life of the 3−1 state by assuming that
it decays to the 2+1 state and to the ground state (see the experimental level
scheme in Fig. 9.5). Take the value of χ from Exercise 11.64 and use the
experimental energies. Compare with the TDA result of Exercise 9.33 and
with experiment, and comment.

11.66. Compute the decay half-life of the 4+1 state in
48Ca by using the results

of Exercises 11.28 and 11.30. Take the value of χ from Exercise 11.64 and use
the experimental energies. Compare with the TDA result of Exercise 9.25 and
with experiment, and comment.

11.67. The same task as in Exercise 9.31 but by using the RPA. Take the
value of χ from Exercise 11.63. Compare with experiment and with the TDA
result of Exercise 9.31, and comment.

11.68. The same task as in Exercise 9.32 but by using the RPA. Take the
value of χ from (11.289). Compare with experiment and with the TDA result
of Exercise 9.32, and comment.
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Nucleon Pairing and Seniority

Prologue

Until now we have been dealing with particle and hole aspects of nuclear
structure. In this second part of the book we go farther away from a closed
major shell. Still near the beginning or end of a major shell we encounter
vibrational, spherical open-shell nuclei that cannot be described in terms of
a few particles or holes. Farther towards the middle of the shell the spherical
shape will give way to permanent deformation signalled by rotational bands
analogous to those of diatomic molecules. Microscopic description of such
nuclei requires a deformed mean field as the starting point. Deformed nuclei
will not be considered in any detail in this book.

Even the description of vibrational nuclei requires an extension of the con-
cepts of particle and hole. It is found expedient to introduce a special type
of quasiparticle which mixes the particle and hole degrees of freedom. The
essense of the quasiparticle method is contained in the simple quasiparticle
shell model which consists of a quasiparticle vacuum and non-interacting qua-
siparticles. These quasiparticles absorb a good part of the short-range residual
interaction.

The approximation of non-interacting quasiparticles constitutes the qua-
siparticle mean-field approach. We use this level of approximation to access
electromagnetic and beta-decay properties of vibrational nuclei. The long-
range part of the residual interaction can be implemented as a residual force
between the quasiparticles. This leads to nuclear states which, at their sim-
plest, are built from one or two quasiparticles. Quasiparticles interact via the
residual Hamiltonian, which leads to quasiparticle configuration mixing.

In this chapter we discuss experimental observations that provide justifi-
cation for the quasiparticle approach. We discuss short-range nuclear correla-
tions and how they can be mimicked by an extremely simple nucleon–nucleon
force, the pure pairing force of zero range. This interaction is the foundation
of the seniority model and other simplified models dealing with correlated
nucleon pairs. In these models a simple Hamiltonian is diagonalized exactly.
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The models can be used as test benches for more sophisticated approaches
such as the BCS or the Lipkin–Nogami BCS.

12.1 Evidence of Nucleon Pairing

Nuclei with several nucleons outside closed major shells are called open-shell
nuclei. For them the particle–hole methods, like the TDA and RPA, become
inapplicable. This follows from the fact that inside a major shell the single-
particle energy differences and two-body matrix elements are of the same
order of magnitude. The residual interaction is then able to scatter nucleons
in such a way that the particle–hole hierarchy is lost. In other words, the
particle–hole energies inside a major shell are so small that one-particle–one-
hole excitations have roughly the same energies as two-particle–two-hole, etc.,
excitations.

At the same time, the residual interaction becomes more important than
in the pure particle–hole picture. This is especially true of the short-range
interaction, which is not taken into account in the Hartree–Fock mean field.
The short-range part of the residual interaction shows as pairing correlations
between the nucleons, also known as nucleon pairing. The pairing interaction
is a short-range attraction between two nucleons. It lowers their total energy
by an amount 2Δ, where Δ is called the pairing gap.

The effects of nucleon pairing can be seen experimentally in the following
ways.

• The pairing interaction reduces the energy of nucleon pairs, most efficiently
in a state of angular momentum zero, as shown in Sect. 12.3. Hence the
nucleons in a major shell tend to form J = 0 pairs, which leads to a conden-
sate of paired nucleons in a collective state with total angular momentum
zero. This condensate is seen experimentally in all even–even nuclei, whose
ground states are without exception 0+.
The pair condensate is a kind of superfluid, analogous to that formed by
correlated electron pairs in a metallic superconductor. The fundamental
difference between the two systems, however, is that there is a direct at-
traction between nucleons while there is a (screened) Coulomb repulsion
between electrons and the pairing is mediated by lattice phonons.

• Excitations of a nucleus can be produced by breaking one or more of the
pairs forming the condensate. The lowest excitations have one broken pair;
their energy is the pairing energy 2Δ above the ground state. As in the
case of the superconductor, the pair condensate in the nuclear ground
state can be described by a BCS many-body wave function. A broken pair
forms a pair of BCS quasiparticles. The lowest excitations in an even–even
nucleus are two-quasiparticle excitations, a gap 2Δ above the condensate
which is the quasiparticle vacuum. This pattern is seen experimentally in
even–even nuclei.
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Experimental data show collective excitations, of vibrational or rotational
nature, below the pairing gap. Vibrational states can be viewed as waves
on the nuclear surface, microscopically described as coherent combinations
of two-quasiparticle excitations. This is analogous to the vibrations as
coherent combinations of particle–hole excitations in closed-shell nuclei,
discussed in Chaps. 9 and 11 for the TDA and RPA.
The energy gap is a feature of even–even nuclei that cannot be observed
in odd-A or odd–odd nuclei. In the latter kinds of nuclei the low-energy
spectra are complicated and have a much larger level density than adjacent
even-even nuclei. In odd-A nuclei the level density is increased by one-
and three-quasiparticle excitations. In odd–odd nuclei two-quasiparticle
excitations form the ground and low-lying excited states.

• Pairing can also be seen as an odd–even effect, relating to the masses of
even–even and odd-A nuclei. Experiment has established that the total
binding energy of an odd-A nucleus is less than the average of the total
binding energies of the two neighbouring even–even nuclei. We assign the
difference to the pairing gap Δ and write the mass of the odd-A nucleus
as

MA = 1
2 (MA−1 +MA+1) +Δ/c2 . (12.1)

The odd–even effect is demonstrated in Fig. 12.1 for the odd-A nucleus
105
46Pd59. In this figure the masses m are the atomic masses, related to the
nuclear masses M by

M = m− Zme +Be(Z)/c2 , (12.2)

where Be(Z) is the total binding energy of the atomic electrons. For the
palladium isotopes the latter two terms in (12.2) are common, so the dif-
ferences in the ground-state energies come out the same whether one uses
atomic or nuclear masses. Figure 12.1 shows that the deviation from the
average is possible to measure and that it is very small compared to the
nuclear mass differences. The experimental pairing gaps are reproduced
by the formula

Δ ≈ 12A−1/2MeV . (12.3)

Apart from being a fit to experimental data, this formula is supported by
the liquid-drop model of the nucleus.

• Pairing effects show up in the moments of inertia of deformed nuclei. Mo-
ments of inertia calculated without pairing are two to three times larger
than the measured ones. This is interpreted so that only part of the nucleus
participates in the rotation, namely the paired superfluid of the valence
space. The macroscopic motion is constituted by a tidal wave rotating
around the inert core.
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m =98648.44 MeV

m =96785.97 MeV

m =97718.44 MeV

Δ =1.23 MeV

46Pd60
106

46Pd58
104

46Pd59
105

Fig. 12.1. Atomic masses of 106
46Pd60,

105
46Pd59 and

104
46Pd58. The magnified insert

shows the pairing gap Δ extracted from the masses. The semi-empirical formula
(12.3) gives Δ ≈ 1.2MeV

• A Hartree–Fock calculation always predicts a deformed ground state for a
nucleus with an open major shell. However, experimentally most open-shell
nuclei are spherical in their low-lying states. The explanation is that the
short-range pairing interaction favours spherical symmetry and maintains
the spherical shape rather far into the open shell. Adding more nucleons
will eventually cause a rapid transition from spherical to deformed shape.
In microscopic theory this can be described by replacing the Hartree–Fock
calculation by a Hartree–Fock–Bogoliubov calculation that includes the
pairing interaction in a self-consistent variational scheme.

12.2 The Pure Pairing Force

As an example, consider the two-particle interaction of like nucleons (T = 1)
in the 0f7/2 shell. The two-nucleon interaction matrix element for the SDI is
given by (8.72) as

〈(0f7/2)2 ; J T = 1|VSDI|(0f7/2)2 ; J T = 1〉 = −32A1

(
7
2

7
2 J

1
2 −

1
2 0

)2

. (12.4)

Looking up the 3j coefficients or taking the values directly from Table 8.4
produces the numbers in Table 12.1.
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Table 12.1. The two-body interaction matrix elements (12.4) for different values
of the total angular momentum J

J 0 2 4 6

〈VSDI〉 (A1) −4.000 −0.952 −0.468 −0.233
The matrix elements are given in units of the isovector strength
parameter A1 of the SDI.

As can be seen from Table 12.1, the interaction for the J = 0 pair is
much stronger than for the J 	= 0 pairs. This suggests that we may simplify
the interaction in a single j shell by making the approximation that only
the J = 0 channel contributes. Starting from the general form (8.15) of the
two-body interaction Hamiltonian, we have

VRES = − 1
2

∑
J

Ĵ〈j j ; J |V | j j ; J〉
[[

c†jc
†
j

]
J

[
c̃j c̃j

]
J

]
00

pairing
≈ −1

2 〈j j ; 0 |V | j j ; 0〉
[
c†jc
†
j

]
0

[
c̃j c̃j

]
0

= − 1
2 〈j j ; 0 |V | j j ; 0〉ĵ−2

∑
mm′

(−1)j−m+j−m′
c†jmc†j,−mc̃jm′ c̃j,−m′

= 1
2 〈j j ; 0 |V | j j ; 0〉ĵ−2

∑
mm′

c†jmc̃†jmc̃jm′cjm′

= 2〈j j ; 0 |V | j j ; 0〉ĵ−2
∑
m>0
m′>0

c†jmc̃†jmc̃jm′cjm′ , (12.5)

where we have used (1.34), (4.23) and (4.9). With the abbreviation

2〈j j ; 0 |V | j j ; 0〉ĵ−2 ≡ −G (12.6)

we have the pure pairing interaction, or just the pairing interaction, VPAIR for
a single j shell as

VPAIR = −G
∑

mm′>0

c†jmc̃†jmc̃jm′cjm′ . (12.7)

The pairing interaction (12.7) can be immediately generalized to several j
shells, to read

VPAIR = −G
∑
jj′

∑
mm′>0

c†jmc̃†jmc̃j′m′cj′m′ . (12.8)

The idea of the pairing interaction is that it is attractive and of short
range. Therefore G has to be a positive constant. In the single-shell case the
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two-body matrix element in (12.6) is obviously negative for an attractive force
V , which guarantees G > 0. In the multishell case we must specifically require
that all the two-body matrix elements of the valence space satisfy

〈j j ; 0 |V | j′ j′ ; 0〉 < 0 (12.9)

so that it is possible to make the replacement

〈j j ; 0 |V | j′ j′ ; 0〉 → − 1
2 ĵĵ
′G < 0 . (12.10)

It turns out that this condition is satisfied in the BR phase convention but
not in all cases in the CS convention (see Exercise 12.2).

The relation between the strength G of the pairing interaction and the
general two-body J = 0, or ‘monopole’, matrix element in the CS phase con-
vention, is obtained directly from (8.29). Our result for both phase conventions
is then

〈j j ; 0 |V | j′ j′ ; 0〉 = − 1
2ζ

(ll′)ĵĵ′G , G > 0 ,

ζ(ll
′) =

{
(−1)l+l′ CS phase convention ,

1 BR phase convention .

(12.11)

12.3 Two-Particle Spectrum of the Pure Pairing Force

For a single j shell the pairing Hamiltonian is given by (12.7). We proceed
to diagonalize it. Let us choose the single-particle energy as εj = 0 and the
two-particle basis states as

A†jm|0〉 ≡ c†jmc̃†jm|0〉 , m > 0 . (12.12)

The elements of the Hamiltonian matrix are

〈0|AjmVPAIRA†jm′ |0〉 = −G
∑

m1m2>0

〈0|c̃jmcjmc†jm1
c̃†jm1

c̃jm2cjm2c
†
jm′ c̃

†
jm′ |0〉

= −G
∑

m1m2>0

c̃jmcjmc†jm1
c̃†jm1

c̃jm2cjm2c
†
jm′ c̃

†
jm′

= −G . (12.13)

The Hamiltonian matrix is then

HPAIR = −G

⎛⎜⎜⎜⎝
1 1 · · · 1
1 1 · · · 1
...
...
. . .

...
1 1 · · · 1

⎞⎟⎟⎟⎠ . (12.14)



www.manaraa.com

12.3 Two-Particle Spectrum of the Pure Pairing Force 375

It is an Ω ×Ω matrix, where

Ω ≡ 1
2
(2j + 1) (12.15)

is the pair degeneracy.
We diagonalize the matrix (12.14). Calculating the characteristic determi-

nant and setting it equal to zero we have

(−GΩ − E)(−E)Ω−1 = 0 . (12.16)

This gives the eigenvalues

E1 = −ΩG , Ei = 0 for i = 2, 3, . . . , Ω . (12.17)

The eigenstate corresponding to the lowest eigenvalue can be written as

Ψ1 =
1√
Ω

⎛⎜⎜⎜⎝
1
1
...
1

⎞⎟⎟⎟⎠ . (12.18)

In occupation number representation the state (12.18) is

|Ψ1〉 =
1√
Ω

∑
m>0

A†jm|0〉 =
1√
2

∑
m

(−1)j+m

ĵ
c†jmc†j,−m|0〉

= − 1√
2

[
c†jc
†
j

]
00
|0〉 = −|j2 ; J = 0 , M = 0〉 , (12.19)

where the Clebsch–Gordan coefficient (1.34) was recognized. The result (12.19)
shows that diagonalization of the pairing Hamiltonian in the uncoupled basis
indeed gives a zero-coupled pair as the lowest eigenstate.

The simple two-nucleon spectrum (12.17) for the 0f7/2 shell is shown on
the right in Fig. 12.2. For comparison, the experimental spectrum of 42Ca is
shown on the left and a theoretical SDI spectrum in the middle. The pairing
strength parameter G = 0.750MeV has been fitted to a summary J 	= 0 exci-
tation energy of 3.00MeV and the SDI strength parameter A1 = 0.847MeV
to E(6+) = 3.19MeV.

Figure 12.2 shows that the zero-range surface delta force is not able to
account sufficiently for the spread of the 2+, 4+ and 6+ levels. A more realistic
finite-range force would do better. For the pairing force there is no spread
between the J = 2, 4, 6 states; they are degenerate. The situation is sometimes
characterized by saying that ‘the pairing force is shorter-ranged than the delta
force’.

The behaviour of the pairing force is a direct consequence of its definition
in Sect. 12.2, where the two-body matrix elements with J ≥ 2 were omitted.
Then the J 	= 0 pairs do not interact at all and remain at their unperturbed
energy 2εj , whereas the J = 0 pair interacts and is lowered in energy by the
attractive force.
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Fig. 12.2. Experimental spectrum of 42Ca compared with calculated SDI and pair-
ing spectra

12.4 Seniority Model of the Pure Pairing Force

In this section we assume that there are N nucleons that occupy a single j
shell, with a single-particle energy εj = 0. First we derive analytical expres-
sions for the energies and degeneracies of nuclear states with good seniority.
We then apply the formalism to nuclei whose valence nucleons occupy the
0f7/2 shell.

12.4.1 Derivation of the Seniority-Zero Spectrum

Here we derive the excitation spectrum for states with seniority zero. The
derivation is based on the commutation relations between the pair operators
and the pure pairing Hamiltonian (12.7). With reference to (12.12), we define
a pair creation operator as

A† ≡ 1√
Ω

∑
m>0

A†jm =
1√
Ω

∑
m>0

c†jmc̃†jm . (12.20)

As seen from (12.19), this operator creates a zero-coupled pair. It can be used
to write the pairing interaction (12.7) in the form
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VPAIR = −GΩA†A . (12.21)

The particle number operator n̂ is defined as

n̂ ≡
∑
m

c†jmcjm =
∑
m>0

(
c†jmcjm + c̃†jmc̃jm

)
. (12.22)

Straightforward derivations give the commutation relations[
A,A†

]
= 1− n̂/Ω ,[

A†, n̂
]
= −2A† ,[

VPAIR, A†
]
= −GA†(Ω − n̂) = −G(Ω − n̂+ 2)A† .

(12.23)

The commutator of the pair operator A† with the pairing interaction VPAIR
gives

VPAIRA†|0〉 =
[
VPAIR, A†

]
|0〉+A†VPAIR|0〉

= −G(Ω − n̂+ 2)A†|0〉 = −GΩA†|0〉 . (12.24)

Action of the pairing potential on a state of two pairs yields in the same way

VPAIR
(
A†

)2|0〉 = [
VPAIR, A†

]
A†|0〉+A†VPAIRA†|0〉

= −G(Ω − n̂+ 2 +Ω)
(
A†

)2|0〉 = −2G(Ω − 1)(A†)2|0〉 . (12.25)

From (12.24) and (12.25) we see how the procedure continues for any number
of zero-coupled pairs. By induction one can prove the general result

VPAIR
(
A†

)N/2|0〉 = − 1
4GN(2Ω −N + 2)

(
A†

)N/2|0〉 . (12.26)

We now define a new quantum number, the seniority v, which is the num-
ber of nucleons not pairwise coupled to angular momentum zero, in short the
number of unpaired nucleons. The fully paired state of N nucleons is then(

A†
)N/2|0〉 = |N , v = 0〉 , (12.27)

and (12.26) gives its energy

Ev=0(N) = − 1
4GN(2Ω −N + 2) . (12.28)

12.4.2 Spectra of Seniority-One and Seniority-Two States

To extend the previous discussion of seniority-zero states to non-zero seniori-
ties we define the Ω − 1 operators B†J , J 	= 0

B†J ≡
√
2
∑
m>0

(−1)j+m(j m j −m|J 0)c†jmc̃†jm =
1√
2

[
c†jc
†
j

]
J0

. (12.29)
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The operators A† and B†J commute trivially, i.e.[
A†, B†J

]
= 0 . (12.30)

A further trivial relation is

VPAIRB†J |0〉 = VPAIR|N = 2 , v = 2 ; J 0〉 = 0 , (12.31)

the zero coming from (12.17). Adding one paired couple yields, with use of
(12.23),

VPAIRA†B†J |0〉 = VPAIR|N = 4 , v = 2 ; J 0〉 = −GA†(Ω − n̂)B†J |0〉
= −G(Ω − 2)A†B†J |0〉 = −G(Ω − 2)|N = 4 , v = 2 ; J 0〉 . (12.32)

By induction we obtain the general result

VPAIR
(
A†

)(N−2)/2
B†J |0〉 = VPAIR|N , v = 2 ; J〉

= − 1
4G(N − 2)(2Ω −N)|N , v = 2 ; J 0〉 . (12.33)

From this we read the energy of the seniority-two state as

Ev=2(N) = − 1
4G(N − 2)(2Ω −N) . (12.34)

Note that this energy is degenerate with respect to J .
For odd-mass nuclei we obtain in an analogous way

VPAIRc†jm|0〉 = VPAIR|N = 1 , v = 1 ; j m〉 = 0 , (12.35)

VPAIRA†c†jm|0〉 = VPAIR|N = 3 , v = 1 ; j m〉
= −G(Ω − 1)|N = 3 , v = 1 ; j m〉 , (12.36)

VPAIR
(
A†

)(N−1)/2
c†jm|0〉 = VPAIR|N , v = 1 ; j m〉

= − 1
4G(N − 1)(2Ω −N + 1)|N , v = 1 ; j m〉 .

(12.37)

The j-degenerate energy of the seniority-one state is thus

Ev=1(N) = − 1
4G(N − 1)(2Ω −N + 1) . (12.38)

We have now constructed a full set of v = 1 and v = 2 states. States with
v > 2 cannot be directly constructed by repeatedly operating with B†J . The
states so obtained would form an overcomplete and non-orthogonal set that
would have to be separately orthogonalized. A more straightforward method
is introduced in the following subsection.
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12.4.3 States of Higher Seniority

We can circumvent the difficulty of overcompleteness and non-orthogonality
by starting from the state of maximal seniority and proceeding towards lower
seniority. Because all the unpaired couples are in the zero-energy state, as
indicated by (12.17), we can write

VPAIR|N , v = N〉 = 0 . (12.39)

With use of (12.23) this gives

V PAIR|N , v = N − 2〉 = VPAIRA†|N − 2 , v = N − 2〉
= A†VPAIR|N − 2 , v = N − 2〉 −GA†(Ω − n̂)|N − 2 , v = N − 2〉
= −G(Ω −N + 2)|N , v = N − 2〉 = −G(Ω − v)|N , v = N − 2〉 .

(12.40)

By induction we find the general expression

VPAIR|N v〉 = VPAIR
(
A†

)(N−v)/2|v v〉 = − 1
4G(N − v)(2Ω −N − v + 2)|N v〉 .

(12.41)
The energy of a seniority-v state is thus

Ev(N) = − 1
4G(N − v)(2Ω −N − v + 2) . (12.42)

Our previous results for v = 0, 1, 2, equations (12.28), (12.38) and (12.34)
respectively, are reproduced by this general formula.

Equation (12.42) provides us with the excitation energies, for even–even
and odd-mass nuclei separately. For N even, the excitation energy is

Ev(N)− Ev=0(N) = 1
4Gv(2Ω − v + 2) , (12.43)

while for N odd it is

Ev(N)− Ev=1(N) = 1
4G

[
v(2Ω − v + 2)− 2Ω − 1

]
. (12.44)

It is interesting that these excitation energies are independent of the num-
ber N of valence particles. This property of the seniority scheme suggests
that theories that mix particle numbers, like the BCS theory of the following
chapter, do not lose much in accuracy because of the mixing.

The states of the seniority model are highly degenerate. The degeneracy
D(v), stated here without proof, is

D(v) =
(
2Ω
v

)
−

(
2Ω

v − 2

)
θ(v − 2) , N ≤ Ω , (12.45)

where the column symbols are the usual binomial coefficients,
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n
m

)
=

n!
m!(n−m)!

, (12.46)

and θ(x) is the Heaviside step function defined in (9.14). Note that the de-
generacy is independent of the particle number N . For states with N > Ω
the degeneracy is obtained by counting holes instead of particles, according
to Nhole = 2Ω − N . The same applies to the determination of the possible
seniorities and angular momenta.

12.4.4 Application of the Seniority Model to 0f7/2-Shell Nuclei

Figure 12.3 shows the results for different particle numbers in the 0f7/2 shell
within the seniority scheme. Up to midshell, Ω = 4, we count particles and
thereafter holes. The energies of the different seniority states are given by
(12.43) and (12.44).

In the simple cases N = 1, 2 the connection between angular momentum
and seniority is seen immediately. For N = 1 the only choice is trivially v = 1.
For N = 2 the definition of seniority in Subsect. 12.4.1 means that the J = 0
state has v = 0 and the J 	= 0 states have v = 2. For a particle number N > 2
we must first find the possible angular momenta J . This can be done by the
m-table technique mentioned in Sect. 1.3. Seniorities can then be assigned to
angular momentum states by comparing the seniority degeneracies D(v) and
the angular momentum degeneracies 2J + 1.

In the example of Fig. 12.3 the configuration (72 )
3 contains the angular

momenta J = 3
2 ,

5
2 ,

7
2 ,

9
2 ,

11
2 , 152 . The degeneracy of the J = 7

2 state is 8; on the
other hand (12.45) gives D(1) = 8. The summed degeneracy of the remaining
J states is 48; on the other hand (12.45) gives D(3) = 48. We conclude that

N=2
v=0(1)

N=3
v=1(8)

N=4
v=0(1)

N=5
v=1(8)

N=6
v=0(1)

N=7
v=1(8)

N=8
v=0(1)

(27)v=2

(48)v=3

(42)v=4

(27)v=2

(48)v=3
(27)v=2

0

5

10

15

20

25

N=1
v=1(8)

E/(G/4)

(J=2, 4, 6)

(J=2, 4, 5, 8)

3/2, 5/2, 9/2, 11/2, 15/2(J=                                    )

Fig. 12.3. Excitation spectra in the seniority scheme for different numbers N of
particles occupying the 0f7/2 shell. The seniority v is indicated for each level. The
numbers in parentheses to the left of the levels give the degeneracies. The angular
momentum content of the levels is given on the far right
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Fig. 12.4. The measured lowest 0+, 2+, 4+ and 6+ states in the three even–even
calcium nuclei of the 0f7/2 shell

the J = 7
2 state has seniority v = 1 while the other states have v = 3. The

configuration (72 )
4 contains the angular momentum states J = 0, 22, 42, 5, 6, 8.

Again by comparing degeneracies we find that the J = 0 state has v = 0, the
J = 21, 41, 6 states have v = 2, and the J = 22, 42, 5, 8 states have v = 4.

The seniority scheme in the j = 0f7/2 shell is partly realized in nature. This
is seen from Fig. 12.4, where the ground state can be considered as a v = 0
state and the J = 2, 4, 6 states as v = 2 states. The excitation energies are
roughly independent of the neutron number along the 0f7/2 shell, as predicted
by the seniority model (see Fig. 12.3). On the other hand, the predicted J =
2, 4, 6 degeneracy is far from being realized. The degeneracy is broken by the
true residual interaction which contains all multipole components, not only
the monopole component of the pairing force. There are more convincing
examples of the validity of the (generalized) seniority scheme [17]. A parade
example are the even–even tin isotopes in the mass range 102 ≤ A ≤ 130 [18].

12.5 The Two-Level Model

In this section we diagonalize the pure pairing Hamiltonian in a valence space
of two j shells, j1 and j2, for the seniority v = 0 states. To this end, we define
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for each of the two shells its own pair creation operator of the form (12.20).
The two-level model is a nice test bench for approximate many-body theories.
It will be used for this purpose in the chapters to come.

12.5.1 The Pair Basis

In the two-level model the starting point are the pair-creation operators for
the two j shells, j1 and j2. They are defined, in the pattern of (12.20), as

A†j ≡
1√
2

[
c†jc
†
j

]
00
=

1√
Ωj

∑
m>0

c†jmc̃†jm , Ωj ≡
1
2
(2j + 1) . (12.47)

The number operators for the two levels are, in the pattern of (12.22),

n̂j ≡
∑
m

c†jmcjm =
∑
m>0

(
c†jmcjm + c̃†jmc̃jm

)
. (12.48)

The first two commutation relations (12.23) become now generalized to[
Aj1 , A

†
j2

]
= δj1j2(1− n̂j1/Ωj1) ,[

A†j1 , n̂j2
]
= −2δj1j2A

†
j1

.
(12.49)

For subsequent use we derive a number of further relations for the pair
operators. By induction the commutation relations (12.49) lead to[

Aj ,
(
A†j

)k] = k
(
A†j

)k−1 (1− k − 1 + n̂j
Ωj

)
, (12.50)[(

A†j
)k

, n̂j

]
= −2k

(
A†j

)k
, (12.51)

Hermitian conjugation of these yields[(
Aj

)k
, A†j

]
= k

(
1− k − 1 + n̂j

Ωj

)(
Aj

)k−1
, (12.52)[(

Aj

)k
, n̂j

]
= 2k

(
Aj

)k
. (12.53)

By means of (12.50) we have

A†jAj

(
A†j

)k|0〉 = A†j
[
Aj ,

(
A†j

)k]|0〉 = k

(
1− k − 1

Ωj

)(
A†j

)k|0〉 . (12.54)

We will use this result in deriving the matrix element of VPAIR in the next
subsection. Apart from that, we note that the operator A†jAj is an approxi-
mate number operator for zero-coupled j-type pairs. For k = 0 and k = 1 it
is exact. For large Ωj and small k it is a good approximation; then the Pauli
principle is not very effective and the pairs behave approximately as bosons.
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Consider the n-pair state
(
A†j

)n|0〉. It is obviously orthogonal to (
A†j′

)k|0〉
with j′ 	= j or k 	= n,

〈0|
(
Aj′

)k(
A†j

)n|0〉 ∝ δjj′δkn . (12.55)

To calculate the norm of
(
A†j

)n|0〉, we apply (12.50) repeatedly and find
〈0|

(
Aj

)n(
A†j

)n|0〉 = 〈0|[(Aj

)n
,
(
A†j

)n]|0〉
= [n]j [n− 1]j . . . [2]j [1]j = [n]j ! , (12.56)

where

[n]j ≡ n

(
1− n− 1

Ωj

)
. (12.57)

The normalized n-pair state of j-shell nucleons is thus

|n〉 = 1√
[n]j !

(
A†j

)n|0〉 . (12.58)

Since all j1 pair operators commute with all j2 pair operators, we can write
the normalized two-level basis states as

|nm〉 = 1√
[n]j1 ![m]j2 !

(
A†j1

)n(
A†j2

)m|0〉 . (12.59)

12.5.2 Matrix Elements of the Pairing Hamiltonian

The Hamiltonian of our two-level model consists of a one-body mean-field
term and the pure pairing potential (12.8),

HPAIR = εj1 n̂j1 + εj2 n̂j2 + VPAIR , εj1 < εj2 . (12.60)

With (12.47) it becomes

HPAIR = εj1 n̂j1 + εj2 n̂j2 −G
∑
jj′

√
ΩjΩj′A

†
jAj′ , (12.61)

where the summation indices take on the values j1, j2.
We are now in a position to derive the matrix element of VPAIR in the

basis (12.59):

〈nm|VPAIR|n′m′〉 =
−G√

[n]j1 ![m]j2 ![n′]j1 ![m′]j2 !

∑
jj′

√
ΩjΩj′

× 〈0|
(
Aj2

)m(
Aj1

)n
A†jAj′

(
A†j1

)n′(
A†j2

)m′
|0〉 ≡ Vj1j1 + Vj1j2 + Vj2j1 + Vj2j2 ,

(12.62)
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where the four terms label the contributions of the jj′ sum. The first term is

Vj1j1 =
−GΩj1√

[n]j1 ![m]j2 ![n′]j1 ![m′]j2 !
〈0|

(
Aj2

)m(
Aj1

)n
A†j1Aj1

(
A†j1

)n′(
A†j2

)m′
|0〉 .

(12.63)
Because the j1 and j2 operators commute, we can think of the vacuum as
|0〉 = |0j1〉|0j2〉. This justifies factorizing the matrix element as

〈0|
(
Aj2

)m(
Aj1

)n
A†j1Aj1

(
A†j1

)n′(
A†j2

)m′
|0〉

= 〈0|
(
Aj1

)n
A†j1Aj1

(
A†j1

)n′
|0〉〈0|

(
Aj2

)m(
A†j2

)m′
|0〉 . (12.64)

With use of (12.54)–(12.57) the right-hand side becomes

[n′]j1〈0|
(
Aj1

)n(
A†j1

)n′
|0〉〈0|

(
Aj2

)m(
A†j2

)m′
|0〉 = [n′]j1δnn′ [n]!δmm′ [m]! ,

(12.65)
whence (12.63) becomes

Vj1j1 = −GΩj1δnn′δmm′ [n]j1 . (12.66)

In complete analogy we find

Vj2j2 = −GΩj2δnn′δmm′ [m]j2 . (12.67)

Next we calculate the term

Vj1j2 =
−G

√
Ωj1Ωj2√

[n]j1 ![m]j2 ![n′]j1 ![m′]j2 !
〈0|

(
Aj2

)m(
Aj1

)n
A†j1Aj2

(
A†j1

)n′(
A†j2

)m′
|0〉 .

(12.68)
Factorizing the matrix element as in (12.64) and using (12.50), (12.52) and
(12.55)–(12.57) we obtain

〈0|
(
Aj2

)m(
Aj1

)n
A†j1Aj2

(
A†j1

)n′(
A†j2

)m′
|0〉

= 〈0|
(
Aj1

)n
A†j1

(
A†j1

)n′
|0〉〈0|

(
Aj2

)m
Aj2

(
A†j2

)m′
|0〉

= [n]j1δn−1,n′ [n− 1]j1 ![m′]j2δm,m′−1[m]j2 ! . (12.69)

Substituting this into (12.68) yields

Vj1j2 = −G
√

Ωj1Ωj2δn′,n−1δm′,m+1

√
[n]j1 [m+ 1]j2 . (12.70)

Similarly we find

Vj2j1 = −G
√

Ωj1Ωj2δn′,n+1δm′,m−1
√
[n+ 1]j1 [m]j2 . (12.71)

The interaction VPAIR cannot change the total number of pairs, so within
a calculation that number is a constant
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N = n+m . (12.72)

Substituting m = N −n and collecting the terms (12.66), (12.67), (12.70) and
(12.71), we have

〈nm|VPAIR|n′m′〉 = 〈n N − n|VPAIR|n′ N − n′〉
= −Gδnn′

(
Ωj1 [n]j1 +Ωj2 [N − n]j2

)
−G

√
Ωj1Ωj2

(
δn′,n−1

√
[n]j1 [N − n+ 1]j2

+ δn′,n+1

√
[n+ 1]j1 [N − n]j2

)
.

(12.73)

The matrix element of the mean-field part of HPAIR in (12.60) is diagonal,
and we can write directly

〈n N − n|εj1 n̂j1 + εj2 n̂j2 |n′ N − n′〉 = δnn′
[
2nεj1 + 2(N − n)εj2

]
. (12.74)

The matrix element of HPAIR now becomes, with the quantities (12.57) ex-
panded,

〈n N − n|HPAIR|n′ N − n′〉 = δnn′
{
2nεj1 + 2(N − n)εj2

−G
[
n(Ωj1 − n+ 1) + (N − n)(Ωj2 −N + n+ 1)

]}
−Gδn′,n−1

√
n(Ωj1 − n+ 1)(N − n+ 1)(Ωj2 −N + n)

−Gδn′,n+1

√
(n+ 1)(Ωj1 − n)(N − n)(Ωj2 −N + n+ 1) .

(12.75)

When using this formula one must remember that N is the number of nucleon
pairs, i.e. N = N/2, where N is the number of nucleons occupying the two-
level system. The quantity n stands for the number of pairs occupying the
lower level of degeneracy 2Ωj1 .

Equation (12.75) gives the matrix elements of the pairing Hamiltonian in
the seniority v = 0 basis

{|N 0〉 , |N − 1 1〉 , |N − 2 2〉 , . . . , |0 N〉} , (12.76)

listed from lowest to highest energy (εj1 < εj2). Diagonalization in this basis
results in a total of N seniority v = 0 states. The one with the lowest energy
is the ground state

|0+gs〉 =
∑
n

X(gs)
n |n N − n〉 , (12.77)

which can be compared e.g. with the BCS ground state, to be discussed in
the next chapter.

A two-level model where
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Ωj1 = Ωj2 ≡ Ω , εj1 = − 1
2ε , εj2 = +

1
2ε , N = 2Ω (12.78)

is called the Lipkin–Meshkov–Glick model, or simply the Lipkin model [68].
The Lipkin model is exactly solvable for many kinds of Hamiltonian, which
makes it a popular test bench for various nuclear many-body theories.

A broken-pair operator of the type (12.29) can be added to the two-level
model in a straightforward way. The broken pair can occupy either the lower
or the upper level. We can form the Hamiltonian matrix containing one broken
pair and any number of zero-coupled pairs by using the methods of this and the
previous section. Diagonalization of the matrix will then yield the spectrum
of the seniority v = 2 states, analogously to the seniority model for a single j
orbital.

12.5.3 Application to a Two-Particle System

Consider a very simple application of the two-level formalism derived in the
previous subsection. We take just two particles that occupy the two-level
system. Then N = 1 and the basis states (12.76) are

{|1 0〉 , |0 1〉} . (12.79)

Equation (12.75) gives the Hamiltonian matrix elements

〈1 0|HPAIR|1 0〉 = 2εj1 −GΩj1 , (12.80)

〈1 0|HPAIR|0 1〉 = −G
√

Ωj1Ωj2 , (12.81)

〈0 1|HPAIR|1 0〉 = −G
√

Ωj1Ωj2 , (12.82)
〈0 1|HPAIR|0 1〉 = 2εj2 −GΩj2 . (12.83)

Taking for simplicity j1 = j2 (but εj1 < εj2) and defining Ωj1 = Ωj2 ≡ Ω,
we have the Hamiltonian matrix

HPAIR =
(
2εj1 − g −g
−g 2εj2 − g

)
, (12.84)

where g ≡ GΩ. The eigenvalues are, from (8.85),

E∓ = εj1 + εj2 − g ∓
√
(εj2 − εj1)2 + g2 . (12.85)

We lose no generality by adopting the values1 εj1 = − 1
2ε and εj2 = +

1
2ε. This

leads to an extremely simple expression for the energies of the v = 0 states in
the two-particle system, namely

E∓ = −g ∓
√

ε2 + g2 . (12.86)

1 The use of symmetric shell energies is the traditional way to discuss two-level
systems with the upper and lower levels having the same degeneracy.
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12.6 Two Particles in a Valence Space of Many j Shells

In this section we consider a pair of particles occupying several j shells with
single-particle energies εj and interacting through the pairing force (12.8).

12.6.1 Dispersion Equation

The complete Hamiltonian (12.61) is now generalized to

HPAIR =
∑
j

εj n̂j −G
∑
jj′

√
ΩjΩj′A

†
jAj′ . (12.87)

With the pair structure given by (12.12), the matrix element of the pairing
potential (12.8) becomes

〈0|AjmVPAIRA†j′m′ |0〉

= −G
∑
j1j2

m1m2>0

〈0|c̃jmcjmc†j1m1
c̃†j1m1

c̃j2m2cj2m2c
†
j′m′ c̃

†
j′m′ |0〉 = −G . (12.88)

This is an immediate extension of the single-j shell result (12.13). The matrix
element of the complete Hamiltonian (12.87) is

〈0|AjmHPAIRA†j′m′ |0〉 = 2εjδjj′δmm′ −G ≡ Hjm,j′m′ , m,m′ > 0 . (12.89)

For the Hamiltonian matrix elements (12.89) the eigenvalue equation∑
j′,m′>0

Hjm,j′m′Xω
j′m′ = EωX

ω
jm (12.90)

becomes
2εjXω

jm −G
∑

j′,m′>0

Xω
j′m′ = EωX

ω
jm . (12.91)

This can be rewritten as

Xω
jm =

G

2εj − Eω
Nω , (12.92)

where ∑
j′,m′>0

Xω
j′m′ ≡ Nω . (12.93)

When we substitute Xω
jm from (12.92) into (12.93), the constant Nω appears

on both sides and can be cancelled, and we are left with

1 =
∑

j′,m′>0

G

2εj′ − Eω
=

∑
j′

GΩj′

2εj′ − Eω
. (12.94)
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The final result is thus the dispersion equation

1
G
=

∑
j

Ωj

2εj − Eω
. (12.95)

The solutions of (12.95) are the energies of the seniority v = 0 states for two
nucleons in a multi-j valence space. The seniority v = 2 states are left at their
unperturbed energies 2εj . Equation (12.95) is similar to the TDA dispersion
equation (9.55) and the RPA dispersion equation (11.125). Its solutions can
be obtained by the same graphical method as was used in the previous cases.

The simplest example of the use of the dispersion equation (12.95) is the
case of two levels with equal degeneracy. Denoting Ωj1 = Ωj2 ≡ Ω we have

1
G
=

Ω

2εj1 − Eω
+

Ω

2εj2 − Eω
. (12.96)

This is a second-degree equation, so we have an exact solution. As one would
expect, the resulting energies Eω are the same as those given by (12.85).

12.6.2 The Three-Level Case

Let us apply the dispersion equation (12.95) to a three-level case. We can take
this case to be d-s shell with single-particle energies

ε1 = ε0d5/2 = 0 , ε2 = ε1s1/2 = 1.0MeV , ε3 = ε0d3/2 = 5.0MeV .
(12.97)

We then obtain from (12.95) the dispersion equation

1
G
=

3
0− Eω

+
1

2.0MeV−Eω
+

2
10.0MeV− Eω

. (12.98)

The graphical solution of (12.98) is shown in Fig. 12.5 forG = 1.0MeV and
G = 2.0MeV. The energies Eω are also listed in Table 12.2, with an accuracy
obtained from a numerical solution. Note that the broken-pair states stay at
their unperturbed energies; they are the J = 2, 4 states at zero excitation
energy and the J = 2 state at 10.0MeV.

Table 12.2. Numerical solutions Eω of the dispersion equation (12.98) for two
different values of the pairing strength G

G (MeV) E1 (MeV) E2 (MeV) E3 (MeV)

1.0 −4.281 1.618 8.663
2.0 −9.617 1.546 8.070
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Fig. 12.5. Graphical solution of the dispersion equation (12.98) for pairing strengths
G = 1.0MeV and G = 2.0MeV. The energy Eω is in MeV

Epilogue

In this chapter we have tried to justify the use of a simple pure pairing force in
the description of open-shell vibrational nuclei. The justification came in two
ways: first by observing experimental evidence of nucleon pairing, secondly
by being able to develop exactly solvable models for testing nuclear many-
body approaches. In the following chapters these simple models are used to
compare their exact solutions with the approximate solutions provided by
nuclear models of various degrees of complexity.

Exercises

12.1.Work out the details of the derivation (12.5).

12.2. Using the SDI expression (8.71), which is in the CS phase convention,
compute the two-body matrix element in (12.9) and note that its sign depends
on the l values involved.

12.3. Derive the characteristic equation (12.16).

12.4. Verify the form of the eigenstate in (12.18) and (12.19).

12.5. Derive the commutation relations (12.23) by starting from (12.20)–
(12.22).

12.6. Prove by induction the general expression (12.26) for the action of the
pair potential.
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12.7. Prove by induction the general expression (12.33) for the action of the
pair potential.

12.8. Prove by induction the general expression (12.37) for the action of the
pair potential.

12.9. Prove by induction the general expression (12.41) for the action of the
pair potential.

12.10. Draw the excitation spectra for the 0g9/2 shell in the seniority scheme
on the pattern of Fig. 12.3. You need not indicate the angular momentum
content of the states.

12.11. Determine the angular momentum content of the seniority states of Ex-
ercise 12.10 by using them-table technique and reasoning as in Subsect. 12.4.4.

12.12. Derive the commutation relation (12.50).

12.13. Derive the commutation relation (12.51).

12.14. Derive the commutation relation (12.52).

12.15. Derive the relation (12.54).

12.16. Derive the ground-state expectation value (12.56).

12.17.Work out the details of the derivation of (12.67).

12.18.Work out the details of the derivation of (12.71).

12.19. Compute the energy spectrum of the Lipkin model for two j = 3
2

shells. Use the values
(a) ε = G,
(b) ε = 2G.

12.20. Compute the energies of the seniority-zero states for different numbers
of particle pairs in a valence space consisting of the 0p3/2 and 0p1/2 orbitals.
Take ε0p3/2 = 0 and ε0p1/2 = 6.0MeV and
(a) G = 1.0MeV,
(b) G = 2.0MeV.

12.21. Compute the energies of the seniority-zero states for different numbers
of particle pairs in a valence space consisting of the 0d3/2 and 0f7/2 orbitals.
Take ε0d3/2 = 0 and ε0f7/2 = 4.0MeV and
(a) G = 1.0MeV,
(b) G = 2.0MeV.

12.22. Consider the 1p-0f5/2-0g9/2 shells with the energies ε1p3/2 = 0, ε1p1/2 =
2.02MeV, ε0f5/2 = 3.60MeV and ε0g9/2 = 4.00MeV. Find the energies of the
0+ states of two particles distributed on these orbitals when the two-body
force is the pure pairing force with strength
(a) G = 1.0MeV,
(b) G = 2.0MeV.
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BCS Theory

Prologue

Up to now we have treated vibrational open-shell nuclei within simplified
schemes using the pure pairing Hamiltonian. This Hamiltonian is far too sim-
ple for a realistic description of excitation spectra, but it has the advantage
of providing exact solutions within simplified approaches such as the seniority
scheme and the two-level model discussed in the preceding chapter.

In this section the concept of quasiparticle becomes an active working
tool. We introduce BCS quasiparticles through the transformation leading to
them. These quasiparticles are made out of particle and hole components with
certain occupation amplitudes. BCS theory is an advanced many-body theory,
but it can be used with the simple pairing force. However, the framework
provides for a generalization to any two-body interaction. The meaning of the
quasiparticle mean field and single-quasiparticle energies will be addressed.
BCS solutions will be discussed both generally and within simple, exactly
solvable models.

13.1 BCS Quasiparticles and Their Vacuum

The seniority model of Sect. 12.4 can be generalized to a model where N
particles can occupy several j shells. This model is called the generalized
seniority model [18]. Here we do not want to discuss that model, but instead
introduce a realistic microscopic model known as the BCS model or BCS
theory.

The BCS theory was first introduced by Bardeen, Cooper and Schrieffer
in 1957 [69] for microscopic description of the superconductivity of metals.
In superconducting metals the long-range effective attraction between two
electrons is mediated by quantized lattice vibrations, lattice phonons. The
correlated electrons form pairs with total spin zero. These effective bosonic
pairs condense to the ground state, with a resultant energy gap to the excited
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states. At low temperatures, electrons scattering from the lattice cannot over-
come this energy gap. They stay in the ground state and traverse the bulk
metal without losing energy in collisions with the lattice. Therefore an electric
current can flow with no resistance.

As discussed in Sect. 12.1, there is experimental evidence for the presence
of a similar collective condensate in atomic nuclei. The valence nucleons of a
nucleus feel a strong attractive force which stems from the short-range com-
ponent of the nucleon–nucleon interaction. This short-range attraction was
mimicked by the pure pairing force in Chap. 12. Having recognized the pair-
ing phenomenon in nuclei, Bohr, Mottelson and Pines [70] and Belyaev [71]
in 1958–59 proposed to apply BCS theory to nuclei. The theory has become
a standard part of the description of nuclear structure.

13.1.1 The BCS Ground State

The BCS theory can be viewed as a Rayleigh–Ritz variational problem with
suitably parametrized ansatz wave functions. Then the best wave function is
found by varying the parameters to achieve minimum energy. We thus write
an ansatz for the BCS ground state as

|BCS〉 =
∏
α>0

(
ua − vaA

†
α

)
|CORE〉 , (13.1)

where ua and va are variational parameters and the operator (12.12),

A†α = c†αc̃
†
α , (13.2)

creates a pair of like nucleons. Here we use the Baranger notation, defined in
(3.62),

α = (a,mα) , a = (na, la, ja) . (13.3)

As denoted, we have made the natural choice for spherical nuclei that the u
and v parameters are independent of the projection quantum number mα.

The BCS state (13.1) does not have a good particle number. However,
we can decompose it into a sum of eigenstates |N〉. To that end, consider an
exponential operator function and expand it in a Taylor series:

exp
(
− va

ua
A†α

)
= exp

(
− va

ua
c†αc̃
†
α

)
= 1− va

ua
c†αc̃
†
α + 0 = 1−

va
ua

A†α , (13.4)

where the zero results from the anticommutation relations (4.9). By using
(13.4) we can rewrite the BCS ground state (13.1) as
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|BCS〉 =
∏
α>0

ua

(
1− va

ua
A†α

)
|CORE〉 =

∏
α>0

ua exp
(
− va

ua
A†α

)
|CORE〉

=
∏
β>0

ub
∏
α>0

exp
(
− va

ua
A†α

)
|CORE〉 =

∏
β>0

ub exp
(
−

∑
α>0

va
ua

A†α
)
|CORE〉

=
∏
β>0

ub
∑
n

1
n!

(
−

∑
α>0

va
ua

A†α
)n
|CORE〉 . (13.5)

To highlight the dependence on nucleon number N we write the final result
in the form

|BCS〉 =
∏
β>0

ub
∑

N=even

1
(N/2)!

|N〉 , (13.6)

where

|N〉 ≡
(
−

∑
α>0

va
ua

A†α
)N/2

|CORE〉 (13.7)

is an unnormalized eigenstate of the nucleon number. The seniority model of
Sect. 12.4 showed only weak dependence on particle number. This suggests
that the lack of good nucleon number in the state (13.6) may not be a severe
shortcoming.

We require the state (13.1) to be normalized. It follows that for all a

|ua|2 + |va|2 = 1 . (13.8)

The amplitudes ua and va are chosen to be real, so the normalization condition
is

u2a + v2a = 1 for all a . (13.9)

13.1.2 BCS Quasiparticles

The BCS state (13.1) is much easier to work with than the number-conserving
state |N〉. This is because |BCS〉 is the vacuum for BCS quasiparticles. We
define a†α as the operator that creates a quasiparticle in orbital α. The cor-
responding annihilation operator is aα, and ãα = (−1)ja+mαa−α is its com-
panion with good tensorial properties according to (4.23). The quasiparticle
operators are linear combinations of particle operators via the Bogoliubov–
Valatin transformation

a†α = uac
†
α + vac̃α ,

ãα = uac̃α − vac
†
α ,

(13.10)

introduced separately c. 1960 by Bogoliubov [72] and Valatin [73].
The Hermitian conjugates of the relations (13.10) are

aα = uacα + vac̃
†
α , ã†α = uac̃

†
α − vacα . (13.11)
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We invert the relations (13.10) and use the normalization condition (13.9).
The result is

c†α = uaa
†
α − vaãα , c̃α = uaãα + vaa

†
α . (13.12)

The Hermitian conjugates of these relations are

cα = uaaα − vaã
†
α , c̃†α = uaã

†
α + vaaα . (13.13)

From the anticommutation relations (4.9), the transformation equations
(13.10) and (13.11) and the normalization condition (13.9) we obtain for BCS
quasiparticles the anticommutation relations{

a†α, a
†
β

}
= 0 ,

{
aα, aβ

}
= 0 ,

{
aα, a

†
β

}
= δαβ . (13.14)

Thus the quasiparticles are fermions just like the particles they are built from.
A transformation that preserves the form of the basic commutation relations
is known as a quantum-mechanical canonical transformation.

Operating with aα or ãα on the BCS ground state (13.1) gives

aα|BCS〉 = 0 , ãα|BCS〉 = 0 , (13.15)

so |BCS〉 can be appropriately called the BCS vacuum.
The case of particles and holes, as introduced in Sect. 4.4, is recovered

when certain coefficients are ua, va = 1, 0 and others are ub, vb = 0, 1. In this
case we have

a†α = c†α , aα = cα ; a†β = c̃β , aβ = c̃†β . (13.16)

The vacuum |BCS〉 is now the particle–hole vacuum |HF〉, and the quasipar-
ticle creation operator a†α creates a particle above the Fermi surface and the
quasiparticle creation operator a†β creates a hole below the Fermi surface.

In the normal BCS case each operator a†α creates a quasiparticle that is a
particle with probability amplitude ua and a hole with probability amplitude
va. This is understood so that the single-particle orbital α is empty with a
probability u2a and occupied with a probability v2a, with the proper probability
normalization (13.9). Therefore va is called the occupation amplitude and ua
the unoccupation amplitude of the orbital α; generically both are called occu-
pation amplitudes. In all, a j orbital is thus occupied by (2j + 1)v2j particles
and (2j + 1)u2j holes.

13.2 Occupation Number Representation
for BCS Quasiparticles

In Sect. 4.1 we discussed occupation number representation in particle space,
with the vacuum |0〉, and in Sect. 4.4 we discussed the particle–hole represen-
tation, with the vacuum |HF〉. We now proceed in a similar way with quasi-
particle operators and define their normal ordering and contractions relative
to the BCS vacuum |BCS〉.
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13.2.1 Contraction Properties

For BCS quasiparticles, normal ordering and contractions of operators are
done, by definition, relative to the BCS ground state |BCS〉. The contractions
of quasiparticle creation and annihilation operators can be written immedi-
ately as

aαa
†
β = 〈BCS|aαa

†
β |BCS〉 = δαβ , other contractions = 0 . (13.17)

With these quasiparticle contractions and the transformation equations (13.12)
and (13.13) we can find the contractions of the particle operators with respect
to the BCS vacuum, with the result

cαc
†
β = u2aδαβ , c†αcβ = v2aδαβ , (13.18)

c†αc
†
β = uava(−1)ja−mαδα,−β , (13.19)

cαcβ = uava(−1)ja+mαδα,−β . (13.20)

These contractions are sometimes useful, as in the derivation of the quasipar-
ticle representation of the nuclear Hamiltonian in the next subsection.

13.2.2 Quasiparticle Representation of the Nuclear Hamiltonian

Let us now apply Wick’s theorem (4.41) to the nuclear HamiltonianH = T+V
as was done in Sect. 4.5. There we managed to decompose the Hamiltonian
into a one-body part representing the Hartree–Fock mean field and a residual
interaction, as shown in (4.70)–(4.72). Here we set out to do likewise, namely
to write the Hamiltonian as a sum of a one-quasiparticle term, describing the
quasiparticle mean field, and a residual interaction.

For the two-body part, Wick’s theorem gives

4V =
∑
αβγδ

v̄αβγδc
†
αc
†
βcδcγ =

∑
αβγδ

v̄αβγδN
[
c†αc
†
βcδcγ

]
+

∑
αβγδ

v̄αβγδ〈BCS|c†αc
†
β |BCS〉N

[
cδcγ

]
−

∑
αβγδ

v̄αβγδ〈BCS|c†αcδ|BCS〉N
[
c†βcγ

]
+

∑
αβγδ

v̄αβγδ〈BCS|c†αcγ |BCS〉N
[
c†βcδ

]
+

∑
αβγδ

v̄αβγδ〈BCS|c†βcδ|BCS〉N
[
c†αcγ

]
−

∑
αβγδ

v̄αβγδ〈BCS|c†βcγ |BCS〉N
[
c†αcδ

]
+

∑
αβγδ

v̄αβγδ〈BCS|cδcγ |BCS〉N
[
c†αc
†
β

]
+

∑
αβγδ

v̄αβγδ〈BCS|c†αc
†
β |BCS〉〈BCS|cδcγ |BCS〉

−
∑
αβγδ

v̄αβγδ〈BCS|c†αcδ|BCS〉〈BCS|c
†
βcγ |BCS〉
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+
∑
αβγδ

v̄αβγδ〈BCS|c†αcγ |BCS〉〈BCS|c
†
βcδ|BCS〉 . (13.21)

Next we use (13.12) and (13.13), (13.18)–(13.20) and the definition of normal-
ordered product (4.31). Terms are combined by means of the symmetry prop-
erties (4.29) and the relation (see Exercise 13.6)

v̄−α,−β,−γ,−δ = (−1)ja−mα+jb−mβ+jc−mγ+jd−mδ v̄αβγδ . (13.22)

This relation enables us to express all operators without tildes. After a long
but straightforward calculation we obtain

4V =
∑
αβγδ

v̄αβγδN
[
c†αc
†
βcδcγ

]
+ 2

∑
αβ

v̄αβαβv
2
av

2
b

+
∑
αβ

v̄α,−αβ,−β(−1)ja−mα+jb−mβuavaubvb

+ 2
∑
αγδ

v̄α,−α,−γδ(−1)ja−mα+jc−mγuava(udvc + vduc)a†γaδ

+ 4
∑
αγδ

v̄αγαδv
2
a(ucud − vdvc)a†γaδ

+ 4
∑
αγδ

v̄αδα,−γ(−1)jc−mγv2audvc(a†γa
†
δ + aδaγ)

+
∑
αγδ

v̄α,−αγδ(−1)ja+mαuava(vcvd − ucud)(a†γa
†
δ + aδaγ) . (13.23)

By means of (8.17) and various Clebsch–Gordan relations from Chap. 1
we re-express the contracted terms of (13.23) in terms of coupled two-body
matrix elements and one-body operators. The results are

2
∑
αβ

v̄αβαβv
2
av

2
b = 2

∑
ab

v2av
2
b

∑
J

Ĵ 2[Nab(J)]−2〈a b ; J |V |a b ; J〉 , (13.24)

∑
αβ

v̄α,−αβ,−β(−1)ja−mα+jb−mβuavaubvb

= 2
∑
ab

ĵaĵbuavaubvb〈a a ; 0|V |b b ; 0〉 , (13.25)

2
∑
αγδ

v̄α,−α,−γδ(−1)ja−mα+jc−mγuava(udvc + vduc)a†γaδ

= −2
√
2
∑
acd

ĵauava(udvc + vduc)[Ncd(0)]−1δjcjd〈a a ; 0 |V | c d ; 0〉
[
a†cãd

]
00

,

(13.26)



www.manaraa.com

13.2 Occupation Number Representation for BCS Quasiparticles 397

4
∑
αγδ

v̄αγαδv
2
a(ucud − vdvc)a†γaδ = 4

∑
acd

ĵc
−1

v2a(ucud − vdvc)

×
∑
J

Ĵ 2[Nac(J)Nad(J)]−1δjcjd〈a c ; J |V |a d ; J〉
[
a†cãd

]
00

, (13.27)

4
∑
αγδ

v̄αδα,−γ(−1)jc−mγv2audvc(a†γa
†
δ + aδaγ) = 4

∑
acd

ĵc
−1

v2audvc

×
∑
J

Ĵ 2[Nad(J)Nac(J)]−1δjdjc〈a d ; J |V |a c ; J〉
([

a†ca
†
d

]
00
−

[
ãdãc

]
00

)
,

(13.28)∑
αγδ

v̄α,−αγδ(−1)ja+mαuava(vcvd − ucud)
(
a†γa
†
δ + aδaγ

)
=
√
2
∑
acd

ĵauava

× (ucud − vcvd)[Ncd(0)]−1δjcjd〈a a ; 0|V |c d ; 0〉
([

a†ca
†
d

]
00
−

[
ãdãc

]
00

)
.

(13.29)

The one-body part T of the Hamiltonian has the simple form (4.71). Sub-
stitution from (13.12) and (13.13) gives after a short calculation

T =
∑
α

εαc
†
αcα =

∑
a

εaĵa
2
v2a +

∑
a

εaĵa(u2a − v2a)
[
a†aãa

]
00

+
∑
a

εaĵauava

([
a†aa
†
a

]
00
−

[
ãaãa

]
00

)
. (13.30)

We are now ready to write the full Hamiltonian explicitly in quasiparticle
representation. The non-constant two-body terms (13.26)–(13.29) contain the
Kronecker delta δjcjd . While it excludes coupling between different j values,
it allows coupling between different orbital quantum numbers n; the parity
π = (−1)l cannot change because the Hamiltonian is a scalar. However, pairs
of such single-particle states occur in harmonic oscillator shells 2�ω apart,
and their coupling can be neglected to a good approximation. We thus make
the replacement

δjcjd → δcd , (13.31)

which brings about an appreciable simplification.
Collecting the terms (13.24)–(13.30) in the approximation (13.31) results

in

H = H0 +
∑
b

H11(b)
[
a†bãb

]
00
+

∑
b

H20(b)
([

a†ba
†
b

]
00
−

[
ãbãb

]
00

)
+ VRES .

(13.32)
The last term is the residual interaction

VRES = 1
4

∑
αβγδ

v̄αβγδN
[
c†αc
†
βcδcγ

]
BCS

, (13.33)
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where N [. . .]BCS means normal ordering with respect to the BCS vacuum
|BCS〉. The term H0 is a c-number given by

H0 =
∑
a

εaĵa
2
v2a +

1
2

∑
abJ

v2av
2
b Ĵ

2[Nab(J)]−2〈a b ; J |V |a b ; J〉

+ 1
2

∑
ab

ĵaĵbuavaubvb〈a a ; 0|V |b b ; 0〉 . (13.34)

The coefficients of the H11 and H20 parts are

H11(b) = εbĵb(u2b − v2b )− 2ubvb
∑
a

ĵauava〈a a ; 0|V |b b ; 0〉

+ ĵb
−1
(u2b − v2b )

∑
aJ

v2aĴ
2[Nab(J)]−2〈a b ; J |V |a b ; J〉 , (13.35)

H20(b) = εbĵbubvb + ĵb
−1

ubvb
∑
aJ

v2aĴ
2[Nab(J)]−2〈a b ; J |V |a b ; J〉

+ 1
2 (u

2
b − v2b )

∑
a

ĵauava〈a a ; 0|V |b b ; 0〉 . (13.36)

The expressions (13.32)–(13.36) constitute the quasiparticle representation of
the nuclear Hamiltonian.

13.3 Derivation of the BCS Equations

The BCS equations can be derived in at least two very different ways.
Both methods amount to minimizing the BCS ground-state expectation value
〈BCS|H|BCS〉. Our choice is a Rayleigh–Ritz variational treatment with re-
spect to the occupation amplitudes ua and va.

The BCS vacuum does not possess good particle number, as is expressly
displayed in (13.6). Various procedures have been devised to make up for this
deficiency. The most accurate way is to project good particle number, but the
procedure is tedious and will not be considered here. In standard BCS theory
the ground-state expectation value n̄ of the particle number operator n̂ is con-
strained to be the desired number of particles. The Lipkin–Nogami extension
of BCS theory, discussed in Chap. 14, takes into account not only n̂ but also
n̂2. We derive the standard BCS equations in the next two subsections.

13.3.1 BCS as a Constrained Variational Problem

The simplest way to reduce uncertainties arising from the non-conservation of
particle number in BCS theory is to constrain the variational problem to yield
a good average particle number n̄. With n̂, the particle number operator, the
constraint reads
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〈BCS|n̂|BCS〉 = n̄ . (13.37)

The operator n̂ can be written down immediately in the pattern of (13.30):

n̂ =
∑
α

c†αcα =
∑
a

ĵa
2
v2a +

∑
a

ĵa(u2a − v2a)
[
a†aãa

]
00

+
∑
a

ĵauava

([
a†aa
†
a

]
00
−

[
ãaãa

]
00

)
. (13.38)

Only the constant term of n̂ contributes to n̄, so we have

n̄ =
∑
a

ĵa
2
v2a . (13.39)

In actual BCS calculations, protons and neutrons are treated separately. We
require the average numbers n̄p and n̄n of active protons and neutrons, re-
spectively, to be the numbers Zact and Nact of protons and neutrons in the
valence space.

Imposing the constraint on the average particle number leads to a con-
strained variational problem. This problem can be solved by the method of
Lagrange undetermined multipliers, where a parameter λ is introduced to yield
an unconstrained variational problem. In the present case we define an auxil-
iary Hamiltonian

H ≡ H − λn̂ (13.40)

and pose the variational problem as

δ〈BCS|H|BCS〉 = 0 . (13.41)

From (13.32) and (13.38) we see that

〈BCS|H|BCS〉 = H0 − λ
∑
a

ĵa
2
v2a ≡ H0 . (13.42)

With the expression (13.34) for H0 this becomes

H0 =
∑
a

(εa − λ)ĵa
2
v2a +

1
2

∑
abJ

v2av
2
b Ĵ

2[Nab(J)]−2〈a b ; J |V |a b ; J〉

+ 1
2

∑
ab

ĵaĵbuavaubvb〈a a ; 0|V |b b ; 0〉 . (13.43)

The change from H0 to H0 amounts to replacing the single-particle energies
εa in H0 with εa − λ. The same change occurs in (13.35) and (13.36):

H11(b)|ε = H11(b)|ε−λ , H20(b)|ε = H20(b)|ε−λ . (13.44)

To prepare the Hamiltonian for the variational treatment, and subsequent
physical interpretation, we adopt the notation
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Δb ≡ −ĵb
−1 ∑

a

ĵauava〈a a ; 0|V |b b ; 0〉 ,

μb ≡ −ĵb
−2 ∑

aJ

v2aĴ
2[Nab(J)]−2〈a b ; J |V |a b ; J〉 ,

ηb ≡ εb − λ− μb .

(13.45)

These abbreviations result in the concise expressions

H0 =
∑
b

ĵb
2[

v2b (ηb +
1
2μb)−

1
2ubvbΔb

]
, (13.46)

H11(b) = ĵb
[
(u2b − v2b )ηb + 2ubvbΔb

]
, (13.47)

H20(b) = ĵb
[
ubvbηb − 1

2 (u
2
b − v2b )Δb

]
. (13.48)

13.3.2 The Gap Equation and the Quasiparticle Mean Field

We are now in a position to perform the variational calculation that leads to
the BCS equations. It is sufficient to require that

∂

∂vc
H0 = 0 for all c (13.49)

because the normalization condition (13.9) makes each uc dependent on vc.
That condition gives

∂ub
∂vc

= −δbc
vc
uc

. (13.50)

In preparation for the differentiation we note from the last relation in
(13.45) that

∂

∂vc
(ηb + 1

2μb) = −
1
2
∂μb
∂vc

. (13.51)

We also form the derivatives

∂μb
∂vc

= −2ĵb
−2

vc
∑
J

Ĵ 2[Nbc(J)]−2〈b c ; J |V |b c ; J〉 ,

∂Δb

∂vc
= −ĵb

−1
ĵc

u2c − v2c
uc

〈b b ; 0|V |c c ; 0〉 , (13.52)

where we have used the symmetry properties (4.29) so that μc and Δc can be
recognized in the sums over b below. The requirement (13.49) now gives

0 =
∂

∂vc
H0 =

∑
b

ĵb
2
[
− 1

2v
2
b

∂μb
∂vc

+ 2vbδbc(ηb + 1
2μb)

− 1
2ubvb

∂Δb

∂vc
− 1

2ubδbcΔb + 1
2δbc

vc
uc

vbΔb

]
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= vc
∑
bJ

v2b Ĵ
2[Nbc(J)]−2〈b c ; J |V |b c ; J〉+ 2ĵc

2
vc(ηc + 1

2μc)

+ ĵc
u2c − v2c
2uc

∑
b

ĵbubvb〈b b ; 0|V |c c ; 0〉 − 1
2 ĵc

2
ucΔc + 1

2 ĵc
2 v2c
uc

Δc

= 2ĵc
2
vcηc + ĵc

2 v2c − u2c
uc

Δc . (13.53)

This gives us the equation

(u2c − v2c )Δc = 2ucvcηc . (13.54)

Squaring both sides of (13.54) and using (13.9) we find

u2cv
2
c =

Δ2
c

4(η2c +Δ2
c)

. (13.55)

From this we solve the occupation amplitudes

uc = θ(lc)
1√
2

√
1 +

ηc
Ec

, vc =
1√
2

√
1− ηc

Ec
, (13.56)

where θ(lc) is a phase factor and

Ec ≡
√

η2c +Δ2
c (13.57)

is the quasiparticle energy as becomes clear below.
The phases are chosen according to

θ(lc) =

{
(−1)lc CS phase convention ,

1 BR phase convention .
(13.58)

The phases have to do with the time-reversal properties of the single-particle
orbitals. The time-reversal operator T relates the orbitals α and −α according
to

T c†αT −1 = ζ(la)c̃†α . (13.59)

In the BCS ground state (13.1) the paired nucleons occupy time-reversed
orbitals as seen from the structure of the pair-creation operator (13.2). A
simple interpretation is that a nucleon in orbital α and another in −α revolve
along the same path in opposite directions. For more discussion about time-
reversal and other symmetries see, e.g. [12, 17].

The quantity Δb, introduced in (13.45) as an abbreviation for a certain
block of terms, is called the pairing gap, for reasons that become evident in
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Subsect. 13.4.1. We can derive an equation for determining the pairing gaps
Δb. The positive square root of (13.55) is

ucvc =
Δc

2Ec
. (13.60)

Substituting this into the expression for Δb in (13.45) gives the so-called gap
equation

2ĵbΔb = −
∑
a

ĵaΔa√
η2a +Δ2

a

〈a a ; 0|V |b b ; 0〉 . (13.61)

The conditions for a minimal value of H0 appear in the equations above.
Applying those equations, in particular (13.54), (13.56), (13.57) and (13.60),
to (13.46)–(13.48), we find

H0 = 1
2

∑
b

ĵb
2

Eb

[
(Eb − ηb)(ηb + 1

2μb)−
1
2Δ

2
b

]
, (13.62)

H11(b) = ĵbEb , (13.63)
H20(b) = 0 . (13.64)

The auxiliary Hamiltonian thus becomes

H = H0 +
∑
b

ĵbEb

[
a†bãb

]
00
+ VRES . (13.65)

Writing the middle term in uncoupled form as
∑

β Eba
†
βaβ makes clear the

interpretation of Eb as the quasiparticle energy.
According to the defining relation (13.42) the constant term H0 in the

original Hamiltonian (13.32) is

H0 = H0 + λ
∑
a

ĵb
2
v2b = H0 + λn̄ . (13.66)

Substituting for v2b from (13.56) and then using the last definition in (13.45)
we find

H0 = 1
2

∑
b

ĵb
2

Eb

[
(Eb − ηb)(εb − 1

2μb)−
1
2Δ

2
b

]
. (13.67)

Equations (13.56), (13.57) and (13.61) constitute what are known as the
BCS equations. Another popular way to derive these equations is to require the
‘bad term’ H20(b) to vanish, without resorting to a Rayleigh–Ritz variation
of the occupation amplitudes. Equation (13.64) shows that these two BCS
derivations are equivalent.
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The first two terms of the Hamiltonian (13.65) carry a large part of the
original residual interaction, i.e. the interaction remaining after the subtrac-
tion of the nuclear mean field. They describe non-interacting quasiparticles
with energies Eb. This approximation can be called the quasiparticle mean
field, in analogy to the Hartree–Fock mean field of non-interacting particles.
The residual interaction VRES in (13.65) is one between the quasiparticles. It
produces configuration mixing between many-quasiparticle states. Methods
to handle this mixing, such as the QTDA and the QRPA, will be discussed
later in this book.

13.4 Properties of the BCS Solutions

13.4.1 Physical Meaning of the Basic Parameters

In this subsection we address the physical interpretation of three key para-
meters of the BCS theory, namely the pairing gap, self-energy and chemical
potential.

Pairing Gap and Pairing Energy

The excited states of an even–even nucleus are created by breaking one or
more pairs in the superfluid ground state |BCS〉. The least energy is needed
to break just one pair. Then an extra energy equal to the binding energy of
the pair has to be supplied from the outside. The broken pair is interpreted
as two quasiparticles, referred to as a two-quasiparticle configuration or a
two-quasiparticle excitation. This excitation corresponds to a seniority v = 2
state of the seniority model, discussed in Subsect. 12.4.2. The energy needed
to break a pair is the excitation energy of the two-quasiparticle configuration.

The fact that the quasiparticle energies (13.57) satisfy

Ea =
√

η2a +Δ2
a ≥ Δa (13.68)

implies for the energies of two-quasiparticle excitations

E2qp ≥ 2Δsmallest . (13.69)

In the terminology introduced in Sect. 12.1 the quantities Δa are pairing gaps
while the quantities 2Δa are pairing energies. In Sect. 12.3 we treated two
particles in a single j shell and interacting through the pure pairing force.
According to (12.17) the pairs not coupled to angular momentum zero lie an
energy ΩG above the zero-coupled pair, where G is the pairing strength and
Ω = 1

2 (2j+1) is the degeneracy. We can thus identify the quasiparticle energy
with half the pairing energy, Ea = 1

2ΩaG.
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Self-energy

The quantity μa, defined in (13.45), is called the self-energy. It describes a
renormalization of the single-particle energy εa due to the fact that the energy
of a nucleon in orbital a gets additional contributions from its interactions with
the other nucleons.

Chemical Potential

The quantity λ is called the chemical potential. To study its meaning we write,
from (13.40) and (13.42),

H0 = 〈BCS|H|BCS〉 − λn . (13.70)

The number constraint in the variational problem means that the derivative of
H0 with respect to the particle number n has to vanish at the correct required
particle number n = n̄. Taking the derivative of (13.70) with respect to n and
setting it to zero yields

λ =
∂

∂n
〈BCS|H|BCS〉

∣∣∣
n=n̄

. (13.71)

According to this equation λ tells us how much the energy of the BCS ground
state grows when one particle is added to it. This is nothing but the standard
definition of chemical potential in statistical mechanics.

13.4.2 Particle Number and Its Fluctuations

The particle number and its fluctuations are important considerations in BCS
theory. This is due to the fact that good particle number was lost in the
Bogoliubov–Valatin transformation (13.10) replacing particles with quasipar-
ticles. Particle number issues are addressed in this subsection.

Number Constraint on the BCS Vacuum

The particle number constraint (13.37) led to the condition (13.39) on the
occupation probabilities v2a. Expressing the v2a through (13.56) gives

n̄ =
∑
a

ĵa
2
v2a =

1
2

∑
a

ĵa
2
(
1− ηa

Ea

)
, (13.72)

where n̄ is the number of protons or neutrons in the valence space adopted.
When solving the BCS problem, this equation and the BCS equations (13.56),
(13.57) and (13.61) have to be solved simultaneously. The solving tactics of
these equations are demonstrated in the following chapter.



www.manaraa.com

13.4 Properties of the BCS Solutions 405

Particle Number Fluctuations

Since the BCS ground state has only a correct average number of nucleons,
it contains a spread in particle number, for both protons and neutrons. This
uncertainty in the particle number shows up as particle number fluctuations.

A measure of the fluctuations is provided by the mean-square deviation
from the mean value n̄,

(Δn)2 ≡ 〈BCS|(n̂− n̄)2|BCS〉 = 〈BCS|n̂2|BCS〉 − n̄2 . (13.73)

Using (13.38) we can write

n̂|BCS〉 =
[∑

a

ĵa
2
v2a +

∑
α

uava(−1)ja−mαa†αa
†
−α

]
|BCS〉 . (13.74)

Multiplying this by the corresponding ket vector 〈BCS|n̂ gives

〈BCS|n̂2|BCS〉 =
∑
ab

ĵa
2
ĵb

2
v2av

2
b

+
∑
αβ

uavaubvb(−1)ja−mα+jb−mβ 〈BCS|a−αaαa†βa
†
−β |BCS〉

=
∑
ab

ĵa
2
ĵb

2
v2av

2
b + 2

∑
a

ĵa
2
u2av

2
a . (13.75)

The first term is recognized from (13.72) as n̄2, so the mean-square deviation
(13.73) becomes

(Δn)2 = 2
∑
a

ĵa
2
u2av

2
a =

1
2

∑
a

ĵa
2Δ2

a

E2
a

(13.76)

with (13.60) used in the last step. This deviation will be discussed in a trans-
parent way in the context of exactly solvable models in the next section.

Number Parity

The BCS states are not eigenstates of the number operator. However, the
ground state and the two-quasiparticle states contain even particle numbers
while the one-quasiparticle states contain odd particle numbers. According to
this evenness or oddness these states are said to have even or odd number
parity.

In general, excitations containing an even number of like quasiparticles also
contain an even number particles of that type. Hence, an excitation containing
even numbers of proton and neutron quasiparticles belongs to an even–even
nucleus. Excitations that contain an odd number of either proton or neutron
quasiparticles (not both) also contain an odd number of protons or neutrons
and thus belong to odd–even or even–odd nuclei. Finally, if an excitation
contains odd numbers of proton and neutron quasiparticles, it belongs to an
odd–odd nucleus.
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13.4.3 Odd–Even Effect

Consider an even–even nucleus with mass number A − 1 in its ground state
|BCS〉. According to (13.42) the energy of the state is 〈BCS|H|BCS〉 = H0.
Operating on |BCS〉 with the quasiparticle creation operator a†α results in
state |α = janalamα〉 of an odd-A nucleus with mass number A.1 What is the
energy of the state |α〉?

From (13.71) we can write

d〈BCS|H|BCS〉 = λdn . (13.77)

The change from A − 1 to A means dn = 1, and (13.77) gives the increment
to H0 as

d〈BCS|H|BCS〉 = λ . (13.78)

The energy of the mass-A nucleus in the state |α〉 contains additionally the
quasiparticle energy Ea, so it is

〈BCS|aαHa†α|BCS〉 = H0 + λ+ Ea . (13.79)

Equations (13.78) and (13.79) lead to relations for nuclear masses. When
A is odd we have

MA−1c2 = H0 , (13.80)

MAc2 = H0 + λ+Δ , (13.81)

MA+1c
2 = H0 + 2λ . (13.82)

Here Δ is the lowest quasiparticle energy, Δ ≡ min{Ea}. Equations (13.80)
and (13.82) give

1
2 (MA−1 +MA+1)c2 = H0 + λ . (13.83)

From (13.81) we then notice that

MA = 1
2 (MA−1 +MA+1) +Δ/c2 . (13.84)

This is exactly the same as the empirical relation (12.1). Hence the BCS theory
successfully reproduces the odd–even effect.

13.5 Solution of the BCS Equations for Simple Models

In this section we solve the BCS equations for a single j shell and for the
two-level Lipkin model. These simple examples reveal a great deal about the
properties of BCS solutions since exact solutions are available for comparison.

1 Because of the particle–hole symmetry of BCS quasiparticles the state |α〉 exists
equally in the adjacent nucleus with mass number A− 2.
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13.5.1 Single j Shell

Consider the case of just one j shell and take its energy as εj = 0. This
simplifies the BCS approach considerably. The results can be compared with
those of the seniority model if we use the pure pairing force as the source of
the pairing matrix elements. Equations (13.45) and (13.57) give now

Δ = −ujvj〈j2 ; 0|V |j2 ; 0〉 = −ujvjG0 , (13.85)

μ = −ĵ−2
∑
J

Ĵ 2v2j [Njj(J)]−2〈j2 ; J |V |j2 ; J〉

= −2ĵ−2v2j
∑

J=even

Ĵ 2GJ , (13.86)

η = −λ− μ , E =
√

η2 +Δ2 , (13.87)

where we have defined

GJ ≡ 〈j2 ; J |V |j2 ; J〉 . (13.88)

The gap equation (13.61) then yields, together with (13.87), for the quasipar-
ticle energy

E = − 1
2G0 . (13.89)

The particle number constraint (13.72) gives

n̄ = 1
2 ĵ

2
(
1− η

E

)
, (13.90)

whence
η =

(
1− 2n̄

2j + 1

)
E . (13.91)

With this η the occupation amplitudes (13.56) become

uj = θ(l)
√
1− n̄

2j + 1
, vj =

√
n̄

2j + 1
. (13.92)

Let us now specify the matrix elements (13.88) to be of the pure pairing
type as given by (12.11). Since the pure pairing force only affects J = 0 pairs,
we can write

GJ = − 1
2δJ0ĵ

2G , G > 0 . (13.93)

The quasiparticle energy (13.89) now becomes, in the notation of Chap. 12,

E = 1
2ΩG , Ω = 1

2 (2j + 1) . (13.94)

Denoting the number of quasiparticles by nqp we have the quasiparticle spec-
trum

E(nqp) = nqp × 1
2ΩG . (13.95)
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Let us compare this quasiparticle spectrum for an even–even nucleus with that
of the seniority model given by (12.43). Since the number of quasiparticles is
the number of valence particles not in pairs of zero angular momentum, we
identify nqp with the seniority v. Equation (12.43) then shows that the BCS
solution is exact for nqp = v = 2. For seniorities v ≥ 4 the relative deviation
from the exact solution is of the order of (v − 2)/2Ω. The deviation is the
smaller the larger is the j shell.

We proceed to calculate the ground-state energy H0 from (13.67) in the
pure pairing case. For that we need the quantities (13.85)–(13.87). Equations
(13.91)–(13.94) yield for them

Δ = θ(l)
√

n̄

2

(
Ω − n̄

2

)
G , (13.96)

μ =
n̄

2Ω
G , (13.97)

η = 1
2 (Ω − n̄)G , (13.98)

λ = −η − μ = 1
2

(
n̄−Ω − n̄

Ω

)
G . (13.99)

Substituting these into (13.67) gives

H0 = − 1
4Gn̄

(
2Ω − n̄+

n̄

Ω

)
. (13.100)

This BCS result is close to the exact solution (12.28) of the seniority model
when we identify the average particle number n̄ with the precise number N .
The expressions are identical except for the last term.

We finally calculate the mean-square deviation (13.76). With (13.94) and
(13.96) we obtain

(Δn)2 = 2n̄
(
1− n̄

2Ω

)
, (13.101)

whence ∣∣∣∣Δn

n̄

∣∣∣∣ �
√
2
n̄

. (13.102)

This indicates that the spread or fluctuation in particle number decreases with
increasing number of particles in the shell.

13.5.2 The Lipkin Model

In this subsection we discuss the BCS within the Lipkin model, which is a
special case of the general two-level model of Sect. 12.5. As in the previous
subsection, we use the pure pairing interaction. The Lipkin model has two j
shells with j1l1 = j2l2 = jl and energies ε1 = − 1

2ε and ε2 = 1
2ε. By definition

of the model, the average particle number is n̄ = 2Ω = 2j+1. Thus the ground
state of non-interacting particles has the lower j shell completely filled and the
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upper shell completely empty. Turning on the interaction will scatter particles
from the lower shell to the upper one. Hence the occupation numbers of the
shells depend on the strength of the interaction.

In the present case the relation (12.11) between the pairing matrix ele-
ments and the interaction strength of the pure pairing force becomes

〈a b ; 0|V |c d ; 0〉 = −ΩG , (13.103)

where a, b, c, d are any of the two orbitals 1, 2. From (13.45) we now obtain

Δ1 = Δ2 ≡ Δ = (u1v1 + u2v2)ΩG , (13.104)

μ1 = (v21 +
1
2v

2
2)G , μ2 = (12v

2
1 + v22)G , (13.105)

The gap equation (13.61) gives

2
ΩG

=
1
E1

+
1
E2

. (13.106)

The particle number constraint (13.72) yields for n̄ = 2Ω

n̄ = 2Ω(v21 + v22) = 2Ω , (13.107)

whence v21 + v22 = 1. The normalization condition (13.9) then implies that
v22 = u21 and v21 = u22. Assuming that l is even, so that according to (13.56)
the u coefficient is positive also in the CS phase convention, we have in either
phase convention

v2 = u1 , v1 = u2 . (13.108)

The result describes a mirror symmetry between the occupation and unoccu-
pation amplitudes of the upper and lower shells.

Next we set out to find the occupation amplitudes v1 and v2. Equation
(13.60) gives

u1v1 =
Δ

2E1
, u2v2 =

Δ

2E2
. (13.109)

Equation (13.108) implies that u1v1 = u2v2, so that E1 = E2 ≡ E. It follows
from (13.57) that η1 = ±η2. From (13.106) we now obtain

E = ΩG . (13.110)

The equations (13.56) together with (13.108) give

v1 =
1√
2

√
1− η1

E
= u2 =

1√
2

√
1 +

η2
E

, (13.111)

which implies η1 = −η2. Using the definition of ηb in (13.45) and the relations
(13.105) and (13.107) we obtain for the chemical potential the expression

λ = −1
2 (μ1 + μ2) = − 3

4G . (13.112)
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Substituting into the definition of η1 from (13.112) and from (13.105) and
(13.107) gives the expression

η1 = − 1
2ε+

3
4G−

1
2 (1 + v21)G . (13.113)

The last term contains the unknown η1 through (13.111). Making the substi-
tution, using (13.110) and solving for η1 we find

η1 = −
2Ωε

4Ω − 1 = −η2 ≡ −η . (13.114)

From (13.111) we finally obtain the desired occupation amplitudes

v1 =
1√
2

√
1 +

2ε
(4Ω − 1)G = u2 , (13.115)

u1 =
1√
2

√
1− 2ε

(4Ω − 1)G = v2 . (13.116)

Having found the occupation amplitudes we can readily write down final
forms for the pairing gap (13.104) and the self-energies (13.105):

Δ =

√
Ω2G2 −

( 2Ωε

4Ω − 1

)2
, (13.117)

μ1 = 1
2 (1 + v21)G , μ2 = 1

2 (1 + v22)G . (13.118)

For the ground-state energy (13.67), we obtain

H0 =
Ω

E

[
(E + η)(−1

2ε−
1
2μ1) + (E − η)(12ε−

1
2μ2)−Δ2

]
=
1
G

[
− 3

4ΩG2 − 1
2εη

8Ω − 1
4Ω − 1 −Ω2G2 +

( 2Ωε

4Ω − 1

)2]
. (13.119)

From (13.117) we notice that there exists a pairing gap only if the expres-
sion under the square root is positive, which occurs for

G >
2ε

4Ω − 1 ≡ Gcrit , (13.120)

the critical strength. This is interpreted to mean that there is no BCS solution
when the condition is not satisfied. For G ≤ Gcrit the pairing gap vanishes
and the occupation amplitudes attain the trivial values 1 or 0. In this case
the BCS ground state |BCS〉 reduces to the particle–hole vacuum |HF〉.

The present results for the pairing gap, occupation amplitudes and ground-
state energy assume remarkably simple forms when we define

x ≡ 4Ω − 1
2

G

ε
. (13.121)
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In terms of x we have

Δ = ΩG

√
1− 1

x2
, (13.122)

v1 =
1√
2

√
1 +

1
x

, v2 =
1√
2

√
1− 1

x
, (13.123)

H0 = − 1
2Ωε

(4Ω + 3
4Ω − 1x+

1
x

)
. (13.124)

In the following example we discuss the physical contents of these expressions
through comparison with exact results of the Lipkin model of Sect. 12.5.

13.5.3 Example: The Lipkin Model for Two j = 7
2
Shells

As an illustrative application of the BCS formalism we discuss here the Lipkin
model with two j = 7

2 shells. In this case Ω = 4 and n̄ = 8. To begin with, we
plot in Fig. 13.1 the quantity Δ/G as given by (13.122), with the parameter
x defined in (13.121). The figure shows that there exists a pairing gap only
for x > 1, which corresponds to the criterion (13.120). At the critical strength
Gcrit the pairing gap vanishes and the BCS theory breaks down, producing
the trivial values 0 or 1 for the occupation amplitudes. The critical strength
is proportional to the width ε of the gap between the two j shells: the wider
the gap, the larger the value of Gcrit required for a BCS solution. At large
values of x ∝ G/ε the gap is seen to saturate to the value ΩG = 4G.

The occupation amplitudes v1 and v2 given in (13.123) are shown in
Fig. 13.2, together with the results of an exact solution of the Lipkin model.

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

4

x

Δ /G

Fig. 13.1. The quantity Δ/G plotted as a function of the parameter x, defined in
(13.121), for the Lipkin model with two j = 7

2
shells
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Fig. 13.2. The occupation amplitudes v1 and v2 of the lower and upper j shells
of the Lipkin model for the j = 7

2
case as functions of the parameter x defined in

(13.121). The BCS results (13.123) are compared with the exact solutions (13.125)
and (13.126)

These exact amplitudes can be obtained from the definition of the occupation
amplitudes for a general two-level model :

v21 =
1

2Ωj1

〈0+gs|n̂j1 |0+gs〉 =
1

Ωj1

∑
m

(N −m)
(
X(gs)

m

)2
, (13.125)

v22 =
1

2Ωj2

〈0+gs|n̂j2 |0+gs〉 =
1

Ωj2

∑
m

m
(
X(gs)

m

)2
. (13.126)

These expressions are obtained by using the ground-state wave function
(12.77) of the two-level model. The label m denotes the number of nucleon
pairs occupying the upper shell and N −m denotes those in the lower shell.
The amplitudes X

(gs)
m for the wave function |0+gs〉 are obtained by diagonaliz-

ing the pairing Hamiltonian in the basis (12.76). Figure 13.2 shows that where
the BCS solutions exist, i.e. for x > 1, they are close to the exact ones.

Figure 13.3 shows the BCS ground-state energy (13.124) as a function of x.
Comparison with the exact result indicates that the BCS is able to reproduce
the ground-state energy very well. The BCS energy lies somewhat above the
exact result because the ansatz for the BCS ground state does not contain
enough degrees of freedom to allow the variation to reach the exact solution.

13.5.4 The Two-Level Model for Two j = 7
2
Shells

The comparison between the BCS approach and the exact solution can be
extended to the general two-level model. This is done in Chap. 14, which
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Fig. 13.3. The BCS ground-state energy (13.124) and the exact result for the j = 7
2

Lipkin model plotted as functions of the parameter x defined in (13.121). In this
plot we have taken ε = 7.5MeV, which leads to the simple relation x = G [MeV]

presents the BCS solution for the general case of many j shells. In anticipation,
we discuss here the case of two j = 7

2 shells with the number of particles n̄ = 2–
14. The occupation amplitudes are quoted in Table 13.1 for two different ratios
ε/G. The ratio represents the ability of the interaction to scatter particles
from the lower level to the higher one: the smaller the ratio the greater the
scattering. The table shows excellent agreement between the BCS solutions
and the exact ones.

Table 13.1. Exact and BCS occupation amplitudes v1 and v2 for n̄ particles occu-
pying two j = 7

2
shells an energy ε apart

ε

G
= 1.0

ε

G
= 6.0

Exact BCS Exact BCS

n̄ v1 v2 v1 v2 λ (MeV) v1 v2 v1 v2 λ (MeV)

2 0.394 0.308 0.391 0.312 −3.177 0.479 0.145 0.479 0.144 −4.672
4 0.550 0.444 0.547 0.449 −2.288 0.676 0.206 0.677 0.203 −3.674
6 0.665 0.555 0.661 0.559 −1.395 0.828 0.254 0.830 0.246 −2.524
8 0.756 0.655 0.753 0.658 −0.500 0.957 0.291 0.949 0.316 −0.500
10 0.832 0.747 0.829 0.750 0.395 0.967 0.561 0.969 0.557 1.524
12 0.896 0.835 0.894 0.837 1.288 0.979 0.737 0.979 0.736 2.674
14 0.952 0.919 0.950 0.921 2.177 0.989 0.878 0.990 0.878 3.672

The results are given for two interaction strengths, stated as the ratio of ε to
pairing strength G. Also the chemical potential λ is given.
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Table 13.1 also gives the chemical potential λ as a function of the number
of particles in the valence space. The table demonstrates that λ grows from
negative to zero to positive as the two-level space is being filled. This means
that in the beginning the ground-state energy becomes more negative when a
pair of particles is added to the system, i.e. the system becomes more bound
when adding particle pairs. Once the space is more than half full, λ is positive,
so adding more particle pairs reduces the total binding energy although the
interactions are attractive.

The behaviour of the chemical potential can be understood in terms of
the Pauli principle. As a result of their interaction, particles will scatter into
available states. The more particles in the valence space, the fewer available
states. Hence the normal attractive interactions are increasingly frustrated as
the space fills.

The evolution of the chemical potential can also be seen in a single j shell.
Equation (13.99) gives values of λ from −1

2ΩG to 1
2 (Ω − 2)G, with zero at

n̄ = Ω2/(Ω − 1). The ground-state energy (13.100) has its minimum at this
point. The same feature shows up in the exact solution of the single-j case,
namely in the seniority model of Sect. 12.4. Equation (12.28) for the ground-
state energy has its minimum at N = Ω + 1.

We have seen that our simple solvable models exhibit striking features of
many-fermion systems. In particular, these models demonstrate the competi-
tion between the attractive two-nucleon interaction and the effective repulsion
caused by the Pauli principle. The relation of the chemical potential to the
total binding energy of the system is further discussed in Sect. 14.2, where
the Lipkin–Nogami pairing theory is introduced.

Epilogue

In this chapter we have encountered a quasiparticle in the true meaning of the
word. The BCS quasiparticles emerge from the Bogoliubov–Valatin transfor-
mation and they can be viewed as being partly particles, partly holes. This
interesting property of theirs makes the notion of a precise particle number
disappear for a quasiparticle theory of the nucleus. Consequences of this were
seen and will be seen in the computed wave functions of the ground and ex-
cited states of nuclei. Theories based on quasiparticles and their configuration
mixing will be developed further in the following chapters.

Exercises

13.1. Derive the normalization condition (13.8).

13.2. Derive the transformation equations (13.12).

13.3. Derive the anticommutation relations (13.14).
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13.4. Verify the relations (13.15).

13.5. Derive the contractions (13.18)–(13.20).

13.6. Starting from (8.17) show that

v̄−α,−β,−γ,−δ = (−1)ja+jb+jc+jd v̄αβγδ

= (−1)ja−mα+jb−mβ+jc−mγ+jd−mδ v̄αβγδ . (13.127)

13.7. Derive the relations (13.24) and (13.29).

13.8. Derive the quasiparticle representation (13.30) of the one-body part of
the nuclear Hamiltonian.

13.9. Complete the details leading to the representation (13.32) of the nuclear
Hamiltonian.

13.10. Derive the expressions (13.56) of the BCS occupation amplitudes by
starting from (13.9) and (13.55).

13.11. Complete the details of the derivation of the ground-state expectation
value (13.75).

13.12. Apply the calculations of Subsect. 13.5.1 to the case j = 7
2 and ε7/2 =

0. Use the pure pairing force with G = 1.0MeV.

13.13. Plot the BCS ground-state energy of Exercise 13.12 as a function of
the mean particle number n̄ and compare with the corresponding plot of the
seniority model.

13.14. Consider the j = 9
2 case of the single j-shell model of Subsect. 13.5.1

for ε9/2 = 0. Use the pure pairing force with G = 1.0MeV. Plot the BCS
ground-state energy as a function of the mean particle number n̄ and compare
with the corresponding plot of the seniority model.

13.15. Derive the expression (13.114) for η1.

13.16. Plot the pairing gap Δ as a function of the interaction strength G
of the pure pairing force for the j = 13

2 Lipkin model with a single-particle
energy gap of ε = 5.0MeV.

13.17. Consider the j = 1
2 Lipkin model with ε = 1.0MeV. Plot the ground-

state energy as a function of the interaction strength G for the BCS solution
and the exact one.

13.18. Consider the BCS approach within the Lipkin model for two j orbitals
in the case of a general two-body interaction. Let

A ≡
∑
J

Ĵ 2〈j2 ; J |V |j2 ; J〉 , B ≡ 2
∑

J=even

Ĵ 2〈j2 ; J |V |j2 ; J〉 . (13.128)

Calculate the BCS quantities Δ, λ, v1 and v2 as functions of A and B.

13.19. Take j = 7
2 in Exercise 13.18 and calculate numerical values for the

quantities Δ, λ, v1 and v2 using the SDI with strength A1 = 1.0MeV.
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Quasiparticle Mean Field: BCS and Beyond

Prologue

In the previous two chapters we have laid the foundation for the BCS theory
to describe open-shell nuclei. The properties of BCS solutions were compared
with exact results from schematic solvable models. In this chapter we go into
the details of numerical solution of the BCS equations. The implications of
these solutions are discussed through applications to ds- and pf-shell nuclei.

Later in the chapter we introduce an improved version of BCS theory,
namely the Lipkin–Nogami BCS (LNBCS) approach. We discuss the proper-
ties of the solutions of this theoretical approach and compare them with the
results of plain BCS theory. Especially illuminating are the analyses performed
within frameworks of exactly solvable models.

14.1 Numerical Solution of the BCS Equations

The BCS equations were derived in Sect. 13.3 and their solutions were devised
for some schematic models in Sect. 13.5. We now set out to find a general
solution. Specifically, the equations to be solved simultaneously are the BCS
equations (13.56), (13.57) and (13.61), and the particle number condition
(13.72). Collected together, the equations are
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ua = θ(la)
1√
2

√
1 +

ηa
Ea

and

va =
1√
2

√
1− ηa

Ea
(occupation amplitudes) ,

Ea =
√

η2a +Δ2
a (quasiparticle energy) ,

2ĵaΔa = −
∑
b

ĵbΔb√
η2b +Δ2

b

〈a a ; 0|V |b b ; 0〉 (gap equation) ,

n̄ =
∑
a

ĵa
2
v2a =

1
2

∑
a

ĵa
2
(
1− ηa

Ea

)
(particle number) .

(14.1)

These equations crystallize the information contained in the BCS framework.
They must be solved numerically, which requires iterative methods. A suitable
method is presented below.

14.1.1 Iterative Numerical Procedure

Equations (14.1) can be solved iteratively. We give the pairing gap and chem-
ical potential initial, guessed values Δ = Δ0 and λ = λ0. From these values
we calculate the other relevant quantities by using the BCS equations (13.56)
and (13.57) plus those in (14.1) and the relations (13.45). The calculated
quantities serve to define new values for Δ and λ which, in turn, are used to
generate new values for the relevant BCS quantities. This loop of computation
continues until convergence is reached.

A flow chart of the computation is shown below. It contains the auxiliary
quantities

S ≡ 1
2

∑
a

ĵa
2
(
1− εa − μa

Ea

)
, R ≡ 1

2

∑
a

ĵa
2

Ea
(14.2)

used to express λ as (Exercise 14.1)

λ =
n̄− S

R
. (14.3)

Convergence is judged in terms of a chosen small number ε for the difference
between the computed particle number and the required number n̄. The flow
chart is as follows:

Set Δ = Δ0 , λ = λ0 (14.4)

⇓

E(0)
a =

√
(εa − λ0)2 +Δ2

0

u(0)a = θ(la)
1√
2

√
1 +

εa − λ0

E
(0)
a

, v(0)a =
√
1−

(
u
(0)
a

)2 (14.5)
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⇓

Δ(0)
a = −ĵa

−1 ∑
b

ĵbu
(0)
b v

(0)
b 〈a a ; 0|V |b b ; 0〉

μ(0)
a = −ĵa

−2 ∑
b

(
v
(0)
b

)2 ∑
J

Ĵ 2[Nab(J)]−2〈a b ; J |V |a b ; J〉

η(0)a = εa − λ0 − μ(0)
a

(14.6)

⇓

E(1)
a =

√(
η
(0)
a

)2 + (
Δ

(0)
a

)2
u(1)a = θ(la)

1√
2

√
1 +

η
(0)
a

E
(1)
a

, v(1)a =
√
1−

(
u
(1)
a

)2
n(1) =

∑
a

ĵa
2(

v(1)a

)2
λ(1) =

n̄− S

R
where Ea = E(1)

a , μa = μ(0)
a

(14.7)

⇓

δn = n̄− n(1) (14.8)

⇓

If |δn| ≤ ε calculation finished

If |δn| > ε then u(0)a → u(1)a , v(0)a → v(1)a , λ0 → λ1 = λ(1) + δλ

Go to (14.6)

(14.9)

Note that in (14.7) we use the desired value n̄ of the average particle
number rather than the approximation n(1) in the evaluation of λ(1). This
increases the stability of convergence.

The increment δλ in (14.9) can be computed from the change δn given in
(14.8). For the link between δλ and δn we can write

δλ = κδn . (14.10)

The proportionality factor κ can be obtained by differentiation (Exercise 14.2):

κ−1 =
∂n

∂λ
=

∑
a

∂n

∂ηa

∂ηa
∂λ

= 1
2

∑
a

ĵa
2Δ2

a

E3
a

. (14.11)

Alternatively κ can be taken simply as an arbitrary energy of the order of
0.1MeV.
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The numerical examples of the following subsection show that for the
particular case of the SDI all the self-energies μa are degenerate at μa ≡ μ.
Then the pairing gaps Δa, the quasiparticle energies Ea and the occupation
amplitudes ua and va are independent of the self-energy μ; only the chemical
potential λ depends on it. Therefore, for the SDI the physics of the problem
is not affected by setting μa = 0 at every iteration step. This improves the
convergence of the procedure sketched in the flow chart (14.4)–(14.9). For a
realistic interaction no such simplification occurs.

14.1.2 Application to Nuclei in the d-s and f-p-0g9/2 Shells

To illustrate the numerical method we have carried out BCS calculations for
nuclei in the d-s and f-p-0g9/2 shells. The results are stated in Tables 14.1–
14.3. The calculations cover the entire d-s shell and the upper two-thirds of
the f-p-0g9/2 shell; the first-third was omitted for lack of experimental data.
The calculations were done with two-body matrix elements from the SDI with
strength A1 = 1.0MeV. In the d-s shell we used the single-particle energies

ε0d5/2 = 0 , ε1s1/2 = 0.87MeV , ε0d3/2 = 5.08MeV (14.12)

for both protons and neutrons. In the f-p shell we used the energies

ε0f7/2 = 0 , ε1p3/2 = 4.80MeV , ε1p1/2 = 6.82MeV ,

ε0f5/2 = 8.40MeV , ε0g9/2 = 8.80MeV (14.13)

for both protons and neutrons. The energies (14.12) and (14.13) are somewhat
different from those in Fig. 9.2; the inclusion of the 0g9/2 orbital constitutes
a qualitative difference.

Quasiparticle Energies and the Effective Fermi Surface

Tables 14.1–14.3 include the computed occupation probabilities v2a and quasi-
particle energies Ea for the orbitals a of each valence space, and the chemical
potential λ, the energy gap Δ and the self-energy μ. Since the single-particle
energies are the same for protons and neutrons the results are the same for
both types of nucleon.

Note the absence of the orbital index a on Δ and μ. Like the pure pair-
ing force, the SDI produces the same pairing gap and self-energy for all the
orbitals. This is not the case for a general nucleon–nucleon interaction; for
a realistic two-body force each level has its own pairing gap and self-energy.
The last row of each table gives the chemical potential for the case where the
self-energy is set equal to zero: λ+ μ = λ(μ = 0).

In the d-s valence space of Table 14.1 the l quantum numbers are even
(l = 2, 0), so in both the CS and the BR phase conventions the amplitudes ua
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Table 14.1. BCS occupation probabilities v2a, quasiparticle energies Ea, chemical
potential λ, pairing gap Δ and self-energy μ for different particle numbers n̄ in the
d-s shell

Quantity n̄ = 2 n̄ = 4 n̄ = 6 n̄ = 8 n̄ = 10

v20d5/2 0.2661 0.5183 0.7504 0.9477 0.9780

v21s1/2 0.1527 0.3457 0.5993 0.9133 0.9692

v20d3/2 0.0245 0.0497 0.0748 0.1217 0.5485

E0d5/2 (MeV) 2.257 2.411 2.674 3.602 5.478

E1s1/2 (MeV) 2.772 2.533 2.362 2.849 4.654

E0d3/2 (MeV) 6.451 5.543 4.399 2.451 1.616

λ (MeV) −2.056 −1.912 −1.661 −0.775 0.237
Δ (MeV) 1.995 2.409 2.315 1.603 1.609
μ (MeV)a 1.000 2.000 3.000 4.000 5.000

λ(μ = 0) (MeV) −1.056 0.088 1.339 3.225 5.237

The last line gives the chemical potential calculated with zero self-
energy. The calculation used the single-particle energies (14.12)
and the SDI with A1 = 1.0MeV.
a The round numbers follow merely from A1 = 1.0MeV.

Table 14.2. BCS occupation probabilities v2a, quasiparticle energies Ea, chemical
potential λ, pairing gap Δ and self-energy μ for different particle numbers n̄ in the
f-p-0g9/2 shell

Quantity n̄ = 10 n̄ = 12 n̄ = 14 n̄ = 16 n̄ = 18

v20f7/2 0.7117 0.7719 0.8163 0.8511 0.8800

v21p3/2 0.3462 0.4499 0.5461 0.6312 0.7052

v21p1/2 0.2258 0.3080 0.3962 0.4856 0.5729

v20f5/2 0.1622 0.2239 0.2946 0.3724 0.4554

v20g9/2 0.1497 0.2066 0.2725 0.3461 0.4261

E0f7/2 (MeV) 6.702 7.638 8.558 9.436 10.267

E1p3/2 (MeV) 6.380 6.442 6.656 6.961 7.318

E1p1/2 (MeV) 7.261 6.942 6.775 6.720 6.745

E0f5/2 (MeV) 8.234 7.688 7.269 6.948 6.700

E0g9/2 (MeV) 8.509 7.916 7.443 7.060 6.747

λ (MeV) −2.162 −1.846 −1.586 −1.374 −1.197
|Δ| (MeV) 6.071 6.410 6.628 6.717 6.673
μ (MeV) 5.000 6.000 7.000 8.000 9.000

λ(μ = 0) (MeV) 2.838 4.154 5.414 6.626 7.803

The last line gives the chemical potential calculated with zero self-
energy. The calculation used the single-particle energies (14.13)
and the SDI with A1 = 1.0MeV.
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Table 14.3. Continuation of Table 14.2 for particle numbers n = 20–28

Quantity n̄ = 20 n̄ = 22 n̄ = 24 n̄ = 26 n̄ = 28

v20f7/2 0.9049 0.9271 0.9473 0.9660 0.9835

v21p3/2 0.7696 0.8261 0.8762 0.9214 0.9624

v21p1/2 0.6561 0.7345 0.8078 0.8762 0.9402

v20f5/2 0.5423 0.6319 0.7230 0.8152 0.9076

v20g9/2 0.5116 0.6019 0.6963 0.7943 0.8957

E0f7/2 (MeV) 11.053 11.797 12.504 13.177 13.820

E1p3/2 (MeV) 7.699 8.092 8.485 8.876 9.260

E1p1/2 (MeV) 6.826 6.945 7.091 7.255 7.432

E0f5/2 (MeV) 6.508 6.359 6.244 6.155 6.087

E0g9/2 (MeV) 6.486 6.266 6.076 5.911 5.766

λ (MeV) −1.049 −0.923 −0.815 −0.720 −0.637
|Δ| (MeV) 6.485 6.134 5.588 4.778 3.525
μ (MeV) 10.000 11.000 12.000 13.000 14.000

λ(μ = 0) (MeV) 8.951 10.077 11.185 12.280 13.363

are positive according to (13.56). Because of the relation (13.60) the pairing
gap Δ is then also positive.

In the f-p-g9/2 valence space of Tables 14.2 and 14.3 we have both odd and
even l values. For the former (l = 3, 1) the ua amplitudes are negative in the
CS phase convention, while for the ‘intruder’ orbital 0g9/2 (l = 4) they are
positive. Accordingly, Δ is negative for the f-p orbitals and positive for the
0g9/2 orbital with CS phases. With BR phases Δ is always positive. To avoid
any phase confusion we record |Δ| in Tables 14.2 and 14.3.

Tables 14.1–14.3 display the obvious result that the occupation probabil-
ities increase with increasing number of valence particles. At the same time
the chemical potential λ rises monotonically as more particles are added to
the valence space. As discussed in Subsect. 13.5.4, the increase in the chemi-
cal potential reflects the Pauli principle: the fuller the valence space, the less
ground-state binding energy is gained by adding a couple of paired nucleons.

The magnitude of the pairing gap Δ attains its maximum value when half
of the valence space is occupied. This is the behaviour already encountered
in the single-j-shell model and the Lipkin model in Sect. 13.5. The Pauli
principle hinders the increase in stability of the BCS ground state beyond the
middle of the shell.

For a clear illustration of the trends of the quasiparticle energies with
increasing number Nact of valence particles we have plotted the quasiparticle
energies of Tables 14.1–14.3 in Figs. 14.1 and 14.2. The results are the same
for protons and neutrons due to the same single-particle energies used.

In the d-s shell the 0d3/2 quasiparticle energy drops with increasing number
of valence particles while the 0d5/2 and 1s1/2 energies increase. This can be
understood from the expression (13.57) for the quasiparticle energy. For the
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SDI the pairing gap is common to all the orbitals, so the ordering of the
quasiparticle energies Ea is determined solely by the parameter ηa. Equation
(13.45) shows that the smaller is ηa the closer the single-particle energy is to
the effective Fermi level λ(μ = 0). Table 14.1 shows that λ(μ = 0) is close to
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the 0d5/2 and 1s1/2 orbitals in the beginning of the d-s space and close to the
0d3/2 orbital at the end of it.

Quasiparticle energies behave similarly in the f-p-0g9/2 valence space, as
shown by Tables 14.2 and 14.3 and Fig. 14.2. This behaviour is a general fea-
ture of BCS theory, independent of the particular valence space and two-body
interaction. In short, quasiparticle energies Ea are governed by the differences
εa − λ(μa = 0).

Quasiparticle Spectra

A BCS calculation is always done for an even–even nucleus, which we call the
reference nucleus. The calculation concerns only one kind of nucleon, with no
regard to the other kind.1 Let the reference nucleus have Z protons and N
neutrons. The BCS calculation creates the ground state |BCS〉 of the refer-
ence nucleus and a set of quasiparticle creation operators a†α. Suppose that
the calculation was done for protons, so we have proton quasiparticles. Then
the results provide the quasiparticle energies Ea for all nuclei, within the va-
lence space of the reference nucleus, with Z ± 1 protons and N,N ± 2, . . .
neutrons. The relative energies of the quasiparticles constitute the same low-
energy spectrum for all such nuclei. The interpretation of neutron quasiparti-
cles is analogous.

The relative energies of quasiparticles change with the number of particles
in the valence space, as is clearly seen from Figs. 14.1 and 14.2. Comparison
of quasiparticle spectra with experiment is shown in Figs. 14.3 and 14.4 for
the d-s shell and in Figs. 14.5–14.7 for the f-p-0g9/2 shell. Note that the
calculated proton and neutron quasiparticle spectra are the same due to the
assumed identical single-particle energies. However, the experimental proton
and neutron single-particle energies differ due to Coulomb effects, increasingly
with increasing A. Even the proton and neutron valence spaces can become
different, which results in dissimilar quasiproton and quasineutron spectra.

In Figs. 14.3 and 14.4 we can follow the change of the ground state of the
odd-A system as a function of the number of valence particles in the d-s shell.
For Nact = 2 the ground state is 0d5/2. This agrees with the experimental
ground state of 19

8O11, but there is no agreement for the other two states.
For Nact = 4 the BCS quasiparticle spectrum qualitatively reproduces the
experimental spectra of 25

12Mg13 and
25
13Al12. For Nact = 6 the ground state

comes out as 1s1/2, in agreement with the spectra of 29
14Si15 and

29
15P14. The

other two states come out wrong.
The failure of the BCS calculations to predict the higher states can stem

from the interaction type and strength or from the chosen single-particle ener-
gies (the Hartree–Fock single-particle field depends on the proton and neutron

1 However, in a case like the present where the single-particle energies and two-
body interactions are the same for protons and neutrons, the same calculation
applies to either kind.
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numbers). Yet another possible reason is that three-quasiparticle components
may mix into the one-quasiparticle states.

Figure 14.4 shows that for Nact = 8 the 0d3/2 quasiparticle has the low-
est energy. The calculated spectrum agrees even semi-quantitatively with the
experimental spectra of 33

16S17 and
33
17Cl16. Finally, the Nact = 10 case is in

qualitative agreement with the spectra of 3718Ar19 and
37
19K18.

Figures 14.5–14.7 show the quasiparticle spectra of the f-p-0g9/2 shell nu-
clei. The orbital 1p3/2 has the lowest quasiparticle energy for Nact = 10–14.
The nuclei in Fig. 14.5 have a 3/2− state as the ground state or a low-lying ex-
cited state. Where known, the order of the 0f quasiparticle states is reversed
from that predicted. The observed 9/2+ states are well reproduced by the
0g9/2 quasiparticle. A one-to-one correspondence can be assigned between all
the experimental levels of 5524Cr31 and

59
26Fe33 and the BCS levels.

For Nact = 16 the 1p1/2 quasiparticle energy becomes the lowest one. The
corresponding state is the first excited state in 65

28Ni37 and
69
32Ge37 at very low

excitation. In the experimental spectra the 5/2− state has become the ground
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state, so the two lowest BCS states have reversed their order relative to the
experimental spectrum.

For the Nact = 18 case the lowest quasiparticle is 0f5/2, with 1p1/2 and
0g9/2 nearly degenerate with it. Small perturbations to the single-particle
energies or the interaction could cause the computed spectrum to correspond
to the experimental sequence of energies in 69

30Zn39 and
71
32Ge39.

Finally, for Nact = 20–28, the 0g9/2 quasiparticle lies the lowest. As shown
in Fig. 14.6, in the Nact = 20 case this is borne out by 73

32Ge41 and nearly so
by 71

30Zn41. Also the other levels of
73Ge correspond rather well to the calcu-

lated quasiparticle energies. For Nact = 26 in Fig. 14.7, the BCS calculation
correctly predicts the ground states of 8336Kr47 and

85
38Sr47.

In conclusion of this section we recall that all our quasiparticle calculations
used the same single-particle energies (14.12) and (14.13) and the same SDI
strength A1 = 1.0MeV. Fine-tuning the single-particle energies and the SDI
strength when progressing along the mass scale would surely improve the
correspondence between the quasiparticle spectra and the experimental ones.
It is also a fact that the low-energy spectra of the nuclei discussed can be
contaminated by contributions from three-quasiparticle and higher degrees of
freedom.

14.2 Lipkin–Nogami BCS Theory

In Subsect. 13.5.2 we discovered that there exists a critical value Gcrit below
which the interaction strength G of the pure pairing force is not large enough
to support a BCS solution. Then the pairing gap collapses and the sharp
Fermi surface of the particle–hole vacuum is recovered. This happens when
the interaction strength is small relative to the average spacing of the single-
particle levels around the Fermi surface.

It was seen in connection with the Lipkin model in Subsect. 13.5.2 that
the exact solutions do not display this critical behaviour. Instead, they behave
smoothly as G → 0, as shown in Fig. 13.2. It turns out that the critical
behaviour of the BCS solution can be cured by resorting to an improved
model Hamiltonian within the so-called LN BCS approach.

14.2.1 The Lipkin–Nogami Model Hamiltonian

The unwanted critical behaviour of the BCS solutions derives from the nucleon
number fluctuations caused by the ground-state ansatz (13.1) of standard BCS
theory. These fluctuations can be reduced by replacing the BCS auxiliary
Hamiltonian (13.40)

HBCS = H − λn̂ (14.14)

by the Lipkin–Nogami auxiliary Hamiltonian
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HLNBCS = H − λ1n̂− λ2n̂
2 . (14.15)

The Hamiltonian (14.15) was first suggested by Lipkin [74] and Nogami [75]
in the early 1960s. The variation is now applied to minimize the ground-state
energy in the trial form

ELN
0 = 〈LNBCS|H|LNBCS〉 − λ1〈LNBCS|n̂− n̄|LNBCS〉

− λ2〈LNBCS|n̂2 − n̄2|LNBCS〉
= 〈LNBCS|HLNBCS|LNBCS〉+ λ1n̄+ λ2n̄

2 , (14.16)

where n̄ is the average particle number according to

n̄ = 〈LNBCS|n̂|LNBCS〉 . (14.17)

The state |LNBCS〉 is the vacuum of the Lipkin–Nogami quasiparticles that
are assumed to have the Bogoliubov–Valatin form contained in (13.10). The
λ2 term serves to reduce the width of the nucleon number distribution in the
quasiparticle vacuum. This makes the Lipkin–Nogami extension more accurate
than plain BCS theory. Note that for λ2 = 0 the energy ELN

0 above coincides
with the energy H0 in (13.66). For more information on the original work
see [76,77].

To proceed with the new Hamiltonian (14.15) we will express the square
of the number operator n̂ in terms of uncoupled quasiparticle operators. To
that end we rewrite (13.38) in the uncoupled form

n̂ =
∑
a

ĵa
2
v2a +

∑
α

(u2a − v2a)a
†
αaα −

∑
α

uava(a†αã
†
α + ãαaα) . (14.18)

From this we see that only the constant term of n̂ contributes to (14.17), with
the result

n̄ =
∑
a

ĵa
2
v2a . (14.19)

This is the same as the BCS result (13.39).
The square of the number operator (14.18) consists of terms of the form

n̂2 = (n̂2)00 + (n̂2)11 + (n̂2)20 + (n̂2)40 + (n̂2)31 + (n̂2)22 , (14.20)

where the subscripts indicate the numbers of creation and annihilation oper-
ators commuted to normal order. Evaluated, the terms are

(n̂2)00 =
(∑

a

ĵa
2
v2a

)2
+ 2

∑
a

ĵa
2
u2av

2
a , (14.21)

(n̂2)11 =
∑
α

[(
2
∑
b

ĵb
2
v2b + u2a − v2a

)
(u2a − v2a)− 4u2av2a

]
a†αaα , (14.22)
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(n̂2)20 = −2
∑
α

(∑
b

ĵb
2
v2b + u2a − v2a

)
uava(a†αã

†
α + ãαaα) , (14.23)

(n̂2)40 =
∑
αβ

uavaubvb(a†αã
†
αa
†
β ã
†
β + ãβaβ ãαaα) , (14.24)

(n̂2)31 = −2
∑
αβ

(u2a − v2a)ubvb(a
†
β ã
†
βa
†
αaα + a†αaαãβaβ) , (14.25)

(n̂2)22 = 2
∑
αβ

uavaubvba
†
αã
†
αãβaβ −

∑
αβ

(u2a − v2a)(u
2
b − v2b )a

†
αa
†
βaαaβ .

(14.26)

We set out to calculate the vacuum expectation value of the auxiliary
Hamiltonian (14.15), i.e. evaluate the expression

HLN
0 ≡ 〈LNBCS|HLNBCS|LNBCS〉 = 〈LNBCS|H|LNBCS〉

− λ1〈LNBCS|n̂|LNBCS〉 − λ2〈LNBCS|n̂2|LNBCS〉 . (14.27)

With use of (13.43) this becomes

HLN
0 =

∑
a

(εa − λ1)ĵa
2
v2a +

1
2

∑
abJ

v2av
2
b Ĵ

2[Nab(J)]−2〈a b ; J |V |a b ; J〉

+ 1
2

∑
ab

ĵaĵbuavaubvb〈a a ; 0|V |b b ; 0〉

− λ2

(∑
a

ĵa
2
v2a

)2
− 2λ2

∑
a

ĵa
2
u2av

2
a . (14.28)

The BCS quantities Δa, μa and ηa are defined by Eq. (13.45). We can recog-
nize them among the terms of (14.28). Note, however, that due to the role
played by λ2 in Lipkin–Nogami theory, the LNBCS parameter λ1 is not the
same as the BCS parameter λ. Thus, keeping in mind that the LNBCS quan-
tities of BCS form relate to λ1(	= λ), we write (14.28) as

HLN
0 =

∑
a

(ηa + μa)ĵa
2
v2a − 1

2

∑
a

ĵa
2
v2aμa − 1

2

∑
a

ĵa
2
uavaΔa

− λ2
∑
ab

ĵa
2
ĵb

2
v2av

2
b − 2λ2

∑
a

ĵa
2
u2av

2
a

=
∑
a

ĵa
2
[
v2a

(
ηa + 1

2μa − λ2
∑
b

ĵb
2
v2b − 2λ2u2a

)
− 1

2uavaΔa

]
. (14.29)

Denoting
ξa ≡ ηa − λ2

∑
b

ĵb
2
v2b − 2λ2u2a (14.30)

we obtain
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HLN
0 =

∑
a

ĵa
2[

v2a(ξa +
1
2μa)−

1
2uavaΔa

]
, (14.31)

which has the form of the expression (13.46) for the BCS quantity H0.
For impending use, we define

ε̃a ≡ εa+4λ2v2a , λ̃ ≡ λ1+2λ2
(
1+

∑
b

ĵb
2
v2b

)
, η̃a ≡ ε̃a− λ̃−μa . (14.32)

These definitions lead to

η̃a = ηa + 4λ2v2a − 2λ2
(
1 +

∑
b

ĵb
2
v2b

)
, (14.33)

ξa = η̃a − 2λ2v2a + λ2
∑
b

ĵb
2
v2b . (14.34)

Note that the LNBSC quantities with tildes are reduced to the corresponding
BCS quantities, and ξa to ηa, when λ2 → 0.

14.2.2 Derivation of the Lipkin–Nogami BCS Equations

As seen from (14.16) and (14.27), the ground-state energy ELN
0 and the aux-

iliary quantity HLN
0 differ only by constant terms. Minimizing HLN

0 is there-
fore equivalent to minimizing ELN

0 . It follows that the variational problem in
Lipkin–Nogami theory is analogous to (13.49), so we require

∂

∂vc
HLN

0 = 0 for all c . (14.35)

We already have the BCS part of this, ∂H0/∂vc, in (13.53). Differentiating
the λ2 terms as stated in (14.28), with use of (13.50), gives

0 =
∂

∂vc
H0 − λ2

∂

∂vc

[(∑
a

ĵa
2
v2a

)2
+ 2

∑
a

ĵa
2
u2av

2
a

]
= 2ĵc

2
vcηc + ĵc

2 v2c − u2c
uc

Δc − 4λ2ĵc
2
vc

(∑
a

ĵa
2
v2a + u2c − v2c

)
= 2ĵc

2
vcη̃c + ĵc

2 v2c − u2c
uc

Δc , (14.36)

where (14.33) was used in the last step. It follows that

(u2c − v2c )Δc = 2ucvcη̃c , (14.37)

which is the same as the condition (13.54) of BCS theory except that ηc is
replaced by η̃c.
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Because of the analogy of (14.37) to (13.54) we can immediately convert
the BCS equations (13.56) into their Lipkin–Nogami counterparts

uc =
1√
2
θ(lc)

√
1 +

η̃c√
η̃2c +Δ2

c

, vc =
1√
2

√
1− η̃c√

η̃2c +Δ2
c

, (14.38)

together with the gap equation

2ĵaΔa = −
∑
b

ĵbΔb√
η̃2b +Δ2

b

〈a a ; 0|V |b b ; 0〉 (14.39)

following from (13.61). The phase factor θ(lc) is given in (13.58). Equations
(14.38) and (14.39) are the LNBCS equations.

The BCS quasiparticles emerged from the term

H11 ≡
∑
b

H11(b)
[
a†bãb

]
00

(14.40)

of the auxiliary Hamiltonian HBCS, with H11(b) given by (13.47). To establish
the concept of LNBCS quasiparticle, let us construct the corresponding term
HLN

11 . This is done by including the λ2 contribution (14.22) according to the
scheme (14.15). Since we used in Chap. 13 the BCS Hamiltonian in the coupled
form (13.32), we also need the n̂2 contribution in coupled form. Equation
(14.22) yields

(n̂2)11 =
∑
b

ĵb

[(
2
∑
a

ĵa
2
v2a + u2b − v2b

)
(u2b − v2b )− 4u2bv2b

][
a†bãb

]
00

. (14.41)

For each term b, we then have

HLN
11 (b) = H11(b)− λ2(n̂2)11(b) = ĵb

[
(u2b − v2b )ηb + 2ubvbΔb

]
− λ2ĵb

[(
2
∑
a

ĵa
2
v2a + u2b − v2b

)
(u2b − v2b )− 4u2bv2b

]
= ĵb

[
(u2b − v2b )(η̃ − 2λ2v2b + λ2) + 2ubvbΔb + 4λ2u2bv

2
b

]
= ĵb

(√
η̃b

2 +Δ2
b + λ2

)
≡ ĵbE

LN
b , (14.42)

where (14.33) was used for the second equality and (14.37) and (14.38) for
the third. This establishes the Lipkin–Nogami quasiparticle energy as

ELN
b =

√
η̃2b +Δ2

b + λ2 . (14.43)

The expression (14.43) differs from the BCS expression (13.57) through the
replacement of ηb by η̃b and the addition of the term λ2. Applications reveal
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that the LNBCS result is a significant improvement over the BCS result. An
example of this is given by the single-j-shell model in Subsect. 14.3.1.

Similar to the construction of HLN
11 , let us now construct HLN

20 . The BCS
contribution is given through (13.48). The n̂2 contribution (14.23) is in coupled
form

(n̂2)20 = 2
∑
b

ĵb

(∑
a

ĵa
2
v2a + u2b − v2b

)
ubvb

([
a†ba
†
b

]
00
−

[
ãbãb

]
00

)
. (14.44)

Substitution gives

HLN
20 (b) = H20(b)− λ2(n̂2)20(b) = ĵb

[
ubvbηb − 1

2 (u
2
b − v2b )Δb

]
− 2λ2ĵb

(∑
a

ĵa
2
v2a + u2b − v2b

)
ubvb

= ĵbubvb

[
ηb − η̃b − 2λ2

(∑
a

ĵa
2
v2a + u2b − v2b

)]
= 0 , (14.45)

where we used (14.37) and then (14.33). This repeats the BCS result (13.64):
also in the LNBCS the H20 part of the auxiliary Hamiltonian vanishes. This
concludes the derivation of the LNBCS mean field with its single-quasiparticle
energies (14.43).

We still do not know the value of λ2. To find it one has to delve into the
Lipkin–Nogami residual interaction analogous to (13.33). We omit the long
derivation and only state the result. With the abbreviation

V
(J)
abcd ≡ 〈a b ; J |V |c d ; J〉 (14.46)

it is

λ2 =
(
∑

a u2av
2
a)

2
∑

J Ĵ 2[Nab(J)]−2V
(J)
abab −

∑
ab ĵaĵbu

3
avaubv

3
bV

(0)
aabb

2
(∑

a ĵa
2
u2av

2
a

)2 − 4∑a ĵa
2
u4av

4
a

. (14.47)

A simplification of (14.47) is obtained for the pure pairing force by using
the relation (12.11) for the monopole matrix element and setting all the other
multipole matrix elements to zero. The final result is

λ2 =
G

4
ζ(lalb)

∑
a ĵa

2
u3ava

∑
b ĵb

2
ubv

3
b − 2

∑
a ĵa

2
u4av

4
a(∑

a ĵa
2
u2av

2
a

)2 − 2∑a ĵa
2
u4av

4
a

≥ G

4
. (14.48)

The phase factor ζ(lalb) is defined in (12.11). The relation on the right-hand
side of (14.48) can be proved by means of the Schwartz inequality. Equation
(14.48) is due to Nogami [75–77].

By way of summary we repeat the expression for the LNBCS ground-state
energy, originally stated in (14.16),

ELN
0 = HLN

0 + λ1n̄+ λ2n̄
2 . (14.49)
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The corresponding BCS relation (13.66) is

H0 = H0 + λn̄ . (14.50)

In the limit λ2 → 0 the Lipkin–Nogami result (14.49) reduces to the BCS
result (14.50) with λ1 = λ.

14.3 Lipkin–Nogami BCS Theory in Simple Models

In this section we discuss simple applications of the Lipkin–Nogami approach
in the context of exactly solvable schematic models. These models include the
single-j-shell model and the two-level Lipkin model.

14.3.1 Single j Shell

Consider the case of a single j shell with single-particle energy εj = 0. The
BCS solution for this simple model was discussed in Subsect. 13.5.1. For the
pure pairing force the LNBCS gap equation (14.39) yields√

η̃2 +Δ2 = 1
2ΩG , (14.51)

where Ω = 1
2 ĵ

2. Equation (14.48) gives

λ2 = 1
4G . (14.52)

From (14.43), (14.51) and (14.52) we obtain the quasiparticle energy

ELN = 1
2ΩG+ 1

4G = 1
2ΩG

(
1 +

1
2Ω

)
. (14.53)

We observe that this expression includes a correction to the BCS quasiparticle
energy (13.94). The result (14.53) can be compared with the result of the
seniority model of Sect. 12.4. To enable direct comparison we write from
(12.28) and (12.38) the energy difference between the seniority v = 1 state
and the v = 0 ground state:

Ev=1(N)− Ev=0(N) = 1
2ΩG

(
1 +

1
2Ω

)
. (14.54)

The LNBCS result (14.53) is in exact agreement with this. So we see that
the Lipkin–Nogami correction to the BCS quasiparticle energy is needed to
reproduce the result (14.54) of the seniority model.

Equation (14.19) gives
n̄ = 2Ωv2j , (14.55)

so that
v2j =

n̄

2Ω
, u2j = 1− v2j . (14.56)
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With the phase factor θ(l) as in (14.38), the LNBCS occupation amplitudes
uj , vj resulting from (14.56) are the same as the BCS values (13.92). It then
follows from (13.45) that the LNBCS pairing gapΔ and self-energy μ are those
given by the BCS equations (13.96) and (13.97), respectively. By comparing
(13.54) and (14.37) we see that η̃ is equal to the BCS quantity η calculated
with the parameter λ(	= λ1). The quantity η(λ) is given by (13.98), whence

η̃ = η(λ) = 1
2ΩG

(
1− n̄

Ω

)
. (14.57)

Equation (14.34) gives now

ξ = η̃ − 1
4G

n̄

Ω
+ 1

4Gn̄ = 1
2ΩG

[
1− n̄

2Ω

(
1 +

1
Ω

)]
. (14.58)

Calculating HLN
0 from (14.31) we obtain

HLN
0 = 2Ω

[ n̄

2Ω
(ξ + 1

2μ)−
1
2ujvjΔ

]
= n̄

{
1
2ΩG

[
1− n̄

2Ω

(
1 +

1
Ω

)]
+ 1

2

n̄G

2Ω

}
− 1

2

(
1− n̄

2Ω

)
n̄ΩG = 0 .

(14.59)

Let us continue with the analysis and calculate further relevant quantities.
From (14.32) we obtain

ε̃ = 0 + 4× 1
4G

n̄

2Ω
=

Gn̄

2Ω
(14.60)

and further, with use of (13.97),

η̃ = ε̃− λ̃− μ =
Gn̄

2Ω
− λ̃− n̄

2Ω
G = −λ̃ . (14.61)

Solving now for λ1 from (14.32) yields

λ1 = −η̃ − 1
2G(1 + n̄) = − 1

2G(Ω + 1) . (14.62)

Comparison with (13.99) shows that λ1 and λ are indeed different.
With the quantities HLN

0 , λ1 and λ2 given by (14.59), (14.62) and (14.52),
respectively, we are now in a position to find the ground-state energy (14.49).
The result is

ELN
0 = 0− 1

2G(Ω + 1)n̄+ 1
4Gn̄2 = − 1

4Gn̄(2Ω − n̄+ 2) . (14.63)

Unlike the BCS result (13.100), this result agrees exactly with the expression
(12.28) of the seniority model.

In this subsection we applied LNBCS theory to a single j shell. The main
results are that the computed LNBCS ground-state energy and quasiparticle
energy agree with the exact results of the seniority model of Chap. 12. This
is a significant improvement over plain BCS theory.
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14.3.2 The Lipkin Model

In this subsection we apply the LNBCS formalism to the Lipkin model. The
model has two shells j1l1 = j2l2 = jl with single-particle energies ε1 = − 1

2ε
and ε2 = 1

2ε, and the total number of particles is 2Ω = 2j + 1. We use the
pure pairing force as our two-body interaction, with matrix elements given by
(12.11). Plain BCS theory was similarly applied in Subsect. 13.5.2.

The BCS expressions (13.104) and (13.105) are valid also for the LNBCS
pairing gaps and self-energies, as one can see by tracing back their derivation.
From the gap equation (14.39) we obtain

2
ΩG

=
1√

η̃21 +Δ2
+

1√
η̃22 +Δ2

. (14.64)

Equation (14.19) for the average particle number gives

2Ω = n̄ = 2Ω(v21 + v22) . (14.65)

We assume l = even so the u coefficients are positive also in the CS phase
convention. As in the BCS case, it follows that

v2 = u1 , v1 = u2 . (14.66)

From the condition (14.37) we can derive the general result (Exercise
14.12)

ucvc =
Δc

2
√

η̃2c +Δ2
c

. (14.67)

The relations (14.66) now lead to

η̃21 = η̃22 (14.68)

and Eq. (14.38) imply
η̃1 = −η̃2 . (14.69)

We note from (14.64) that√
η̃21 +Δ2 =

√
η̃22 +Δ2 = ΩG . (14.70)

Our aim is to derive equations for the solution of the occupation ampli-
tudes and the λ parameters. This involves the calculation of various auxiliary
quantities appearing at the end of Subsect. 14.2.1. Equations (13.105) and
(14.66) give for the self-energies the relations

μ1 = 1
2 (1 + v21)G , μ2 = 1

2 (1 + v22)G , μ1 + μ2 = 3
2G . (14.71)

The definition (14.32) of the shifted single-particle energy, again with (14.66),
gives
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ε̃1 = − 1
2ε+ 4λ2v

2
1 , ε̃2 = 1

2ε+ 4λ2v
2
2 , ε̃1 + ε̃2 = 4λ2 . (14.72)

To find the shifted Fermi level λ̃ we use the definition of η̃ in (14.32) and form
η̃1 + η̃2. Equations (14.69), (14.71) and (14.72) then give

λ̃ = 2λ2 − 3
4G . (14.73)

On the other hand, we may write λ̃ as defined in (14.32) and apply (14.65),
which results in

λ̃ = λ1 + 2λ2(1 + n̄) = λ1 + 2λ2(1 + 2Ω) . (14.74)

Equating (14.73) and (14.74) leads to

λ1 = − 3
4G− 4Ωλ2 . (14.75)

Having found the relation (14.75) between λ1 and λ2 we proceed to find
sufficient relations between λ2 and the occupation amplitudes such that they
can all be solved. Substituting (14.71)–(14.73) into the definition of η̃a in
(14.32) gives

η̃1 = −η̃2 = − 1
2ε+ 4λ2v

2
1 − (2λ2 − 3

4G)−
1
2 (1 + v21)G

= − 1
2ε+

1
4G− 2λ2 + (4λ2 −

1
2G)v

2
1 . (14.76)

By forming v21 from (14.38), using (14.70) and substituting the expression
(14.76) for η̃1 we get

v21 =
(Ω − 1

4 )G+ 1
2ε+ 2λ2

(2Ω − 1
2 )G+ 4λ2

. (14.77)

This is one equation between v1 and λ2. Another equation is provided by
(14.48), in simplified form (Exercise 14.13)

λ2 = 1
4G

Ω − 2u21v21
(4Ω − 2)u21v21

. (14.78)

These two equations, together with (13.9) and (14.66), yield the solution for
λ2 and all occupation amplitudes when G is given.

As the first step to solve Eqs. (14.77) and (14.78) simultaneously, we define
an auxiliary variable z as

z ≡ (Ω − 1
4 )G+ 2λ2 . (14.79)

In terms of z the expression (14.77) for v21 becomes

v21 =
z + 1

2ε

2z
. (14.80)
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We write the quantity u21v
2
1 appearing in (14.78) as (1− v21)v

2
1 and substitute

from (14.80), with the result

u21v
2
1 =

z2 − 1
4ε

2

4z2
. (14.81)

We insert λ2 from (14.79) into the left-hand side of (14.78) and u21v
2
1 from

(14.81) into the right-hand side. After simplification this results in the cubic
equation

z3 −G(Ω + 1
4 )z

2 − 1
4ε

2z + 1
16Gε2

2Ω(4Ω − 3)− 1
2Ω − 1 = 0 . (14.82)

To complete the solution of the Lipkin model within the Lipkin–Nogami
theory we need to determine the roots of Eq. (14.82). Applying the inequality
condition in (14.48)–(14.79) gives

z ≥ (Ω + 1
4 )G . (14.83)

A graphical inspection shows that (14.82) has only one positive, unique so-
lution compatible with the condition (14.83). After obtaining this solution,
z = z0, we can solve for λ2 from (14.79) to obtain

λ2 = 1
2 [z0 − (Ω −

1
4 )G] . (14.84)

Inserting this λ2 into (14.77) gives v21 .
The ground-state energy ELN

0 is found from (14.49) with HLN
0 given by

(14.31), λ2 by (14.84) and λ1 then by (14.75). However, before we can compute
HLN

0 we must find and collect the input parameters appearing in (14.75). For
the Lipkin model at hand we can express them in terms of v21 .

Using the results (14.67) and (14.70) yields

u1v1 = u2v2 =
Δ

2ΩG
, (14.85)

which, together with (14.37) and (14.69), leads to

η̃1 = ΩG(1− 2v21) = −η̃2 . (14.86)

Equation (14.34) now gives

ξ1 = ΩG(1− 2v21) + 2λ2(Ω − v21) , (14.87)

ξ2 = −ΩG(1− 2v21) + 2λ2(Ω − 1 + v21) . (14.88)

Both self-energies (14.71) expressed in terms of v21 are

μ1 = 1
2G(1 + v21) , μ2 = 1

2G(2− v21) . (14.89)

From (14.85) we have Δ = 2ΩGu1v1, so multiplication by u1v1 gives
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u1v1Δ = u2v2Δ = 2ΩG(1− v21)v
2
1 . (14.90)

Equations (14.87)–(14.90) give the input parameters for calculating HLN
0

from (14.31) in terms of v21 , which in turn is obtained numerically from the
chain of Eqs. (14.82), (14.84) and (14.77). In the next subsection we discuss
this process for the j = 7

2 Lipkin model.

14.3.3 Example: The j = 7
2
Case

We now give the results of applying the formalism of the previous subsection
to the case of j = 7

2 . The occupation amplitudes v1 and v2 are plotted in
Fig. 14.8 as functions of the quantity y = ε/G. This ratio is a measure of
the relative magnitudes of the energy gap between the two j orbitals and the
pairing interaction strength. In the figure the LNBCS results are compared
with the exact solution and with the BCS solution of Subsect. 13.5.2. Because
the variable y of the present figure is inversely proportional to the variable x
defined in (13.121), the present curves look different from those in Fig. 13.2.
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Fig. 14.8. Occupation amplitudes v1 (lower level) and v2 (upper level) of the two-
level Lipkin model for j = 7

2
(Ω = 4) as functions of the variable y = ε/G. The exact,

BCS and LNBCS solutions are shown. Also the LNBCS parameter λ2 is displayed.
All computations used the pure pairing force

Figure 14.8 shows that for y near zero, i.e.G� ε, the pairing force is strong
enough to scatter pairs from the lower level to the higher one so efficiently that
both levels are nearly equally occupied. With increasing level separation ε (or
decreasing pairing strength G) the diminished scattering depletes the upper
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level. This happens initially in much the same way for all three solutions.
Increasing the level separation further to the value ε = 7.5G makes the BCS
solution collapse to the trivial case v1 = 1,v2 = 0; this was discussed in
Subsect. 13.5.3. Contrariwise, the LNBCS solution continues smoothly across
this point and follows the trend of the exact solution.

The absence of the BCS collapse in the Lipkin–Nogami extension of the
theory is a general one, not limited to the special case of the two-level Lipkin
model. In Fig. 14.8 we also plot the LNBCS parameter λ2. It is seen to be a
parabolically increasing function of y.

Figure 14.9 shows the pairing gap Δ, deduced from (14.90), as a function
of y for the LNBCS solution of the j = 7

2 Lipkin model. The BCS solution
(13.122) is shown for comparison. The BCS pairing gap is seen to vanish at
y = 7.5, which corresponds to a small relative pairing strength. This does not
happen in the LNBCS description, where the pairing gap diminishes smoothly
with increasing y.

0 2 4 6 8 10 12 14
0

1

2

3

4

5

y

Δ/G

LNBCS
  BCS

Fig. 14.9. Pairing gap Δ in the BCS and LNBCS approaches as a function of the
variable y = ε/G for the j = 7

2
(Ω = 4) Lipkin model with pure pairing force

In Fig. 14.10 the ground-state energy of the j = 7
2 Lipkin model is plotted

as a function of y for the exact, BCS and LNBCS solutions. The BCS solution
is the one of (13.124). The LNBCS solution is from (14.49), obtained through
the numerical and algebraic scheme presented at the end of Subsect. 14.3.2.
From the figure we can see that the LNBCS solution is practically identical
to the exact one, whereas the BCS solution ceases to exist at ε = 7.5G.

The following generally valid characteristics of LNBCS theory are evident
from the foregoing discussion of the special cases of the single-j model and
the Lipkin model.
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Fig. 14.10. Ground-state energy of the j = 7
2
(Ω = 4) Lipkin model calculated

by using the pure pairing force for a range of values of the variable y = ε/G. The
LNBCS result is compared with the exact and BCS solutions. Note that the BCS
solution ceases to exist at y = 7.5

• The LNBCS description does not break down for small pairing strength (or,
equivalently, a large energy gap between the single-particle levels) as does
the BCS description.
• The quality of the computed occupation amplitudes is similar in the LNBCS
and BCS approaches until the vicinity of the BCS breakdown.
• The LNBCS ground-state energies are somewhat higher than the exact ones
and notably lower than the valid BCS ones.

14.4 The Two-Level Model for j = j′ = 7
2

Let us extend the discussion of the previous section to the case of the j =
j′ = 7

2 two-level model. There is no simple BCS or LNBCS solution, except
for the Lipkin case n̄ = 2Ω. Therefore all the relevant quantities of the two
approaches must be computed numerically.

Figure 14.11 shows the ground-state energy of the two-level model as a
function of the number or particles occupying the valence space. The energy
is plotted for two values of the level separation, ε = 1.0MeV and ε = 6.0MeV,
with G = 1.0MeV (y = 1.0 and y = 6.0). The solid line represents both the
LNBCS and exact solutions; there is no visible difference between them. Even
the BCS solution is seen to be rather good. This demonstrates the striking
accuracy of the LNBCS approach in producing ground-state energies.

Each curve in Fig. 14.11 has a minimum at midshell. For the BCS case this
was discussed in Subsect. 13.5.4, and the behaviour was explained in terms
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Fig. 14.11. Ground-state energy as a function of the number or active particles
occupying the j = j′ = 7

2
levels of a two-level model. The interaction is the pure

pairing force with strength G = 1.0MeV, and ε is the energy separation between
the two levels

of the Pauli principle. The chemical potential λ is negative at the beginning
of a shell, then increases and crosses zero immediately after midshell; see Ta-
ble 13.1. According to (13.71), a negative λ means that when a particle is
added to the system, the ground-state energy acquires a negative contribu-
tion. After midshell the additional energy becomes positive, which increases
the energy of the ground state. Thus the binding energy has a maximum at
midshell.

To explain the behaviour of the LNBCS curves of Fig. 14.11, let us de-
rive the chemical potential in LNBCS theory in analogy to the derivation of
(13.71). From (14.49) we have, with n as a free variable,

HLN
0 = ELN

0 − λ1n− λ2n
2 , (14.91)

and we require that ∂HLN
0 /∂n = 0 at the requested particle number n = n̄.

This leads to

0 =
∂HLN

0

∂n

∣∣∣∣
n=n̄

=
∂ELN

0

∂n

∣∣∣∣
n=n̄

− λ1 − 2λ2n̄ . (14.92)

To have the normal meaning of a chemical potential, the LNBCS chemical
potential has to be defined as

λLNBCS ≡
∂ELN

0

∂n

∣∣∣∣
n=n̄

= λ1 + 2λ2n̄ . (14.93)

Equation (14.32), together with (14.19), provides for an alternative expression
in terms of the quantity λ̃, so that
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λLNBCS = λ1 + 2λ2n̄ = λ̃− 2λ2 . (14.94)

The chemical potential (14.94) and its various terms are plotted in
Fig. 14.12 as functions of the number of active particles in the j = j′ = 7

2
two-level model. The relative pairing strength is given by y = ε/G = 6.0. The
figure shows that λLNBCS crosses zero at midshell. Thus λLNBCS behaves the
same way as the BCS chemical potential λ recorded in Table 13.1. At n̄ = 8,
both λLNBCS and λ equal −0.5MeV; even at other particle numbers they are
close to each other.
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Fig. 14.12. Values of the various λ parameters of LNBCS theory as functions of the
number of active particles in the j = j′ = 7

2
two-level model. The relative pairing

strength is given by y = ε/G = 6.0

14.5 Application of Lipkin–Nogami Theory
to Realistic Calculations

To make a realistic LNBCS calculation we can use the BCS flow chart in
Subsect. 14.1.1 with the following modifications.

At stage (14.6) compute λ
(0)
2 from (14.47) or (14.48) with the amplitudes

u
(0)
a and v

(0)
a . Replace the computation of η

(0)
a by the computation of η̃

(0)
a

according to (14.32):
η̃(0)a = ε̃(0)a − λ̃

(0)
0 − μ(0)

a . (14.95)

Compute λ̃
(0)
0 from (14.32) as
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λ̃
(0)
0 = λ̃0 + 2λ

(0)
2 (1 + n̄) , (14.96)

where λ̃0 is given as an initial value at stage (14.4). Calculate the shifted
single-particle energy in (14.95) from (14.32) as

ε̃(0)a = εa + 4λ
(0)
2

(
v(0)a

)2
. (14.97)

At stage (14.7) replace η
(0)
a by η̃

(0)
a and λ(1) by λ̃(1). To compute λ̃(1),

replace εa by ε̃
(0)
a .

At stage (14.9) replace λ1 by λ̃1 and λ(1) by λ̃(1).

Table 14.4. LNBCS occupation probabilities v2a, quasiparticle energies ELN
a , aux-

iliary quantities λ1, λ2 and λ̃, chemical potential λLNBCS, pairing gap Δ and self-
energy μ for different particle numbers n̄ in the d-s shell

Quantity n̄ = 2 n̄ = 4 n̄ = 6 n̄ = 8 n̄ = 10

v20d5/2 0.2654 0.5149 0.7393 0.9066 0.9741

v21s1/2 0.1541 0.3513 0.6033 0.8537 0.9634

v20d3/2 0.0248 0.0520 0.0893 0.2133 0.5572

ELN
0d5/2

(MeV) 2.302 2.489 2.846 3.799 5.412

ELN
1s1/2

(MeV) 2.806 2.603 2.568 3.180 4.604

ELN
0d3/2

(MeV) 6.461 5.518 4.306 2.782 1.861

λ1 (MeV) −2.261 −2.463 −3.243 −5.239 −3.534
λ2 (MeV) 0.041 0.067 0.139 0.285 0.192

λ̃ (MeV) −2.018 −1.789 −1.292 −0.109 0.699
λLNBCS (MeV) −2.099 −1.924 −1.571 −0.679 0.315

Δ (MeV) 1.997 2.421 2.377 2.046 1.658
μ (MeV) 1.000 2.000 3.000 4.000 5.000

The calculation used the single-particle energies (14.12) and the
SDI with A1 = 1.0MeV.

We have applied the BCS and LNBCS computation procedures to the d-s
shell using the single-particle energies (14.12) and the SDI with A1 = 1.0MeV.
The results are summarized in Table 14.4 and Fig. 14.13. Comparison of the
table with Table 14.1 reveals that all the LNBCS quantities are quite close
to their BCS counterparts. The figure shows that the LNBCS ground-state
energy follows the BCS curve but is somewhat lower, as one would expect.

Epilogue

In the first part of this chapter we used the BCS formalism for numerical ap-
plications in the d-s and f-p-0g9/2 shells. In the second part we extended the
formalism to the LNBCS approach. The difference between BCS and LNBCS
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Fig. 14.13. Ground-state energy as a function of the number of active particles in
the d-s shell for the BCS and LNBCS solutions. The calculation used the single-
particle energies (14.12) and the SDI with A1 = 1.0MeV

results was found relatively small except that the more sophisticated Lipkin–
Nogami scheme avoids the BCS collapse of the pairing gap at small interaction
strength. Both schemes give rise to independent quasiparticles and an associ-
ated quasiparticle mean field. In the following chapter we discuss transition
amplitudes for few-quasiparticle systems within the BCS mean-field scheme.
In later chapters, BCS quasiparticles are allowed to interact via the residual
Hamiltonian to produce quasiparticle configuration mixing.

Exercises

14.1. Derive the result (14.3) by starting from the definition of ηb in (13.45)
and the relation (13.72).

14.2. Give a detailed derivation of (14.11).

14.3. Do a BCS calculation in the d-s shell by using the single-particle energies
(14.12) and the SDI with strength A1 = 2.0MeV. Calculate the u and v
amplitudes, the pairing gap Δ and the chemical potential λ(μ = 0). Plot
these quantities as functions of the number of active particles. Compare with
the values in Table 14.1 and comment.

14.4. Use the BCS approach with the SDI in the d-s shell. Vary the parameter
A1 and the single-particle energies so as to roughly reproduce the energies of
the three lowest states in 37Ar and 37K.
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14.5. Starting from the expression (14.18) for the number operator n̂ derive
the term (14.21) of n̂2.

14.6. Starting from the expression (14.18) for the number operator n̂ derive
the term (14.22) of n̂2.

14.7. Fill in the details of the derivation of (14.29).

14.8. Fill in the details of the derivation of (14.36).

14.9. Derive (14.48) by starting from (14.47) and the definition (12.11) of the
pure pairing force.

14.10. Do a numerical application of the calculations of Subsect. 14.3.1 for
j = 7

2 , ε7/2 = 0 and G = 1.0MeV.

14.11. Plot the LNBCS ground-state energy of Exercise 14.10 as a function of
the mean particle number n̄. Plot the corresponding BCS ground-state energy
for comparison.

14.12. Derive the relation (14.67).

14.13. Derive the relation (14.78).

14.14. Find the occupation amplitudes, the pairing gap and the chemical
potential by using
(a) the BCS approach,
(b) the LNBCS approach
for the j = 7

2 Lipkin model. Use the pure pairing force with strength G =
1.0MeV and an energy splitting ε = 6.0MeV.

14.15. Consider the j = 1
2 Lipkin model with ε = 1.0MeV. Plot the ground-

state energy as a function of the strength G of the pure pairing force for the
LNBCS solution and for the exact one.
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15

Transitions in the Quasiparticle Picture

Prologue

In this chapter we deal with electromagnetic and beta-decay transitions in
terms of independent quasiparticles. Transition amplitudes are derived for
transitions between one-quasiparticle states and between two-quasiparticle
states. Derivations and applications are made within the BCS framework, but
the expressions for the amplitudes are valid also in the LNBCS description.

15.1 Quasiparticle Representation of a One-Body
Transition Operator

Equation (4.22) gives the coupled representation of a one-body tensor operator
T λ as

Tλμ = λ̂−1
∑
ab

(a‖T λ‖b)
[
c†ac̃b

]
λμ

. (15.1)

Using (13.12) we express this in terms of quasiparticle operators according to[
c†ac̃b

]
λμ
=

∑
mαmβ

(ja mα jb mβ |λμ)c†αc̃β

=
∑

mαmβ

(ja mα jb mβ |λμ)
(
uaa
†
α − vaãα

)(
ubãβ + vba

†
β

)
= uaub

[
a†aãb

]
λμ
+ uavb

[
a†aa
†
b

]
λμ
− vaub

[
ãaãb

]
λμ
− vavb

[
ãaa
†
b

]
λμ

.

(15.2)

Commuting the last term of (15.2) into normal order we find[
ãaa
†
b

]
λμ
= −δabδλ0δμ0ĵa − (−1)ja+jb+λ

[
a†bãa

]
λμ

, (15.3)

so that (15.2) becomes
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c†ac̃b

]
λμ
= uaub

[
a†aãb

]
λμ
+ (−1)ja+jb+λvavb

[
a†bãa

]
λμ

+ uavb
[
a†aa
†
b

]
λμ
− vaub

[
ãaãb

]
λμ
+ δabδλ0δμ0ĵavavb .

(15.4)

The last term does not contribute to gamma transitions; only electron con-
version allows an E0 transition. Also, it does not contribute to beta decay
because λ = 0 operators like the Fermi operator connect different nucleon
labels, a 	= b.

15.2 Transition Densities for Few-Quasiparticle Systems

In the following we derive transition densities for one- and two-quasiparticle
states. The expressions contain the BCS occupation amplitudes ua and va.
The derivations are done by using the BCS vacuum |BCS〉 as reference, but
the results are equally valid for LNBCS occupation amplitudes.

15.2.1 Transitions Between One-Quasiparticle States

The reduced one-body transition density (Ψf‖
[
c†ac̃b

]
λ
‖Ψi) is defined in (4.25).

We now take the initial state |Ψi〉 and final state |Ψf 〉 to be one-quasiparticle
states,

|Ψi〉 = a†i |BCS〉 , |Ψf 〉 = a†f |BCS〉 , (15.5)

where the labels i and f carry the appropriate single-particle quantum num-
bers nljm. The Wigner–Eckart theorem (2.27) gives

〈Ψf |
[
c†ac̃b

]
λμ
|Ψi〉 = ĵf

−1
(ji mi λμ|jf mf )(Ψf‖

[
c†ac̃b

]
λ
‖Ψi) . (15.6)

To calculate the matrix element (15.6) we insert (15.4) and (15.5) into it,
which results in

〈Ψf |
[
c†ac̃b

]
λμ
|Ψi〉 = uaub〈BCS|af [a†aãb

]
λμ

a†i |BCS〉

+ (−1)ja+jb+λvavb〈BCS|af [a†bãa
]
λμ

a†i |BCS〉 . (15.7)

With the recipe (13.17) for contractions we obtain

〈BCS|af [a†aãb
]
λμ

a†i |BCS〉

=
∑

mαmβ

(−1)jb+mβ (ja mα jb mβ |λμ)〈BCS|afa†αa−βa
†
i |BCS〉

= δafδbi(−1)ji−mi(jf mf ji −mi|λμ) . (15.8)

Combining Eqs. (15.6)–(15.8) and using the Clebsch–Gordan symmetry prop-
erty (1.37) gives the reduced transition density

(Ψf‖[c†ac̃b
]
λ
‖Ψi) = λ̂

[
δafδbiuiuf + (−1)ji+jf+λδaiδbfvivf ] . (15.9)
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15.2.2 Transitions Between a Two-Quasiparticle State
and the BCS Vacuum

We write a normalized two-quasiparticle state as

|a b ; J M〉 = Nab(J)
[
a†aa
†
b

]
JM
|BCS〉 = A†ab(JM)|BCS〉 , (15.10)

where the definition (11.17) was used in the last step. We set out to calculate
the reduced one-body transition density for a transition from this state to the
BCS vacuum. The Wigner–Eckart theorem together with (1.42) gives

〈BCS|
[
c†cc̃d

]
λμ
|a b ; J M〉 = (−1)J+M Ĵ−1δλJδμ,−M (BCS‖

[
c†cc̃d

]
λ
‖a b ; J) .

(15.11)
Only the fourth term of (15.4) contributes to this, and we obtain

〈BCS|
[
c†cc̃d

]
λμ
|a b ; J M〉 = −Nab(J)vcud〈BCS|

[
ãcãd

]
λμ

[
a†aa
†
b

]
JM
|BCS〉

= −Nab(J)vcud
∑

mγmδ
mαmβ

(jc mγ jd mδ|λμ)(ja mα jb mβ |J M)

× (−1)jc+mγ+jd+mδ〈BCS|a−γa−δa†αa
†
β |BCS〉

= Nab(J)δλJδ−μ,M [δcaδdb(−1)J+Mvaub − δcbδda(−1)jb+ja−Mvbua] .
(15.12)

Comparison with (15.11) shows that1

(BCS‖
[
c†cc̃d

]
λ
‖a b ; J) = δλJNab(J)Ĵ

× [δcaδdbvaub − (−1)ja+jb+Jδcbδdavbua] .
(15.13)

A similar derivation leads to the reversed transition density

(a b ; J‖
[
c†cc̃d

]
λ
‖BCS) = δλJNab(J)Ĵ

× [δcaδdbuavb − (−1)ja+jb+Jδcbδdaubva] .
(15.14)

On the right-hand side this differs from (15.13) only through the exchange
u↔ v.

15.2.3 Transitions Between Two-Quasiparticle States

Consider transitions between two two-quasiparticle states of the form (15.10).
Like the cases in the preceding sections, the operator (15.4) and the Wigner–
Eckart theorem lead to a reduced transition density
1 Although δλJ formally cancels, we include it in the reduced matrix element to
indicate that only λ = J is allowed, as was done in connection with (6.118) and
elsewhere.
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(af bf ; Jf‖
[
c†ac̃b

]
λ
‖ai bi ; Ji)

= uaubKλ
ab(fi) + (−1)ja+jb+λvavbKλ

ba(fi) ,
(15.15)

where it remains to evaluate

Kλ
ab(fi) ≡ Ĵf (Ji Mi λμ|Jf Mf )−1

× 〈BCS|Aaf bf (JfMf )
[
a†aãb

]
λμ

A†aibi(JiMi)|BCS〉 . (15.16)

The quantity Kλ
ab(fi) is analogous to the reduced one-body transition density

(6.95). The only difference is that particles are replaced by quasiparticles,
but particles and quasiparticles have the same contractions with respect to
the appropriate vacuum. Therefore the final expression for Kλ

ab(fi) can be
deduced from (6.22) and (6.99), and it reads

Kλ
ab(fi) = λ̂ĴiĴfNaibi(Ji)Naf bf (Jf )

×
[
δbibf δaaf δbai(−1)

jaf+jbf+Ji+λ

{
Jf Ji λ
jai jaf jbf

}
+ δaibf δaaf δbbi(−1)

jaf+jbi+λ

{
Jf Ji λ
jbi jaf jbf

}
+ δaiaf δabf δbbi(−1)jai+jbi+Jf+λ

{
Jf Ji λ
jbi jbf jaf

}
+ δbiaf δabf δbai(−1)Ji+Jf+λ+1

{
Jf Ji λ
jai jbf jaf

}]
.

(15.17)

The reduced transition densities derived in this section are used in the next
section to produce expressions for electromagnetic and beta-decay transition
amplitudes in the framework of independent quasiparticles.

15.3 Transitions in Odd-A Nuclei

In this section we consider open shell-nuclei with an odd number of protons
or neutrons. States of such nuclei can be described, to first approximation, as
one-quasiparticle excitations of the BCS vacuum, recorded in (15.5). Number
parity, discussed in Subsect. 13.4.2, means that the first corrections to one-
quasiparticle states are admixtures of three-quasiparticle states. The higher
the excitation energy, the more the mixing. Finally the three-quasiparticle
components become dominant. Then even five-quasiparticle excitations begin
to play a role. However, in some cases the lowest-lying states in an odd-A
nucleus are of three-quasiparticle character.

A transparent way to describe three-quasiparticle states is to couple an
extra quasiparticle with the two-quasiparticle excitations of the even–even
reference nucleus. This is called quasiparticle–phonon coupling. For an exam-
ple see [65].
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15.3.1 Transition Amplitudes

Here we describe the electromagnetic and beta decays of odd-A nuclei in the
one-quasiparticle approximation.

Electromagnetic Transitions

The initial and final one-quasiparticle states are those of (15.5). They are
connected by the electromagnetic operator Mσλ given in (6.5)–(6.7). Sub-
stituting the reduced one-body transition density (15.9) into the definition
(4.25) of the transition amplitude then leads to the result

(Ψf‖Mσλ‖Ψi) = D(λ)
if (f‖Mσλ‖i) ,

D(λ)
if ≡ η(λ)(|uiuf | ∓ vivf ) ,

− for σ = E , + for σ = M .

(15.18)

Here the different phases arise from the symmetry properties (6.27)–(6.30) for
the single-particle matrix elements and from the phase factor (13.58) for the
u amplitudes. The prefactor is given by

η(λ) =

⎧⎪⎨⎪⎩
(−1)λ CS phase convention , σ = E ,

(−1)λ+1 CS phase convention , σ = M ,

1 BR phase convention .

(15.19)

The quantity D(λ)
if is expressed in an alternative form in (15.137).

Note in (15.18) the distinction between the single-particle matrix ele-
ment (f‖Mσλ‖i) and the transition matrix element (Ψf‖Mσλ‖Ψi) involving
many-nucleon states. The same distinction is apparent in the analogous parti-
cle relation (6.66). Only the quasiparticle picture is complicated through the
occupation amplitudes contained in the factor D(λ)

if .

The first term of D(λ)
if corresponds to a transition between two particle

states relative to the Fermi surface of the even–even reference nucleus. Like-
wise the second term corresponds to a transition between two hole states. In
the quasiparticle picture these two possibilities arise from the first two terms
in the operator (15.4). These terms describe transitions in opposite directions
between the two one-quasiparticle states.

Beta-decay Transitions

In beta decay the initial state is a neutron state and the final state a proton
state (β− transition) or vice versa (β+/EC transition). The corresponding
initial and final states are
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|Ψi〉 = a†νi |BCS〉 , a†πi |BCS〉 , (15.20)

|Ψf 〉 = a†πf |BCS〉 , a†νf |BCS〉 . (15.21)

One-quasiparticle beta transitions are classified into particle-type transitions
and hole-type transitions according to the scheme

ni
β−
−→ pf , pi

β+/EC−→ nf particle type ,

pi
β−
−→ nf , ni

β+/EC−→ pf hole type .

(15.22)

The examples of the subsequent subsections clarify this classification.
Similar to the electromagnetic case, the particle and hole types of beta

transition arise from the first two terms of the operator (15.4). For example,
in a β− transition the first term describes a neutron quasiparticle transforming
into a proton quasiparticle and the second term describes a proton quasiparti-
cle transforming into a neutron quasiparticle. Contrary to the electromagnetic
case, these two channels belong to different nuclear transitions.

Using the reduced transition density (15.9), the general formulas (7.18) and
(7.19) and the symmetry relation (7.23) we obtain the Fermi and Gamow–
Teller matrix elements

MF = uiuf ĵiδfi , MGT =
√
3uiufMGT(fi) particle type ,

MF = −vivf ĵiδfi , MGT =
√
3 vivfMGT(fi) hole type .

(15.23)

These matrix elements are analogous to the corresponding ones in (7.46) and
(7.47) written in the particle and hole pictures. The Gamow–Teller single-
particle matrix elements are given by (7.21), and their values are listed for
several single-particle orbitals in Table 7.3.

For Kth-forbidden unique beta decay the reduced transition density (15.9)
is substituted into (7.187). With use of the symmetry relations (7.190) and
(7.191) the nuclear matrix elements become

MKu =
√
2K + 3uiufM(Ku)(fi) particle type ,

MKu = θ(K)
√
2K + 3 vivfM(Ku)(fi) hole type ,

(15.24)

where the phase factor is

θ(K) =

{
(−1)K Condon–Shortley phase convention ,

1 Biedenharn–Rose phase convention .
(15.25)

The single-particle matrix elements M(Ku)(fi) are given by (7.188) and
(7.189), and tabulated in Tables 7.6, 7.8 and 7.9 for 1st-, 2nd- and 3rd-
forbidden transitions.
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As described in Chap. 13, one-quasiparticle states are computed by start-
ing from the BCS (or LNBCS) description of an even–even reference nucleus.
Now we have to choose the reference nucleus according to the beta-decay tran-
sition we want to calculate. We must also check whether the transition is of
the particle type or hole type. The procedure to select the reference nucleus
and the transition type is illustrated in the examples below.

15.3.2 Beta and Gamma Decays in the A = 25 Chain of Isobars

Figure 15.1 shows the electromagnetic and beta decays involving the lowest
states of 25

13Al12 and
25
12Mg13. We take the even–even reference nucleus to be

24
12Mg12, denoting this as

|BCS〉 = |2412Mg12〉 , (15.26)

and do a BCS calculation in the d-s shell with 16
8O8 as the core. There are

thus four valence protons and four valence neutrons, Zact = 4 = Nact. Such
a calculation, using the SDI with strength A1 = 1.0MeV, is recorded in
Table 14.1, whence we take the occupation amplitudes needed:

u0d5/2 = 0.6940 , v0d5/2 = 0.7199 , (15.27)

u1s1/2 = 0.8089 , v1s1/2 = 0.5880 . (15.28)

+5/2

+1/2

13
25

+5/2
25Mg1312

0.0

0.452

12Al

Q     = 4.278 MeV
EC

3.699.1 %
0.0

0.585

3.4 ns

+1/2

2.29 ns

Fig. 15.1. Beta decay (β+/EC) of the 5/2+ ground state of 25Al to the 5/2+ ground
state of 25Mg. The decay Q value, branching and log ft value are given. Also given
are the electromagnetic half-lives of the 1/2+ first excited states
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The quasiparticle spectrum, together with the experimental spectra of 25Mg
and 25Al, is shown in Fig. 14.3(b).

Both electromagnetic transitions in Fig. 15.1 have multipolarity σλ = E2.
Their transition amplitudes are given by (15.18) and Table 6.4 as

(5/2+‖Q2‖1/2+) = (u1s1/2u0d5/2 − v1s1/2v0d5/2)(0d5/2‖Q2‖1s1/2)
= (0.8089× 0.6940− 0.5880× 0.7199)(−2.185eeffb2)
= −0.3017eeffb2 = −1.003eeff fm2 , (15.29)

where we have inserted an effective charge and the oscillator length b =
1.823 fm given by (3.43) and (3.45). The B(E2) value (6.4) becomes

B(E2 ; 1/2+1 → 5/2+1 ) = 0.503e
2
eff fm

4 . (15.30)

Using the experimental half-lives we extract the experimental B(E2) values
following the recipes of Chap. 6. The result is

B(E2 ; 25Al)exp = 13.1 e2fm4 , B(E2 ; 25Mg)exp = 2.4 e2fm4 . (15.31)

From (6.26) we have epeff = (1 + χ)e and eneff = χe, so we can fit the experi-
mental values with the electric polarization constants

χ(25Al) = 4.1 , χ(25Mg) = 2.2 . (15.32)

These values are very large. However, the decay amplitudes (15.18) are sensi-
tive to the difference |uiuf | − vivf . Hence small improvements in the occupa-
tion amplitudes can lead to large improvements in the B(E2) values.

Let us now turn to the beta decay. The angular momenta allow both
Fermi and Gamow–Teller transitions. The decay proceeds in the β+/EC mode
from a proton-quasiparticle nucleus to a neutron-quasiparticle nucleus. The
classification in (15.22) then means that this as a particle type of transition.
Equations (15.23) and Table 7.3 give the matrix elements

MF = 0.69402 ×
√
6 = 1.180 , (15.33)

MGT =
√
3× 0.69402 ×

√
14
5
= 1.396 , (15.34)

whence (7.14) and (7.15) give the reduced transition probabilities

BF = 0.232 , BGT = 0.508 . (15.35)

The log ft value is now obtained from (7.13) and (7.33) as

log ft = 3.92 . (15.36)

This is fairly close to the experimental value 3.6 quoted in Fig. 15.1.
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−3/2

0.248
−1/2

0.0
−3/2

63Cu29 34

Q     = 3.367 MeV
EC

84 % 5.4
0.0

−1/2
0.087

−5/2
0.156

−3/2

0.962
−5/2

0.670
−1/2

6.1 % 5.6

7.9 % 5.8

Zn
0.0

30
63

33

0.193
−5/2

63Ni28 35

Q     = 0.066 MeV
β− 100 % 6.7

Fig. 15.2. Beta-minus decay of the 1/2− ground state of 63Ni to the 3/2− ground
state of 63Cu, and β+/EC decay of the 3/2− ground state of 63Zn to the ground and
excited states of 63Cu. The decay Q values, branchings and log ft values are given

15.3.3 Beta Decays in the A = 63 Chain of Isobars

We discuss next β− decay of 63Ni and β+/EC decay of 63Zn to the ground and
excited states of 63Cu. The relevant experimental data are shown in Fig. 15.2.

Consider first the β− decay of the 1/2− ground state of 63Ni to the 3/2−

ground state of 63Cu. Since we have a β− decay from a neutron-odd to a
proton-odd nucleus this is a particle-type transition according to (15.22). We
choose 62

28Ni34 as the even–even reference nucleus and denote

|BCS〉1 = |6228Ni34〉 . (15.37)

The BCS calculation is done in the f-p-0g9/2 valence space for 8 active protons
and 14 active neutrons.

The BCS calculation for N = 35, Nact = 14 was performed in Sect. 14.1,
and the resulting quasiparticle spectrum is shown in Fig. 14.5 (c). For odd-
proton 63Cu the situation simplifies since the reference nucleus 62Ni is semi-
magic with Z = 28. Then the final proton states can be taken as pure particle
states in the 1p-0f5/2-0g9/2 shell; the experimental levels qualitatively agree
with the single-particle levels shown in Figs. 3.3 and 9.2(c).

From Table 14.2 we find the occupation amplitudes for Nact = 14. On the
above interpretation the eight active BCS protons are locked in the 0f7/2 shell,
and in the 63Cu ground state the odd proton is with equal probability in any
of the four 1p3/2 substates. In the CS phase convention we then have

Nact = 14 : u1p1/2 = −0.7770 , v1p1/2 = 0.6294 , (15.38)

Zact = 8 : u1p3/2 = −
√
3
4
= −0.8660 , v1p3/2 =

√
1
4
= 0.5000 . (15.39)
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Equation (15.23) and Table 7.3 give the Gamow–Teller matrix element

MGT =
√
3× (−0.7770)× (−0.8660)×

(
−4
3

)
= −1.554 , (15.40)

whence, by the equations of Chap. 7,

BGT = 1.887 , log ft = 3.51 . (15.41)

The computed log ft is far too small against the experimental value 6.7. This
can be traced back to admixtures of three-quasiparticle components in the
low-energy states of 63Ni.

Next we address the β+/EC decay of the 3/2− ground state of 63Zn to the
3/2− ground and excited states of 63Cu. Since the transitions are now from
a neutron-odd nucleus to a proton-odd one, (15.22) indicates that these are
hole-type transitions. We choose the even–even reference nucleus as

|BCS〉2 = |6430Zn34〉 . (15.42)

Based on this reference we can write

|3/2− ; 63Cu〉 = a†π1p3/2 |BCS〉2 , (15.43)

|1/2− ; 63Cu〉 = a†π1p1/2 |BCS〉2 , (15.44)

|5/2− ; 63Cu〉 = a†π0f5/2 |BCS〉2 , (15.45)

|3/2− ; 63Zn〉 = a†ν1p3/2 |BCS〉2 . (15.46)

Table 14.2 gives the occupation amplitudes (CS phases)

Zact = 10 : u1p3/2 = −0.8086 , v1p3/2 = 0.5884 ,

u1p1/2 = −0.8799 , v1p1/2 = 0.4752 ,

u0f5/2 = −0.9153 , v0f5/2 = 0.4027 , (15.47)

Nact = 14 : u1p3/2 = −0.6737 , v1p3/2 = 0.7390 . (15.48)

The relevant quasiparticle spectra are shown in Fig. 14.5 in panel (a) for
protons and in panel (c) for neutrons. From the expressions (15.23) we now
obtain for the hole transitions

MF(3/2− → 3/2−) = −0.7390× 0.5884× 2 = −0.870 , (15.49)

MGT(3/2− → 3/2−) =
√
3× 0.7390× 0.5884× 2

√
5
3

= 1.123 , (15.50)

MGT(3/2− → 1/2−) =
√
3× 0.7390× 0.4752× 4

3
= 0.811 , (15.51)

MGT(3/2− → 5/2−) = 0 , (15.52)
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The last zero is due to the vanishing single-particle matrix element, so three-
quasiparticle admixtures are needed to explain the observed transition. For
the remaining two transitions the reduced probabilities are

BF(3/2− → 3/2−) = 0.189 , BGT(3/2− → 3/2−) = 0.493 , (15.53)

BGT(3/2− → 1/2−) = 0.257 . (15.54)

These lead to the log ft values

log ft(3/2− → 3/2−) = 3.95 , (15.55)

log ft(3/2− → 1/2−) = 4.38 , (15.56)

which are much smaller than the experimental values. Again, three-quasipar-
ticle admixtures are needed for a better description.

15.4 Transitions Between a Two-Quasiparticle State
and the BCS Vacuum

In this section we first address the electromagnetic decay of excited states of an
even–even nucleus to its BCS ground state. These excited states are proton–
proton and neutron–neutron two-quasiparticle states. Secondly we study beta
decay involving two-quasiparticle states. They are proton–neutron states built
on the BCS vacuum of the even–even reference nucleus. These states reside
in odd–odd nuclei next to the even–even reference nucleus. Beta decay occurs
then between an odd–odd nucleus and the adjacent even–even one.

15.4.1 Formalism for Transition Amplitudes

We set out to develop the necessary formalism for transitions involving two-
quasiparticle states and the BCS vacuum. In our two-part study of such tran-
sitions we begin with electromagnetic transition amplitudes. The second part
takes up beta-decay transitions in an analogous way.

Electromagnetic Transitions to the BCS Ground State

To begin with, we assume that the initial two-quasiparticle state has only
one component. For an electromagnetic transition the initial state is then
of the form (15.10). Using the transition density (15.13) and the symmetry
properties (6.27)–(6.30) of the single-particle matrix elements, we obtain for
the decay of a proton–proton or neutron–neutron two-quasiparticle state the
amplitude

(BCS‖Mσλ‖a b ; J) = δλJNab(J)θ(lb)(va|ub| ± vb|ua|)(a‖Mσλ‖b) ,
+ for σ = E , − for σ = M .

(15.57)
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The phase factor θ(l) is defined in (15.25).
As an extension of (15.10) the wave function of a nuclear state consisting

of two or more two-quasiparticle configurations is

|JπM〉 =
∑
a≤b

XJπ

ab A†ab(JM)|BCS〉 . (15.58)

The indices a and b are both either proton or neutron indices. Equation (15.57)
is immediately extended to

(BCS‖Mσλ‖Jπ) = δλJ
∑
a≤b

XJπ

ab Nab(J)θ(lb)(va|ub| ± vb|ua|)(a‖Mσλ‖b) .

(15.59)
The case Z = N is an interesting special case of the state (15.58). Then the

valence space and single-particle energies to be used are the same for protons
and neutrons. In addition, within the SDI the same strength A1 is to be used
for protons and neutrons in the BCS calculations. In this particular case the
two-quasiparticle states have good isospin and they can be written as

|J M ±〉 ≡ 1√
2

∑
a≤b
Nab(J)

([
a†πaa

†
πb

]
JM
±

[
a†νaa

†
νb

]
JM

)
|BCS〉 . (15.60)

The + sign corresponds to an isoscalar and the − sign to an isovector combi-
nation of the two-quasiparticle components.

The special wave function (15.60) leads to a simplified electric decay am-
plitude. With effective charges inserted, (15.57) yields

(BCS‖Qλ‖J ±)

=
1√
2
δλJ(e

p
eff ± eneff)b

λ
∑
a≤b
Nab(J)θ(lb)(va|ub|+ vb|ua|)(a‖Qλ‖b) . (15.61)

Here the single-particle matrix element (a‖Qσλ‖b) is the one defined in (6.46).
The + sign between the effective charges corresponds to an isoscalar and the
− sign to an isovector transition.

Beta Transitions to and from the BCS Ground State

A BCS (or LNBCS) calculation of the even–even reference nucleus produces
the quasiparticles that can be used to describe the states of an adjacent odd–
odd nucleus. These states are proton–neutron two-quasiparticle states

|p n ; J M〉 =
[
a†pa
†
n

]
JM
|BCS〉 . (15.62)

Applying the transition density (15.13), with a = p and b = n, to (7.18)
and (7.19) we obtain the amplitudes for beta transitions from the state (15.62)
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to the BCS vacuum. For a non-vanishing contribution to β− decay the index
d in (15.13) must be a neutron index and c a proton index. It follows that the
first term of (15.13) carries β− decay. With the single-particle matrix elements
(7.20) and (7.21) we obtain the β− transition amplitudes

M(−)
F (pnJ → BCS) = δJ0δpnĵnvpun ,

M(−)
GT(pnJ → BCS) = δJ1

√
3 vpunMGT(pn) ,

(15.63)

where δpn means that the quantum numbers of the proton and neutron single-
particle states must be the same for non-vanishing.

For a non-vanishing contribution to β+/EC decay the index d in (15.13)
must be a proton index and c a neutron index. Accordingly the second term
of (15.13) is now effective. With use of the symmetry relation (7.23) we then
have the β+/EC transition amplitudes

M(+)
F (pnJ → BCS) = δJ0δnpĵpvnup ,

M(+)
GT(pnJ → BCS) = −δJ1

√
3 vnupMGT(pn) .

(15.64)

The matrix elements for beta transitions BCS→ pnJ are derived similarly
by using the transition density (15.14). The results are

M(−)
F (BCS→ pnJ) = δJ0δpnĵnupvn ,

M(−)
GT(BCS→ pnJ) = δJ1

√
3upvnMGT(pn)

(15.65)

and
M(+)

F (BCS→ pnJ) = δJ0δnpĵpunvp ,

M(+)
GT(BCS→ pnJ) = −δJ1

√
3unvpMGT(pn) .

(15.66)

We can see from (15.63)–(15.66) that corresponding transitions pnJ →
BCS and BCS → pnJ are related through the exchange u ↔ v, the prop-
erty relating the transition densities (15.13) and (15.14). Furthermore, the
equations are related according to

M∓J (BCS→ pnJ) = (−1)JM±J (pnJ → BCS) , (15.67)

where J = 0 indicates a Fermi transition and J = 1 a Gamow–Teller transi-
tion. This result can also be obtained from the relation (2.32) by recognizing
that the Fermi and Gamow–Teller operators are Hermitian tensors.

To illustrate the physical meaning of our results and to make connection
to Subsect. 7.4.1 let us consider β− decay in the limit |BCS〉 → |HF〉. Figure
15.3(a) illustrates the β− transitions (15.65): the initial state is the particle–
hole vacuum and the final state is a proton-particle–neutron-hole state. We
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see from the figure that vn = 1 and up = 1. With these values our β− results
(15.65) agree with (7.63) and (7.64).

Figure 15.3(b) represents the particle–hole limit of (15.63): the initial state
is a proton-hole–neutron-particle state and the final state is the particle–hole
vacuum. We see from the figure that un = 1 and vp = 1. With these values the
expressions (15.63) agree with (7.60) and (7.61); the apparent sign difference
in the Gamow–Teller result is due to the different coupling order.

p

n

p     n

−

p

n

p    n

−

(a) HF pn
-1

(b) p
-1

n HF

Fig. 15.3. Qualitative view of β− decay in the limit |BCS〉 → |HF〉 to and from an
odd–odd nucleus. The hatched blocks enclose the occupied states belonging to the
particle–hole vacuum

For Kth-forbidden unique beta decay the transition density (15.13) sub-
stituted into the definition (7.187), with use of the symmetry relations (7.190)
and (7.191), gives the transition amplitudes

M(−)
Ku (pnJ → BCS) = δJ,K+1Ĵ vpunM(Ku)(pn) ,

M(+)
Ku (pnJ → BCS) = −δJ,K+1Ĵ vnupθ

(K)M(Ku)(pn) ,
(15.68)

where θ(K) is the phase factor (15.25). Again the transition densities for
BCS → pnJ are obtained from (15.68) by the exchange u ↔ v. The two
decay directions are also related through

M(∓)
Ku (BCS→ pnJ) = −θ(K)M(±)

Ku (pnJ → BCS) . (15.69)

It is often necessary to deal with wave functions that are linear combina-
tions of proton–neutron two-quasiparticle components. Such wave functions
have the form

|JπM〉 =
∑
pn

XJπ

pn

[
a†pa
†
n

]
JM
|BCS〉 . (15.70)

When computing beta-decay rates with these wave functions, use Eqs. (15.63)–
(15.69) by combining them with amplitudes Xpn. This is analogous to the
electromagnetic case with the linear combinations (15.58).
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15.4.2 Beta and Gamma Decays in the A = 30 Chain of Isobars

Let us consider electromagnetic and β+/EC decays of the A = 30 nuclei
depicted in Fig. 15.4. This case involves two BCS vacua, namely

|BCS〉1 = |3014Si16〉 , Zact = 6 , Nact = 8 , (15.71)

|BCS〉2 = |3016S14〉 , Zact = 8 , Nact = 6 . (15.72)

The quasiparticle spectra in Fig. 14.3(c) for Zact, Nact = 6 and Fig. 14.4(a) for
Zact, Nact = 8 provide guidance for constructing the two-quasiparticle states
needed. From the one or two lowest levels in the figures we write the following
ansatz for two-quasiparticle wave functions with reference to |BCS〉1:

30Si14 16

2.235+21

30
15 15P S1416

30
99.94 %4.8

0.06 % 5.8

77.5 % 3.50.677+01
19.4 % 4.4

0.5 % 5.70.709+12

Q     = 4.227 MeV
EC

Q     = 6.142 MeV
EC

0.24 ps

0.12 ps

0.0+0gs

0.0+1gs

0.0+0

2.211+21

gs

Fig. 15.4. Beta decay of the 0+ ground state of 30S to the 0+ and 1+ states in
30P. Also shown is the beta decay of the 1+ ground state of 30P to the 0+ and 2+

states in 30Si. The decays proceed via the β+/EC mode. The experimental Q values,
excitation energies, decay branchings, log ft values and E2 gamma-decay half-lives
are shown
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|30Si ; 0+gs〉 = |BCS〉1 , (15.73)

|30Si ; 2+1 〉 =
1√
2

([
a†π1s1/2a

†
π0d5/2

]
2
+

1√
2

[
a†ν0d3/2a

†
ν0d3/2

]
2

)
|BCS〉1 , (15.74)

|30P ; 1+gs〉 = α1

[
a†π1s1/2a

†
ν0d3/2

]
1
|BCS〉1

+
β1√
2

([
a†π0d5/2a

†
ν0d3/2

]
1
+

[
a†π1s1/2a

†
ν1s1/2

]
1

)
|BCS〉1 . (15.75)

The amplitudes α1 and β1, with normalization α2
1+β2

1 = 1, are to be adjusted
to the experimental data.

With reference to the vacuum |BCS〉2 we write similarly the wave functions
|30S ; 0+gs〉 = |BCS〉2 , (15.76)

|30S ; 2+1 〉 =
1√
2

( 1√
2

[
a†π0d3/2a

†
π0d3/2

]
2
+

[
a†ν1s1/2a

†
ν0d5/2

]
2

)
|BCS〉2 , (15.77)

|30P ; 0+1 〉 =
[
a†π1s1/2a

†
ν1s1/2

]
0
|BCS〉2 , (15.78)

|30P ; 1+gs〉 = α2

[
a†π0d3/2a

†
ν1s1/2

]
1
|BCS〉2

+
β2√
2

([
a†π0d3/2a

†
ν0d5/2

]
1
+

[
a†π1s1/2a

†
ν1s1/2

]
1

)
|BCS〉2 . (15.79)

We write the wave function of the second 1+ state in 30P to be orthogonal
to the 1+ ground state. With reference to |BCS〉2 the wave function is thus

|30P ; 1+2 〉 = β2
[
a†π0d3/2a

†
ν1s1/2

]
1
|BCS〉2

− α2√
2

([
a†π0d3/2a

†
ν0d5/2

]
1
+

[
a†π1s1/2a

†
ν1s1/2

]
1

)
|BCS〉2 . (15.80)

Beta Decay

Let us first consider the β+/EC decays. For the decay of 30P to 30Si the wave
functions are (15.73) and (15.75). The transition is of Gamow–Teller type
(15.64). We thus obtain

M(+)
GT(1

+
gs → 0+gs) = −

√
3
{
α1vν0d3/2uπ1s1/2MGT(s1/2d3/2)

+
β1√
2

[
vν0d3/2uπ0d5/2MGT(d5/2d3/2) + vν1s1/2uπ1s1/2MGT(s1/2s1/2)

]}
.

(15.81)

With the u and v amplitudes from Table 14.1 and the Gamow–Teller single-
particle matrix elements from Table 7.3 this becomes

M(+)
GT(1

+
gs → 0+gs) = −

√
3
{
α1 × 0.3489× 0.6330× 0

+
β1√
2

[
0.3489× 0.4996×

(
− 4√

5

)
+ 0.9557× 0.6330×

√
2
]}
= −0.666β1 .

(15.82)
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With the usual relations from Subsect. 7.2.1 this gives

BGT = 0.231β2
1 , log ft = 4.43− 2 log β1 . (15.83)

To reproduce the experimental value log ft = 4.8, we thus need to take

β1 = 0.65 , α1 =
√
1− β2

1 = 0.76 . (15.84)

Next consider the β+/EC transitions from the ground state of 30S to the
states of 30P. For the Fermi transition from the initial state (15.76) to the 0+1
final state (15.78) the first equation (15.66) gives

M(+)
F (0+gs → 0+1 ) =

√
2× 0.6330× 0.9557 = 0.856 . (15.85)

This leads to
log ft(0+gs → 0+1 ) = 3.92 . (15.86)

Compared with the experimental value 3.5 the computed value indicates a
transition that is somewhat too slow. Improved agreement can be expected if
more components are included in the wave function (15.78).

For the decays to the 1+ states the wave functions are (15.76), (15.79) and
(15.80). With the second equation (15.66) we calculate

M(+)
GT(0

+
gs → 1+gs) = −

√
3
{
α2 × 0 +

β2√
2

[
uν0d5/2vπ0d3/2MGT(d3/2d5/2)

+ uν1s1/2vπ1s1/2MGT(s1/2s1/2)
]}

= −β2

√
3
2

(
0.4996× 0.3489× 4√

5
+ 0.6330× 0.9557×

√
2
)
= −1.430β2 .

(15.87)

From the structure of the wave functions (15.79) and (15.80) we see that the
matrix element for the transition to the 1+2 state is obtained from (15.87) by
the replacement β2 → −α2, so that

M(+)
GT(0

+
gs → 1+2 ) = 1.430α2 . (15.88)

The states (15.75) and (15.79) are the same except that protons and neu-
trons are exchanged. We can therefore take α2 = α1 = 0.76, β2 = β1 = 0.65
as a first guess to predict the log ft values for the 0+ → 1+ transitions. The
outcome is

log ft(0+gs → 1+gs) = 3.66 , log ft(0+gs → 1+2 ) = 3.52 . (15.89)

These values are rather far from their experimental counterparts 4.4 and 5.7.
We return to this matter when discussing the mixing of two-quasiparticle
configurations within the quasiparticle versions of the TDA and RPA.
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Electromagnetic Transitions

We calculate the E2 transition in 30Si with the wave functions (15.73) and
(15.74). Equation (15.59), together with Table 14.1 for the occupation ampli-
tudes and Table 6.4 for the single-particle matrix elements, gives the decay
amplitude

(BCS‖Q2‖30Si ; 2+1 )

=
1√
2

[
(vπ1s1/2uπ0d5/2 + vπ0d5/2uπ1s1/2)(π1s1/2‖Q2‖π0d5/2)

+
1√
2
× 2vν0d3/2uν0d3/2(ν0d3/2‖Q2‖ν0d3/2)

]
=

1√
2

[
(0.7741× 0.4996 + 0.8663× 0.6330)(−2.185epeffb2)

+
√
2× 0.3489× 0.9372(−1.975eneffb2)

]
= −(1.445epeff + 0.6458eneff)b2 = −(5.031e

p
eff + 2.249e

n
eff) fm

2 , (15.90)

where the value b = 1.866 fm for the oscillator parameter was used.
By taking epeff = (1 + χ)e and eneff = χe in (15.90) we obtain the reduced

transition probability

B(E2 ; 30Si) =
1
5
(5.031 + 7.280χ)2 e2fm4 . (15.91)

The measured half-life and excitation energy of the 2+1 state give the experi-
mental value B(E2 ; 30Si) = 42 e2fm4. This is fitted by

χ
(
30Si

)
= 1.3 . (15.92)

This appreciable value of χ points to collectivity of the 2+1 state. Such col-
lectivity can be achieved theoretically through a quasiparticle-TDA or -RPA
description.

For the E2 decay of the 2+1 state of
30S we obtain

(BCS‖Q2‖30S ; 2+1 )

=
1√
2

[ 1√
2
× 2vπ0d3/2uπ0d3/2(π0d3/2‖Q2‖π0d3/2)

+ (vν1s1/2uν0d5/2 + vν0d5/2uν1s1/2)(ν1s1/2‖Q2‖ν0d5/2)
]

=
1√
2

[√
2× 0.3489× 0.9372(−1.975epeffb2)

+ (0.7741× 0.4996 + 0.8663× 0.6330)(−2.185eneffb2)
]

= −(0.6458epeff + 1.445eneff)b2 = −(2.249e
p
eff + 5.031e

n
eff) fm

2 . (15.93)

This is the same as (15.90) with protons and neutrons exchanged, as suggested
by the proton–neutron symmetry between the states (15.74) and (15.77).
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Equation (15.93) leads to

B(E2 ; 30S) =
1
5
(2.249 + 7.280χ)2 e2fm4 . (15.94)

The experimental B(E2) value extracted from the data of Fig. 15.4 is 89 e2fm4,
whence

χ(30S) = 2.6 . (15.95)

This large value of the electric polarization constant clearly indicates that a
collective wave function is needed to reproduce the experimental decay rate.

15.5 Transitions Between Two-Quasiparticle States

In this section we discuss electromagnetic and beta-decay transitions involving
two-quasiparticle states of the proton–proton, neutron–neutron and proton–
neutron types.

15.5.1 Electromagnetic Transitions

Even–Even Nuclei

Our starting points for an even–even nucleus are the initial and final states
written in terms of two-quasiparticle states of like nucleons. From (15.10) they
are

|ai bi ; Ji Mi〉 = A†aibi(JiMi)|BCS〉 , (15.96)

|af bf ; Jf Mf 〉 = A†af bf (JfMf )|BCS〉 . (15.97)

With these wave functions and the transition density (15.15) in (6.22), we
have the decay amplitude

(af bf ; Jf‖Mσλ‖ai bi ; Ji)

= λ̂−1
∑
ab

(a‖Mσλ‖b)
[
uaubKλ

ab(fi) + vavb(−1)ja+jb+λKλ
ba(fi)

]
= λ̂−1

∑
ab

(a‖Mσλ‖b)D(λ)
ab Kλ

ab(fi) , (15.98)

where D(λ)
ab is defined in (15.18). Substituting the expression (15.17) for

Kλ
ab(fi) we obtain the final form
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(af bf ; Jf‖Mσλ‖ai bi ; Ji) = ĴiĴfNaibi(Ji)Naf bf (Jf )

×
[
δbibf (−1)

jaf+jbf+Ji+λ

{
Jf Ji λ
jai jaf jbf

}
D(λ)
aiaf

(af‖Mσλ‖ai)

+ δaibf (−1)
jaf+jbi+λ

{
Jf Ji λ
jbi jaf jbf

}
D(λ)
biaf

(af‖Mσλ‖bi)

+ δaiaf (−1)jai+jbi+Jf+λ

{
Jf Ji λ
jbi jbf jaf

}
D(λ)
bibf

(bf‖Mσλ‖bi)

+ δbiaf (−1)Ji+Jf+λ+1

{
Jf Ji λ
jai jbf jaf

}
D(λ)
aibf

(bf‖Mσλ‖ai)
]
,

aibi = nin
′
i or pip

′
i , afbf = nfn

′
f or pfp

′
f .

(15.99)

A simple special case of (15.99) is decay to a Jπ
f = 0

+ excited state. Then
we have af = bf , λ = Ji. The result is (Exercise 15.31)

(af af ; 0+‖Mσλ‖ai bi ; Ji) =
√
2 δλJi ĵaf

−1
Naibi(Ji)

× [δaiafD
(λ)
biaf

(af‖Mσλ‖bi)− δbiaf (−1)
jai+jaf+JiD(λ)

aiaf
(af‖Mσλ‖ai)] .

(15.100)

We note that Eqs. (15.99) and (15.100) differ from (6.99) and (6.103), respec-
tively, only through the D factors. In the Hartree–Fock limit, quasiparticles
become particles when u → 1, v → 0. From (15.18) and (15.19) we then see
that D → ±1. The results thus become identical except for an unimportant
overall phase factor. In the BR convention the phase factor is always 1.

Odd–Odd Nuclei

For an odd–odd nucleus the initial and final states are written as proton–
neutron two-quasiparticle states. This is clear by the number-parity argument
of Subsect. 13.4.2. The states are

|pi ni ; Ji Mi〉 =
[
a†pia

†
ni

]
JiMi
|BCS〉 , (15.101)

|pf nf ; Jf Mf 〉 =
[
a†pf a

†
nf

]
JfMf

|BCS〉 . (15.102)

The decay amplitude for these states can be written directly from (15.99) by
setting ai = pi, bi = ni, af = pf , bf = nf . Because δpn = 0 only the first and
third terms contribute, and we have

(pf nf ; Jf‖Mσλ‖pi ni ; Ji)

= ĴiĴf

[
δninf (−1)

jpf+jnf+Ji+λ

{
Jf Ji λ
jpi jpf jnf

}
D(λ)
pipf

(pf‖Mσλ‖pi)

+ δpipf (−1)jpi+jni+Jf+λ

{
Jf Ji λ
jni jnf jpf

}
D(λ)
ninf

(nf‖Mσλ‖ni)
]
,

(15.103)
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As in the case of (15.100), by setting Jf = 0 in (15.103) we obtain the
simple expression

(pf nf ; 0‖Mσλ‖pi ni ; Ji) = δλJiδjpf jnf (−1)
jpi+jpf+1ĵpf

−1

× [δninf (−1)JiD(λ)
pipf

(pf‖Mσλ‖pi) + δpipfD(λ)
ninf

(nf‖Mσλ‖ni)] . (15.104)

In the Hartree–Fock limit withD → ±1, the expressions (15.103) and (15.104),
respectively, become (6.102) and (6.104) to within sign.

15.5.2 Beta-Decay Transitions

Beta-decay transitions proceed between an even–even nucleus and an adjacent
odd–odd one. The states of the even–even nucleus are two-quasiparticle states
of like nucleons; the states of the odd–odd nucleus are proton–neutron two-
quasiparticle states. As in the case of odd-A nuclei discussed in Subsect. 15.3,
the transitions can be classified into two categories, particle type and hole
type. Stated like (15.22), the classification is

Particle type

nin
′
i

β−
−→ pfnf , pini

β−
−→ pfp

′
f , pip

′
i

β+/EC−→ pfnf , pini
β+/EC−→ nfn

′
f ,

Hole type

pip
′
i

β−
−→ pfnf , pini

β−
−→ nfn

′
f , nin

′
i

β+/EC−→ pfnf , pini
β+/EC−→ pfp

′
f .

(15.105)

Allowed Beta Decay

Equations (7.105)–(7.108) give the transition amplitudes for allowed beta de-
cay between two-particle states. The transition amplitudes for quasiparticles
are straightforward generalizations of these equations. For particle-type tran-
sitions the single-particle matrix elements are multiplied by uiuf . The cor-
responding factor for hole-type transitions is (−1)L+1vivf , where the phase
factor is from (7.117). To carry these occupation factors we define

B(−)L (if) ≡ uiuf particle type , (15.106)

B(+)
L (if) ≡ (−1)L+1vivf hole type . (15.107)

The Fermi and Gamow–Teller single-particle matrix elements from Chap. 7
are

M0(pn) =MF(pn) = ĵpδpn , (15.108)
M1(pn) =MGT(pn) . (15.109)
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Inserting the factors (15.106) and (15.107) into Eqs. (7.105)–(7.108) we
obtain the transition amplitudes for allowed beta decay between two-quasipar-
ticle states. With the notationM(∓) for particle-type β− decay or hole-type
β+/EC decay, according to (15.105), we then have

M(∓)
L (ni n′i ; Ji → pf nf ; Jf ) = L̂ĴiĴfNnin′

i
(Ji)

×
[
δn′
inf
(−1)jpf+jnf+Ji+L

{
Ji Jf L
jpf jni jnf

}
B(∓)L (pfni)ML(pfni)

+ δninf (−1)
jpf+jn′

i
+L

{
Ji Jf L
jpf jn′

i
jnf

}
B(∓)L (pfn′i)ML(pfn′i)

]
,

(15.110)

M(∓)
L (pi ni ; Ji → pf p′f ; Jf ) = L̂ĴiĴfNpfp′f (Jf )

×
[
δpip′f (−1)

jpf+jni+L

{
Ji Jf L
jpf jni jp′f

}
B(∓)L (pfni)ML(pfni)

+ δpipf (−1)
jpf+jni+Jf+L

{
Ji Jf L
jp′f jni jpf

}
B(∓)L (p′fni)ML(p′fni)

]
,

(15.111)

M(±)
L (pi p′i ; Ji → pf nf ; Jf ) = L̂ĴiĴfNpip′i(Ji)

×
[
δpipf (−1)

jnf+jpf+Jf+L

{
Ji Jf L
jnf jp′i jpf

}
B(∓)L (p′inf )ML(p′inf )

+ δp′ipf (−1)
jpi+jnf+Ji+Jf+L

{
Ji Jf L
jnf jpi jpf

}
B(∓)L (pinf )ML(pinf )

]
,

(15.112)

M(±)
L (pi ni ; Ji → nf n′f ; Jf ) = L̂ĴiĴfNnfn′

f
(Jf )

×
[
δnin′

f
(−1)jpi+jni+Ji+L

{
Ji Jf L
jnf jpi jni

}
B(∓)L (pinf )ML(pinf )

+ δninf (−1)
jpi+jn′

f
+Ji+Jf+L

{
Ji Jf L
jn′
f
jpi jnf

}
B(∓)L (pin′f )ML(pin′f )

]
.

(15.113)
Equations (15.110)–(15.113) simplify in the case of a zero-coupled qua-

siparticle pair, i.e. when Jf = 0 or Ji = 0. The resulting expressions can
be written down directly by inserting the occupation factors (15.106) and
(15.107) into Eqs. (7.109)–(7.116):
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M(∓)
L (ni n′i ; Ji → pf nf ; Jf = 0) = δJiLδjpf jnf Ĵiĵpf

−1
Nnin′

i
(Ji)

×
[
δn′
inf
(−1)jni+jnf+Ji+1B(∓)L (pfni)ML(pfni)

+ δninfB
(∓)
L (pfn′i)ML(pfn′i)

]
, (15.114)

M(∓)
L (ni n′i ; Ji = 0→ pf nf ; Jf ) = δJfLδjni jn′i

Ĵf ĵni
−1
Nnin′

i
(0)

×
[
δn′
inf
B(∓)L (pfni)ML(pfni) + δninfB

(∓)
L (pfn′i)ML(pfn′i)

]
, (15.115)

M(∓)
L (pi ni ; Ji → pf p′f ; Jf = 0) = δJiLδjpf jp′f

Ĵiĵpf
−1
Npfp′f (0)

×
[
δpip′fB

(∓)
L (pfni)ML(pfni) + δpipfB

(∓)
L (p′fni)ML(p′fni)

]
, (15.116)

M(∓)
L (pi ni ; Ji = 0→ pf p′f ; Jf ) = δJfLδjni jpi Ĵf ĵni

−1
Npfp′f (Jf )

×
[
δpip′fB

(∓)
L (pfni)ML(pfni)

+ δpipf (−1)
jpf+jp′

f
+Jf+1B(∓)L (p′fni)ML(p′fni)

]
, (15.117)

M(±)
L (pi p′i ; Ji → pf nf ; Jf = 0) = δJiLδjnf jpf Ĵiĵnf

−1
Npip′i(Ji)

×
[
δpipf (−1)

jpf+jp′
i
+1B(∓)L (p′inf )ML(p′inf )

+ δp′ipf (−1)
JiB(∓)L (pinf )ML(pinf )

]
, (15.118)

M(±)
L (pi p′i ; Ji = 0→ pf nf ; Jf ) = δJfLδjpi jp′i

(−1)Jf Ĵf ĵpi
−1
Npip′i(0)

×
[
δpipfB

(∓)
L (p′inf )ML(p′inf ) + δp′ipfB

(∓)
L (pinf )ML(pinf )

]
, (15.119)

M(±)
L (pi ni ; Ji → nf n′f ; Jf = 0) = δJiLδjnf jn′f

(−1)Ji Ĵiĵnf
−1
Nnfn′

f
(0)

×
[
δnin′

f
B(∓)L (pinf )ML(pinf ) + δninfB

(∓)
L (pin′f )ML(pin′f )

]
, (15.120)

M(±)
L (pi ni ; Ji = 0→ nf n′f ; Jf ) = δJfLδjpi jni Ĵf ĵpi

−1
Nnfn′

f
(Jf )

×
[
δnin′

f
(−1)jni+jnf+1B(∓)L (pinf )ML(pinf )

+ δninf (−1)JfB
(∓)
L (pin′f )ML(pin′f )

]
. (15.121)
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Kth-forbidden Unique Beta Decay

The formulas (15.110)–(15.121) can be carried over to the case of Kth-
forbidden unique beta-decay transitions by using the conversion recipe (7.210)
for β− decay and (7.213) for β+/EC decay.

15.5.3 Beta Decay of 30P

Let us compute the log ft value of the β+/EC decay of the 1+ ground state
of 30

15P15 to the first excited 2
+ state in 30

14Si16; see Fig. 15.4. For the initial
and final states we assume (15.79) and (15.77) respectively. The transition
is of Gamow–Teller type. Inspection of the states shows that there are three
particle-type contributions to the transition. Their decay amplitudes are given
by (15.113). However, two of these vanish because of vanishing single-particle
matrix elements:

M(+)
GT

(
π1s1/2 ν0d3/2 ; 1→ (ν0d3/2)2 ; 2

)
= 0 , (15.122)

M(+)
GT

(
π1s1/2 ν1s1/2 ; 1→ (ν0d3/2)2 ; 2

)
= 0 . (15.123)

The two terms of the non-vanishing decay amplitude contribute equally.
For the B factors (15.106) and (15.107) we need the occupation amplitudes.
They are given (Zact = 6, Nact = 8) by Table 14.1, while Table 7.3 gives the
single-particle matrix elements. Substitution yields

M(+)
GT

(
π0d5/2 ν0d3/2 ; 1→ (ν0d3/2)2 ; 2

)
= 2×

√
3×
√
3×
√
5× 1√

2

× (−1) 52+ 3
2+1+1

{
1 2 1
3
2

5
2

3
2

}
uπ0d5/2uν0d3/2MGT(d5/2 d3/2)

= 3
√
10

(
− 1
10
√
6

)
0.4996× 0.9372

(
− 4√

5

)
= 0.3244 . (15.124)

In addition there are three hole-type contributions, to be calculated from
(15.111). Two of them vanish because of vanishing single-particle matrix ele-
ments and Kronecker deltas in (15.111):

M(+)
GT(π1s1/2 ν1s1/2 ; 1→ π1s1/2 π0d5/2 ; 2) = 0 , (15.125)

M(+)
GT(π0d5/2 ν0d3/2 ; 1→ π1s1/2 π0d5/2 ; 2) = 0 . (15.126)

The third one is

M(+)
GT(π1s1/2 ν0d3/2 ; 1→ π1s1/2 π0d5/2 ; 2) =

√
3×
√
3×
√
5

×
[
0 + (−1) 12+ 3

2+2+1

{
1 2 1
5
2

3
2

1
2

}
(−1)1+1vπ0d5/2vν0d3/2MGT(d5/2 d3/2)

]
= −3

√
5
(
− 1
2
√
5

)
0.8663× 0.3489

(
− 4√

5

)
= −0.8110 . (15.127)
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With the values α1 = 0.76 and β1 = 0.65 of the wave-function amplitudes
from (15.84) the complete Gamow–Teller matrix element becomes

M(+)
GT

(
30P(1+gs)→ 30Si(2+1 )

)
=

β1√
2
× 1√

2
× 0.3244 + α1

1√
2
(−0.8110)

= −0.33 . (15.128)

The usual relations of Subsect. 7.2.1 give

log ft(1+gs → 2+1 ) = 5.0 . (15.129)

The experimental value in Fig. 15.3 is 5.8. Thus the decay of the 30P ground
state to the ground state and first excited 2+ state in 30Si are seen to be fairly
consistently described by the simple wave functions (15.73)–(15.75).

15.5.4 Magnetic Dipole Decay in 30P

We continue our discussion of the A = 30 chain of nuclei. Consider the M1
decay of the 0+ first excited state of 30P to the 1+ ground state, as shown in
Fig. 15.5. We use the wave functions (15.78) and (15.79). Equation (15.104)
gives the reduced matrix element except that it is stated in reverse order,
Ji → 0. However, as seen from (2.32) or (11.290), this only introduces a phase
factor that disappears from the reduced transition probability (6.4).

The states (15.78) and (15.79) give three contributions to the transition.
Because of vanishing single-particle matrix elements, two of them are zero:

(π1s1/2 ν1s1/2 ; 0‖M1‖π0d3/2 ν1s1/2 ; 1) = 0 , (15.130)
(π1s1/2 ν1s1/2 ; 0‖M1‖π0d3/2 ν0d5/2 ; 1) = 0 . (15.131)

The non-zero contribution is

(π1s1/2 ν1s1/2 ; 0‖M1‖π1s1/2 ν1s1/2 ; 1) = (−1)
1
2+

1
2+1 1√

2

×
[
(−1)1D(1)

π1s1/2 π1s1/2
(π1s1/2‖M1‖π1s1/2)

+D(1)
ν1s1/2 ν1s1/2

(ν1s1/2‖M1‖ν1s1/2)
]
. (15.132)

30
15 P15

0.11 ps

0.0

0.677+01

M1

+1gs

Fig. 15.5. Decay of the first excited state to the ground state in 30P. The excitation
energy in Mega-electronvolts and the half-life are indicated
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For the magnetic transition at hand the D factors are given by (15.18) and
(15.19) as

D(1)
π1s1/2 π1s1/2

= u2π1s1/2 + v2π1s1/2 = 1 , (15.133)

D(1)
ν1s1/2 ν1s1/2

= u2ν1s1/2 + v2ν1s1/2 = 1 . (15.134)

Tables 6.6 and 6.7 give the single-particle matrix elements. With the bare
g factors (6.25), the reduced matrix element (15.132) becomes

(π1s1/2 ν1s1/2 ; 0‖M1‖π1s1/2 ν1s1/2 ; 1)

=
1√
2
[−(π1s1/2‖M1‖π1s1/2) + (ν1s1/2‖M1‖ν1s1/2)]

=
1√
2
[−(1× 0)− (5.586× 0.598) + 0× 0 + (−3.826)× 0.598]μN/c

= −3.980μN/c . (15.135)

Including the factor β2/
√
2 from the state (15.79), we obtain the reduced

transition probability

B(M1 ; 0+1 → 1+gs) =
(

β2√
2

)2

(−3.980μN/c)2 = 7.92β2
2 (μN/c)2 . (15.136)

From Table 6.9 and the data in Fig. 15.5 we calculate an experimental
B(M1) value of 1.14 (μN/c)2. Equating it with the theoretical value (15.136)
we find β2 = 0.38. This is not very far from the value 0.65 determined from
the beta-decay fit in Subsect. 15.4.2.

Epilogue

We have discussed electromagnetic and beta-decay transitions with the BCS
vacuum, one-quasiparticle states and two-quasiparticle states as initial and
final states in even–even, odd–odd and odd-A nuclei. This paves the way to
treating decays of more complicated nuclear states by methods involving two-
quasiparticle configuration mixing. In the rest of the book we discuss these
methods extensively. The first one to be discussed, in the next chapter, is the
quasiparticle-TDA.

Exercises

15.1. Prove the relation (15.3).

15.2. Derive the relation (15.14).
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15.3. Derive the relation (15.15).

15.4. Carry out the details leading to the result (15.18).

15.5. Show that the factor D(λ)
if defined in (15.18) can be written as

D(λ)
if = uiuf − ζ(λ)vivf , (15.137)

where the phase factor ζ(λ) was defined in (11.223).

15.6. Derive the beta-decay matrix elements (15.23).

15.7. Verify the values of the reduced E2 transition probabilities in (15.31).

15.8. Compute the log ft values for the β− decay of the ground state of 25Na
to the ground state and first excited 3/2+ state in 25Mg. Take the occupation
amplitudes from Table 14.1. Compare with experimental data and comment.

15.9. Calculate the decay half-life of the first excited 3/2+ state in 25Na. Take
the occupation amplitudes from Table 14.1. Compare with experimental data
and comment. Discuss also the decay of the first excited state of 25Mg.

15.10. Compute the log ft values for the β− decay of the 1/2+ ground state
of 27Mg to the first 1/2+ and 3/2+ states in 27Al. Take the occupation am-
plitudes from Table 14.1. Compare with experimental data and comment.

15.11. Compute the log ft values for the β+/EC decay of the 5/2+ ground
state of 27Si to the 5/2+ ground state and 3/2+ excited state of 27Al. Take
the occupation amplitudes from Table 14.1. Compare with experimental data
and try to identify which one of the excited 3/2+ states in 27Al most closely
corresponds to a one-quasiparticle state.

15.12. Compute the electromagnetic decay half-lives of the first excited states
of 27Mg, 27Al and 27Si. Take the occupation amplitudes from Table 14.1.
Compare with experimental data and comment.

15.13. Compute the log ft value for the β+/EC decay of the ground state of
31S to the ground state of 31P. Take the occupation amplitudes from Table
14.1. Compare with experimental data and comment.

15.14. Compute the log ft values for the β+/EC decay of the 3/2+ ground
state of 33Cl to the 3/2+ ground state and 5/2+ excited state of 33S. Take
the occupation amplitudes from Table 14.1. Compare with experimental data
and try to identify which one of the excited 5/2+ states in 33S most closely
corresponds to a one-quasiparticle state.

15.15. Compute the log ft values for the β− decay of the 3/2+ ground state of
35S and the β+/EC decay of the 3/2+ ground state of 35Ar to the 3/2+ ground
state of 35Cl. Take the occupation amplitudes from Table 14.1. Compare with
experimental data and comment.
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15.16. Compute the log ft values for the transitions from ground state to
ground state in the decay chain 61Zn → 61Cu → 61Ni. Assume the relevant
states to be one-quasiparticle states and take the occupation amplitudes from
Table 14.2. Compare with experimental data and comment.

15.17. Derive in detail the transition amplitude (15.57).

15.18. Derive the transition matrix elements (15.63) and (15.64).

15.19. Derive the relation (15.67) by means of the Hermitian tensor property
(2.32) and its extension (11.290).

15.20. Compute the log ft value of the 2nd-forbidden unique β+/EC decay
of the 3+ ground state of 22Na to the 0+ ground state of 22Ne. Use Fig. 14.3
as a guide to construct approximate wave functions. Take the occupation
amplitudes from Table 14.1. Compare with experimental data and comment.

15.21. Discuss the beta and gamma decays involving the nuclei 24Na, 24Mg
and 24Al.
(a) Use the quasiparticle spectra of Subsect. 14.1.2 to construct approximate

wave functions of the 0+gs, 2
+
1 and 4

+
1 states of

24Mg.
(b) Similarly construct wave functions for the 1+1 states of

24Na and 24Al.

15.22. This is continuation of Exercise 15.21. By using the occupation ampli-
tudes of Table 14.1 determine the structure of the 1+1 state in 24Al by com-
paring the computed log ft value with the experimental one for the transition
24Al(1+1 )→ 24Mg(0+gs).

15.23. This is continuation of Exercise 15.22. By using the occupation ampli-
tudes of Table 14.1 compute the half-life of the 2+1 state of 24Mg. Determine
the electric polarization constant χ by comparison with the experimental half-
life.

15.24. This is continuation of Exercise 15.23. Calculate the log ft value for
the β+/EC decay of the 1+1 state in 24Al to the 2+1 state in 24Mg. Compare
with experimental data and comment.

15.25. By using the quasiparticle spectra of Subsect. 14.1.2 and the occupa-
tion amplitudes of Table 14.1 compute the half-life of the 1+1 state of 26Al.
Assume a reasonable structure for the wave functions. Compare with experi-
mental data and comment.

15.26. Compute the log ft values for the β+/EC decay of the 0+ ground state
of 34Ar to the 0+ ground state and first two excited 1+ states in 34Cl. Take the
occupation amplitudes from Table 14.1. Form the final states by inspecting
the single-quasiparticle spectra in Fig. 14.4. Compare with experimental data
and comment.
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15.27. Compute the log ft values for the β− decay of the 1+ ground state of
34P and the β+/EC decay of the 0+ ground state of 34Cl to the 0+ ground
state of 34S. Take the occupation amplitudes from Table 14.1. Compare with
experimental data and comment.

15.28. Compute the electromagnetic decay half-lives of the first excited states
in 34S and 34Ar by using a common value for the electric polarization constant.
Take the occupation amplitudes from Table 14.1. Compare with experimental
data and comment.

15.29. Verify the experimental B(E2) value used to obtain (15.92) and
(15.95).

15.30. Verify the second equality in (15.98).

15.31. Derive the relation (15.100) from (15.99).

15.32. Derive the relation (15.104) from (15.103).

15.33. Derive the relations (15.114) and (15.115) from (15.110).

15.34. Compute the log ft value for the β− decay of the 1+ ground state of 34P
to the 2+1 excited state in

34S. Use the quasiparticle spectra of Subsect. 14.1.2
to build reasonable wave functions for the initial and final states. Use the
occupation amplitudes of Table 14.1.
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Mixing of Two-Quasiparticle Configurations

Prologue

In this chapter we discuss configuration mixing of two-quasiparticle states.
It is caused by the residual interaction remaining beyond the quasiparticle
mean field defined in Chap. 13. We derive the equations of motion by the
EOM method developed in Sect. 11.1. To accomplish this we need to express
the residual Hamiltonian in terms of quasiparticles.

Applied to like-quasiparticle (proton–proton, neutron–neutron) pairs, the
EOM leads to the quasiparticle TDA (QTDA) for an even–even nucleus. Ap-
plied to proton–neutron quasiparticle pairs, the EOM leads to the proton–
neutron QTDA (pnQTDA) for odd–odd nuclei. The QTDA and pnQTDA are
the subjects of this chapter and the next.

16.1 Quasiparticle Representation
of the Residual Interaction

In this section we finish the development of the quasiparticle representation of
the nuclear Hamiltonian. This consists in expressing the residual interaction
in (13.65) in terms of the quasiparticle creation and annihilation operators
(13.10). The residual interaction was given in compact form in (13.33),

VRES = 1
4

∑
αβγδ

v̄αβγδN
[
c†αc
†
βcδcγ

]
BCS

, (16.1)

where N [. . .]BCS denotes normal ordering with respect to the BCS vacuum
|BCS〉.

Substitution of (13.12) and (13.13) into (16.1) gives
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VRES = 1
4

∑
αβγδ

v̄αβγδN
[
(uaa†α − vaãα)(uba

†
β − vbãβ)

× (udaδ − vdã
†
δ)(ucaγ − vcã

†
γ)

]
BCS

= 1
4

∑
αβγδ

v̄αβγδN
[
(uauba†αa

†
β − 2uavba†αãβ + vavbãαãβ)

× (vcvdã†δã†γ − 2ucvdã
†
δaγ + ucudaδaγ)

]
BCS

, (16.2)

where terms were combined by changing summation indices and using (4.29).
We next expand (16.2) completely. The result is

VRES = 1
4

∑
αβγδ

v̄αβγδ
[
uaubvcvda

†
αa
†
β ã
†
δã
†
γ − 2uaubucvda†αa

†
β ã
†
δaγ

+ uaubucuda
†
αa
†
βaδaγ − 2uavbvcvda†αã

†
δã
†
γ ãβ − 4uavbucvda†αã

†
δãβaγ

− 2uavbucuda†αãβaδaγ + vavbvcvdã
†
δã
†
γ ãαãβ − 2vavbucvdã

†
δãαãβaγ

+ vavbucudãαãβaδaγ
]
. (16.3)

By changes of summation indices, use of the symmetry relations (4.29) and
(13.127) with real v̄αβγδ, and recognition of Hermitian conjugates we find

VRES =
∑
αβγδ

v̄αβγδ
[
1
4uaubvcvd(a

†
αa
†
β ã
†
δã
†
γ +H.c.)

− 1
2 (uaubucvd − vavbvcud)(a†αa

†
β ã
†
δaγ +H.c.)

+ 1
4 (uaubucud + vavbvcvd)a†αa

†
βaδaγ − uavbucvda

†
αã
†
δãβaγ

]
≡ H40 +H31 +H22 , (16.4)

where the three terms stand for the three lines of the equation.
We want to express (16.4) in angular-momentum-coupled form. To do so

we use the relation (8.17) for the two-body matrix element v̄αβγδ and express
all creation and annihilation operators in proper tensor form. For H40 we
calculate by standard angular momentum techniques∑

mαmβ
mγmδ

v̄αβγδ(−1)jd+mδ+jc+mγa†αa
†
βa
†
−δa
†
−γ

=
∑
JM

[Nab(J)Ncd(J)]−1〈a b ; J |V |c d ; J〉
∑

mαmβ
mγmδ

(−1)jd+mδ+jc+mγ

× (ja mα jb mβ |J M)(jc mγ jd mδ|J M)a†αa
†
βa
†
−δa
†
−γ

=
∑
J

(−1)J+1[Nab(J)Ncd(J)]−1〈a b ; J |V |c d ; J〉
[
a†aa
†
b

]
J
·
[
a†ca
†
d

]
J

, (16.5)

where we use the dot product notation (2.51).
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For H31 we calculate similarly∑
mαmβ
mγmδ

v̄αβγδ(−1)jd+mδ+jc−mγa†αa
†
βa
†
−δã−γ

=
∑
J

(−1)J [Nab(J)Ncd(J)]−1〈a b ; J |V |d c ; J〉
[
a†aa
†
b

]
J
·
[
a†dãc

]
J

, (16.6)

where we used the symmetry property (8.30).
The calculation for the first term of H22 is essentially the same as (16.5),

whence∑
mαmβ
mγmδ

v̄αβγδ(−1)jd−mδ+jc−mγa†αa
†
β ã−δã−γ

=
∑
J

(−1)J+1[Nab(J)Ncd(J)]−1〈a b ; J |V |c d ; J〉
[
a†aa
†
b

]
J
·
[
ãcãd

]
J

. (16.7)

As above, the calculation for the second term of H22 begins with∑
mαmβ
mγmδ

v̄αβγδ(−1)jd+mδ+jc−mγa†αa
†
−δãβ ã−γ

=
∑
JM

[Nab(J)Ncd(J)]−1〈a b ; J |V |c d ; J〉
∑

mαmβ
mγmδ

(−1)jd+mδ+jc−mγ

× (ja mα jb mβ |J M)(jc mγ jd mδ|J M)a†αa
†
−δãβ ã−γ . (16.8)

The recoupling needed to bring the operator part of this expression into the
form in (16.7) is accomplished through 6j symbols. From Eq. (1.58) that
defines the 6j symbol one can derive the identity (Exercise 16.3)∑

M

(ja mα jb mβ |J M)(jc mγ jd mδ|J M) = Ĵ 2
∑
J ′M ′

(−1)J ′+jc+jd+mα−mγ

× (ja mα jd −mδ|J ′ −M ′)(jc −mγ jb mβ |J ′M ′)
{

ja jd J ′

jc jb J

}
. (16.9)

Substituting this into (16.8) results in∑
mαmβ
mγmδ

v̄αβγδ(−1)jd+mδ+jc−mγa†αa
†
−δãβ ã−γ =

∑
J

[Nab(J)Ncd(J)]−1

× (−1)jb+jc Ĵ 2〈a b ; J |V |c d ; J〉
∑
J ′

{
ja jd J ′

jc jb J

}[
a†aa
†
d

]
J ′ ·

[
ãbãc

]
J ′ . (16.10)

To obtain final expressions for H40, H31 and H22 it remains to attach the
u, v factors and numerical constants in (16.4). With substitution from (16.5)
H40 becomes
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H40 = 1
4

∑
abcd
J

(−1)J+1[Nab(J)Ncd(J)]−1uaubvcvd

× 〈a b ; J |V |c d ; J〉
([

a†aa
†
b

]
J
·
[
a†ca
†
d

]
J
+H.c.

)
. (16.11)

To construct H31 we substitute from (16.6). To have the same order abcd in
the labels of the operator as in (16.11) we exchange the summation indices c
and d. The result is

H31 = 1
2

∑
abcd
J

(−1)J+1[Nab(J)Ncd(J)]−1(uaubvcud − vavbucvd)

× 〈a b ; J |V |c d ; J〉
([

a†aa
†
b

]
J
·
[
a†cãd

]
J
+H.c.

)
. (16.12)

The term H22 is more complicated than the other two. With substitution
from (16.7) and (16.10) it becomes

H22 = 1
4

∑
abcd
J

(−1)J+1[Nab(J)Ncd(J)]−1(uaubucud + vavbvcvd)

× 〈a b ; J |V |c d ; J〉
[
a†aa
†
b

]
J
·
[
ãcãd

]
J

+
∑
abcd
JJ ′

(−1)jb+jc+1[Nab(J)Ncd(J)]−1Ĵ 2uavbucvd

× 〈a b ; J |V |c d ; J〉
{

ja jd J ′

jc jb J

}[
a†aa
†
d

]
J ′ ·

[
ãbãc

]
J ′ . (16.13)

We combine the two terms by changing summation indices in the second term
and anticommuting the annihilation operators, with the result

H22 =
∑
abcd
J

(−1)J
[
− 1

4 [Nab(J)Ncd(J)]−1(uaubucud + vavbvcvd)

× 〈a b ; J |V |c d ; J〉

+ uavbucvd
∑
J ′
[Nad(J ′)Ncb(J ′)]−1Ĵ ′

2
{

ja jb J
jc jd J ′

}
× 〈a d ; J ′|V |c b ; J ′〉

][
a†aa
†
b

]
J
·
[
ãcãd

]
J

. (16.14)

Certain conventional abbreviations are used for lumped terms occurring
in (16.11), (16.12) and (16.14). They are

V
(40)
abcd (J) ≡ −1

2 [Nab(J)Ncd(J)]−1uaubvcvd〈a b ; J |V |c d ; J〉
≡ uaubvcvdG(abcdJ) , (16.15)

V
(31)
abcd (J) ≡ −1

2 [Nab(J)Ncd(J)]−1(uaubvcud − vavbucvd)〈a b ; J |V |c d ; J〉



www.manaraa.com

16.1 Quasiparticle Representation of the Residual Interaction 483

= (uaubvcud − vavbucvd)G(abcdJ) , (16.16)

V
(22)
abcd (J) ≡ −1

2 [Nab(J)Ncd(J)]−1(uaubucud + vavbvcvd)〈a b ; J |V |c d ; J〉

+ 2uavbucvd
∑
J ′
[Nad(J ′)Ncb(J ′)]−1Ĵ ′

2
{

ja jb J
jc jd J ′

}
× 〈a d ; J ′|V |c b ; J ′〉

≡ (uaubucud + vavbvcvd)G(abcdJ) + 4uavbucvdF (abcdJ) . (16.17)

With these abbreviations the residual interaction is stated compactly as

VRES = 1
4

∑
αβγδ

v̄αβγδN
[
c†αc
†
βcδcγ

]
BCS

= H40 +H31 +H22 ,

H40 = 1
2

∑
abcd
J

(−1)JV (40)
abcd (J)

([
a†aa
†
b

]
J
·
[
a†ca
†
d

]
J
+H.c.

)
,

H31 =
∑
abcd
J

(−1)JV (31)
abcd (J)

([
a†aa
†
b

]
J
·
[
a†cãd

]
J
+H.c.

)
,

H22 = 1
2

∑
abcd
J

(−1)JV (22)
abcd (J)

[
a†aa
†
b

]
J
·
[
ãcãd

]
J

.

(16.18)

Except for the normalization factor and sign, the J ′ sum in (16.14) is
recognized to be identical with the right-hand side of the Pandya transforma-
tion (9.22). This leads us to define a generalized particle–hole matrix element
by the generalized Pandya transformation

〈a b−1 ; J |VRES|c d−1 ; J〉

≡ −
∑
J ′
[Nad(J ′)Ncb(J ′)]−1Ĵ ′

2
{

ja jb J
jc jd J ′

}
〈a d ; J ′|V |c b ; J ′〉 . (16.19)

The Pandya transformation (9.22) and its generalization (16.19) differ only
through the presence of the normalization factor in the latter. This factor takes
into account that the same orbital may be both a ‘particle orbital’ and a ‘hole
orbital’. The orbitals of a particle–hole pair ab−1 are not constrained to lie
above (particles a) or below (holes b−1) a Fermi surface. An open-shell nucleus
has several neutrons and protons outside a closed major shell. Therefore we
cannot define a Fermi surface and the related particles and holes.

The generalized particle–hole matrix element (16.19) reduces to the ordi-
nary particle–hole matrix element of (9.22) for pure particle–hole excitations
at a closed major shell. The normalization constants, defined in (5.21), are
then Nad(J ′) = 1 and Ncb(J ′) = 1.

Equations (16.15) and (16.17) defined the abbreviations G and F , origi-
nally due to Baranger [31]. We now restate them explicitly as
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G(abcdJ) = − 1
2 [Nab(J)Ncd(J)]−1〈a b ; J |V |c d ; J〉

= − 1
2

√
1 + δab(−1)J

√
1 + δcd(−1)J 〈a b ; J |V |c d ; J〉 , (16.20)

F (abcdJ) = − 1
2 〈a b−1 ; J |VRES|c d−1 ; J〉 . (16.21)

The explicit normalization factors in (16.20) have been written so that they
take into account the vanishing of the two-body matrix element. Note that
the indices a, b, c and d contain not only the orbital information but also
the proton and neutron labels π and ν. For proton–neutron two-body matrix
elements (16.20) thus gives

G(pnp′n′J) = − 1
2 〈p n ; J |V |p′ n′ ; J〉 . (16.22)

This concludes the derivation of the quasiparticle transformation of the
residual Hamiltonian. Next we derive the quasiparticle-TDA equation.

16.2 Derivation of the Quasiparticle-TDA Equation

In Sect. 11.1 we used the EOM method to derive the particle–hole RPA equa-
tion. In a similar manner we can use the EOM to derive the quasiparticle-TDA
(QTDA) equation. In the QTDA formalism we start from the proton–proton
and neutron–neutron two-quasiparticle configurations. By the number-parity
principle of Subsect. 13.4.2 both types of two-quasiparticle excitation describe
states of an even–even nucleus. Due to the number constraint (13.72) of the
BCS, or (14.19) of the LNBCS, the dominant component in a QTDA wave
function has the nucleon numbers of the even–even reference nucleus for which
the BCS or LNBCS calculation was done. Accordingly the QTDA solutions
are assumed to describe states of the even–even reference nucleus.

We now start the derivation of the QTDA equation. As stated in Table
11.1, the relevant operators are

δQ = Aab(JM) , Q†ω =
∑
cd

Xω
cdA
†
cd(JM) , (16.23)

where ω = nJπM is the full set of quantum numbers. The quasiparticle pair
creation and annihilation operators were given in (11.17) and (11.19) as

A†ab(JM) = Nab(J)
[
a†aa
†
b

]
JM

, Aab(JM) = −Nab(J)(−1)J+M
[
ãaãb

]
J,−M .

(16.24)
The parity of the quasiparticle pair created by (16.24) is

π = (−1)la+lb . (16.25)

The commutator between two quasiparticle pair operators is (Exercise
16.5)
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Aab(JM), A†cd(J

′M ′)
]
= δJJ ′δMM ′N 2

ab(J)[δacδbd − (−1)ja+jb+Jδadδbc]

+ terms with a†a . (16.26)

The expectation value of the a†a terms vanishes for the BCS vacuum |BCS〉,
whence

〈BCS|
[
Aab(JM), A†cd(J

′M ′)
]
|BCS〉

= δJJ ′δMM ′N 2
ab(J)[δacδbd − (−1)ja+jb+Jδadδbc] . (16.27)

The starting point of the derivation of the QTDA equation is the equation
of motion (11.11). Written for the present case of Bose-like basic excitations
and the BCS vacuum it is

〈BCS|
[
δQ,H, Q†ω

]
|BCS〉 = Eω〈BCS|

[
δQ,Q†ω

]
|BCS〉 , (16.28)

where H is the complete Hamiltonian in terms of quasiparticles. Inserting
(16.23) into the right-hand side gives

〈BCS|
[
δQ,Q†ω

]
|BCS〉 =

∑
cd

Xω
cd〈BCS|

[
Aab(JM), A†cd(JM)

]
|BCS〉 . (16.29)

Two situations arise when applying (16.27) to (16.29) because the indices
carry the proton and neutron labels.

• If a = p (proton) and b = n (neutron), then the sum is
∑

cd =
∑

p′n′ and
δad = δpn′ = 0, δbc = δnp′ = 0. In this case we have

〈BCS|
[
δQ,Q†ω

]
|BCS〉 = Xω

pn . (16.30)

• If a and b both are either proton or neutron labels, we must restrict the
sum so as to avoid double counting. For a ≤ b we then carry the sum for
c ≤ d, i.e.

∑
c≤d. In this case (16.27) yields

〈BCS|
[
δQ,Q†ω

]
|BCS〉 = N 2

ab(J)
[
Xω

ab + (−1)JδabXω
aa

]
=
1 + δab(−1)J
(1 + δab)2

[
Xω

ab + (−1)JδabXω
aa

]
=

[
1 + δab(−1)J
1 + δab

]2
Xω

ab = Xω
ab , (16.31)

where we have inserted the normalization constant from (5.21). The final step
relies on the fact that the operator Aaa(JM) vanishes for odd J .

The results (16.30) and (16.31) are remarkably simple. To derive the
QTDA equation we use (16.31), i.e. we choose the two-quasiparticle basis
with a ≤ b and the associated restricted summation. The result (16.30) ap-
plies to the proton–neutron form of the QTDA, the pnQTDA, to be treated
in the following chapter.
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It remains to evaluate the left-hand side of (16.28). The Hamiltonian is
that given by (13.65), i.e.

H = H0 +H11 + VRES , H11 =
∑
b

ĵbEb

[
a†bãb

]
00
=

∑
β

Eba
†
βaβ . (16.32)

Here H0 is the energy of the quasiparticle mean field and H11 contains the
single-quasiparticle energies. The residual interaction VRES is given in terms
of quasiparticles through Eqs. (16.15)–(16.18).

Let us consider the commutators of A and A† with the various terms of
H. All commutators with H0 vanish since this term is a c-number. To find the
contribution of the term H11 we start with the commutator (Exercise 16.6)[

Aab(JM),H11

]
= (Ea + Eb)Aab(JM) . (16.33)

This gives us[
H11, A

†
cd(JM)

]
=

[
Acd(JM),H11

]† = (Ec +Ed)A
†
cd(JM) . (16.34)

It follows from (16.33) and (16.34) that[
Aab(JM),

[
H11, A

†
cd(JM)

]]
= (Ec + Ed)

[
Aab(JM), A†cd(JM)

]
, (16.35)[[

Aab(JM),H11

]
, A†cd(JM)

]
= (Ea + Eb)

[
Aab(JM), A†cd(JM)

]
. (16.36)

With δQ and Q†ω given by (16.23) and the definition (11.12) of the sym-
metrized double commutator, we can write the contribution of H11 to the
left-hand side of (16.28). To carry out the restricted summation we assume
a ≤ b and substitute (16.27) for the expectation value. This gives

〈BCS|
[
δQ,H11, Q

†
ω

]
|BCS〉 = 1

2

∑
c≤d

Xω
cd(Ec + Ed + Ea + Eb)

×N 2
ab(J)[δacδbd − (−1)ja+jb+Jδadδbc] = (Ea + Eb)Xω

ab , (16.37)

where the second equality is obtained in the same way as in (16.31).
The remaining commutators are between the quasiparticle pair operators

and the residual interaction. We insert into the equation of motion (16.28)
the parts already calculated, namely the right-hand side given by (16.31) and
the H11 term (16.37) of the left-hand side. Equation (16.28) then becomes

(Ea + Eb)Xω
ab +

∑
c≤d

Xω
cd〈BCS|

[
Aab(JM), VRES, A

†
cd(JM)

]
|BCS〉 = EωX

ω
ab .

(16.38)
The remaining task is to calculate the BCS expectation value present in

(16.38). Equation (16.18) shows the structure of VRES. The BCS expectation
value of a string of quasiparticle creation and annihilation operators can be
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non-zero only when there are the same number of both kinds. Commutation
with the pair operators A and A† cannot change the difference in number of
the two kinds. Therefore only the term H22 can give a finite contribution.

To calculate the H22 term given in (16.18) we express it in terms of the
quasiparticle pair operators (16.24) according to

H22 = − 1
2

∑
abcd
JM

[Nab(J)Ncd(J)]−1V
(22)
abcd (J)A

†
ab(JM)Acd(JM) . (16.39)

We can identify terms that give zero without going through a detailed cal-
culation. The double commutator consists of terms of the type [A,A†A,A†].
Expanding and dropping the commutators [A†, A†] = 0 = [A,A], we find

[A,A†A,A†] = 1
2{AA†[A,A†] + [A,A†]AA†}

= 1
2{AA†(δ + a†a) + (δ + a†a)AA†} (16.40)

in a schematic notation for the commutators (16.26). The terms with a†a
vanish in the BCS expectation value, so effectively we are left with the δ terms
only. In the expectation value we can also replace the remaining AA† terms
with [A,A†], and inspection shows that the two terms of (16.40) contribute
equally.

Spelt out in detail from (16.26), the BCS expectation value of (16.40) is

〈BCS|
[
Aab(JM), A†a′b′(J

′M ′)
][

Ac′d′(J ′M ′), A†cd(JM)
]
|BCS〉

= δJJ ′δMM ′N 2
ab(J)[δaa′δbb′ − (−1)ja+jb+Jδab′δba′ ]

×N 2
c′d′(J)[δc′cδd′d − (−1)jc′+jd′+Jδc′dδd′c] . (16.41)

With H22 in place of VRES in (16.38), we insert (16.41) into the equation and
calculate∑

c≤d
Xω

cd〈BCS|
[
Aab(JM),H22, A

†
cd(JM)

]
|BCS〉

= − 1
2

∑
c≤d

a′b′c′d′

Xω
cd[Na′b′(J)Nc′d′(J)]−1V (22)

a′b′c′d′(J)

×N 2
ab(J)[δaa′δbb′ − (−1)ja+jb+Jδab′δba′ ]

×N 2
c′d′(J)[δc′cδd′d − (−1)jc′+jd′+Jδc′dδd′c]

= − 1
2

∑
c≤d

Xω
cdNab(J)Ncd(J)

[
V

(22)
abcd (J)− (−1)jc+jd+JV

(22)
abdc (J)

− (−1)ja+jb+JV
(22)
bacd (J) + (−1)ja+jb+jc+jdV

(22)
badc (J)

]
. (16.42)

The quantities V (22)
abcd can be expressed more explicitly through Eqs. (16.17)

and (16.19):
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V
(22)
abcd (J) = −1

2 [Nab(J)Ncd(J)]−1(uaubucud + vavbvcvd)〈a b ; J |V |c d ; J〉
− 2uavbucvd〈a b−1 ; J |VRES|c d−1 ; J〉 . (16.43)

Furthermore, inspection of (16.19) shows that

〈b a−1 ; J |VRES|d c−1 ; J〉 = (−1)ja+jb+jc+jd〈a b−1 ; J |VRES|c d−1 ; J〉 .
(16.44)

This relation allows us to combine terms expressed according to (16.43), and
(16.42) becomes∑

c≤d
Xω

cd〈BCS|
[
Aab(JM),H22, A

†
cd(JM)

]
|BCS〉

=
∑
c≤d

Xω
cd

{
(uaubucud + vavbvcvd)〈a b ; J |V |c d ; J〉

+Nab(J)Ncd(J)
[
(uavbucvd + vaubvcud)〈a b−1 ; J |VRES|c d−1 ; J〉

− (−1)jc+jd+J(uavbvcud + vaubucvd)〈a b−1 ; J |VRES|d c−1 ; J〉
]}

.

(16.45)

This concludes the evaluation of the interaction term in (16.38). To be able
to express the final result in a compact form we define

Aab,cd ≡ (Ea + Eb)δacδbd + (uaubucud + vavbvcvd)〈a b ; J |V |c d ; J〉
+Nab(J)Ncd(J)

[
(uavbucvd + vaubvcud)〈a b−1 ; J |VRES|c d−1 ; J〉

− (−1)jc+jd+J(uavbvcud + vaubucvd)〈a b−1 ; J |VRES|d c−1 ; J〉
]
.

(16.46)
The quantities Aab,cd are the elements of the QTDA matrix A. From the
equation of motion (16.38) we have thus derived the QTDA equation∑

c≤d
Aab,cdX

ω
cd = EωX

ω
ab . (16.47)

Written as a matrix equation this is

AXω = EωX
ω . (16.48)

For the QTDA the indices ab and cd describe either proton–proton (ab =
pp′) or neutron–neutron (ab = nn′) quasiparticle pairs. The pair indices play
the roles of the row and column indices of a matrix. Since the matrix elements
Aab,cd are independent of the M quantum number, the amplitudes Xω

ab must
also be independent of M .

Since the quasiparticle indices carry also the nucleon kind, the formal-
ism for proton–neutron excitations can be obtained as a modification of the
above. The two-body matrix elements 〈p p′ ; J ′|V |n′ n ; J ′〉 are zero because
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of charge conservation. It follows from the Pandya relation (16.19) that also
〈p n−1 ; J |VRES|n′ p′−1 ; J〉 = 0. Equation (16.47) is then modified to read∑

p′n′
Apn,p′n′Xω

p′n′ = EωX
ω
pn . (16.49)

This is known as the pnQTDA equation. From (16.46) we read the pnQTDA
matrix as

Apn,p′n′(J) = (Ep + En)δpp′δnn′

+ (upunup′un′ + vpvnvp′vn′)〈p n ; J |V |p′ n′ ; J〉
+ (upvnup′vn′ + vpunvp′un′)〈p n−1 ; J |VRES|p′ n′−1 ; J〉 . (16.50)

The Pandya transformation (16.19) is now

〈p n−1 ; J |VRES|p′ n′−1 ; J〉 = −
∑
J ′

Ĵ ′
2
{

jp jn J
jp′ jn′ J ′

}
〈p n′ ; J ′|V |p′ n ; J ′〉 .

(16.51)
The pnQTDA formalism describes states of odd–odd nuclei and is further
developed in Chap. 17.

Anticipating a closer examination of the general properties of QTDA so-
lutions we note some basic properties of the QTDA matrix A. From parity
conservation of the nuclear force it follows that

la + lb + lc + ld = even . (16.52)

Taking into account the phase conventions in (8.29), (13.56) and (13.58) we
can use (16.52) to prove that the QTDA and pnQTDA matrices satisfy the
relation

A
(BR)
ab,cd(J) = (−1)

1
2 (lc+ld−la−lb)A(CS)

ab,cd(J) , (16.53)

where BR denotes the Biedenharn–Rose phase convention and CS the Condon–
Shortley one.

We can write the expressions (16.46) and (16.50) also by using the quanti-
ties G and F given in (16.20) and (16.21). The elements of the QTDA matrix
then become1

Aab,cd(J) = (Ea + Eb)δacδbd
− 2Nab(J)Ncd(J)[(uaubucud + vavbvcvd)G(abcdJ)

+ (uavbucvd + vaubvcud)F (abcdJ)

− (−1)jc+jd+J(uavbvcud + vaubucvd)F (abdcJ)] . (16.54)

1 Baranger’s [31] quasiparticle pair operators do not contain the normalization
factor N , so his expression has a somewhat different appearance.
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16.3 General Properties of QTDA Solutions

As mentioned in the beginning of Sect. 16.2, the number-parity condition of
Subsect. 13.4.2 dictates that the proton–proton and neutron–neutron two-
quasiparticle excitations of the QTDA describe states of even–even nuclei.
In particular we assume that the QTDA gives a reasonable description of
the even–even reference nucleus for which the BCS (or LNBCS) calculation
was done. This can be assumed since the calculation was constrained to have
the average particle numbers peak at the nucleon numbers of the reference
nucleus.

With reference to Subsect. 11.1.1, we note that the QTDA and pnQTDA
equations (16.47) and (16.49) result from a variational principle. This is be-
cause the equation of motion (16.28) was written with the exact vacuum
|QTDA〉 = |BCS〉 substituted for |Ψ0〉 in (11.11). Likewise the particle–hole
TDA equation (9.36) is of variational origin because it can be derived from
(11.11) with |Ψ0〉 = |HF〉 = |TDA〉.

The QTDA wave function is given by (16.23), with the restricted summa-
tion denoted, as

|ω〉 = Q†ω|BCS〉 =
∑
a≤b

Xω
abA
†
ab(JM)|BCS〉 . (16.55)

This excitation is often called a phonon, a term used occasionally earlier in
the book. In the present context the term refers to the collective properties
of the QTDA, in particular to its lowest collective solution. We discuss next
the orthogonality and completeness properties of the state (16.55).

16.3.1 Orthogonality

Two different solutions (16.55), |ω〉 and |ω′〉, of the QTDA equation must be
orthogonal. Additionally we wish to have the states normalized. By requiring
orthonormality and using (16.27) we obtain

〈ω|ω′〉 = δωω′ = δnn′δJJ ′δMM ′δππ′

=
∑
a≤b
a′≤b′

Xω∗
ab Xω′

a′b′〈BCS|Aab(JM)A†a′b′(J
′M ′)|BCS〉

=
∑
a≤b
a′≤b′

Xω∗
ab Xω′

a′b′δJJ ′δMM ′N 2
ab(J)[δaa′δbb′ − (−1)ja+jb+Jδab′δba′ ]

= δJJ ′δMM ′δππ′
∑
a≤b

Xω∗
ab Xω′

ab , (16.56)

where the final step was taken from (16.31). The orthogonality with respect to
the quantum numbers JπM results from the construction of the basis states.
The remaining orthonormality condition is
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a≤b

XnJπ∗
ab Xn′Jπ

ab = δnn′ (QTDA orthonormality) . (16.57)

16.3.2 Completeness

Throughout this subsection we assume a ≤ b and c ≤ d and consider the
values J = J ′, M =M ′ as fixed. The commutator (16.27) now becomes

〈BCS|
[
Aab(JM), A†cd(JM)

]
|BCS〉 = N 2

ab(J)
[
δacδbd + (−1)Jδabδcd

]
= N 2

ab(J)δacδbd
[
1 + (−1)Jδab

]
= δacδbd . (16.58)

By using this result and the completeness condition∑
n

|nJπM〉〈nJπM | = 1 (16.59)

we obtain

δacδbd = 〈BCS|
[
Aab(JM), A†cd(JM)

]
|BCS〉

= 〈BCS|Aab(JM)A†cd(JM)|BCS〉

=
∑
n

〈BCS|Aab(JM)|nJπM〉〈nJπM |A†cd(JM)|BCS〉

=
∑
n

∑
a′≤b′
c′≤d′

XnJπ

a′b′ X
nJπ∗
c′d′ 〈BCS|Aab(JM)A†a′b′(JM)|BCS〉

× 〈BCS|Ac′d′(JM)A†cd(JM)|BCS〉

=
∑
n

∑
a′≤b′
c′≤d′

XnJπ

a′b′ X
nJπ∗
c′d′ δaa′δbb′δcc′δdd′ =

∑
n

XnJπ

ab XnJπ∗
cd . (16.60)

This concludes the derivation of the completeness relation∑
n

XnJπ

ab XnJπ∗
cd = δacδbd (QTDA completeness) . (16.61)

16.4 Excitation Spectra of Open-Shell Even–Even Nuclei

The aim of the QTDA is to describe the lowest excited states of open-shell
even–even nuclei by two-quasiparticle configurations and their mixing. This
approach involves a matrix structure like that stated in (9.83) for the particle–
hole TDA.
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16.4.1 Explicit Form of the QTDA Matrix

Following the construction of the TDA matrix in Subsect. 9.3.1 we can write
for the QTDA matrix A the schematic expression

AQTDA

=
(
E(pp− pp) + VQTDA(pp− pp) VQTDA(pp− nn)

VQTDA(nn− pp) E(nn− nn) + VQTDA(nn− nn)

)
.

(16.62)
Details of the matrix can be inferred from (16.46). On general principles the
matrix is Hermitian, and because our matrix elements are always real, it is
symmetric. This facilitates considerably the numerical work. Let us examine
the block decomposition of (16.62) in more detail.

As deduced from (16.46), E(pp−pp) and E(nn−nn) are diagonal matrices
containing the proton and neutron two-quasiparticle energies, i.e.

E(p1p2 − p3p4) = (Ep1 +Ep2)δp1p3δp2p4 , (16.63)
E(n1n2 − n3n4) = (En1 + En2)δn1n3δn2n4 . (16.64)

Reduced to two-body matrix elements in isospin notation, the proton–proton
interaction terms of (16.46) contain

VQTDA(p1p2 − p3p4) :
〈a1 a2 ; J T = 1|V |a3 a4 ; J T = 1〉 ,
〈p1 p−12 ; J |VRES|p3 p−14 ; J〉 → 〈a1 a4 ; J ′ T = 1|V |a3 a2 ; J ′ T = 1〉 ,
〈p1 p−12 ; J |VRES|p4 p−13 ; J〉 → 〈a1 a3 ; J ′ T = 1|V |a4 a2 ; J ′ T = 1〉 , (16.65)

where the arrows indicate breakdown by the Pandya transformation (16.19)
followed by application of (8.25). The same scheme with pi → ni applies to
the neutron–neutron block.

As pointed out before (16.49), the pp− nn and nn− pp blocks have only
particle–hole matrix elements. The reduction similar to (16.65) is

VQTDA(p1p2 − n3n4) :

〈p1 p−12 ; J |VRES|n3 n−14 ; J〉 → 〈a1 a4 ; J ′ T ′ = 1, 0|V |a3 a2 ; J ′ T ′ = 1, 0〉 ,
〈p1 p−12 ; J |VRES|n4 n−13 ; J〉 → 〈a1 a3 ; J ′ T ′ = 1, 0|V |a4 a2 ; J ′ T ′ = 1, 0〉 ,

(16.66)

where the arrows now indicate a non-trivial two-stage reduction, first by the
Pandya transformation (16.19) and then by (8.27). Equation (8.27) shows that
the same scheme with pi ↔ ni applies to the nn− pp block.

Numerical values of the particle–hole matrix elements (16.19) are needed
in applications. As before, we use the SDI with its strength parameters AT

for our numerical examples. The particle–hole matrix elements in (16.65) and
(16.66) can be conveniently tabulated in terms of the auxiliary quantities
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M(1)
abcd(J) ≡ −

∑
J ′

Ĵ ′
2
[Nad(J ′)Ncb(J ′)]−1

{
ja jb J
jc jd J ′

}
× 〈a d ; J ′ 1|VSDI|c b ; J ′ 1〉A1=1 , (16.67)

M(2)
abcd(JT ) ≡ 1

2 (−1)
T
∑
J ′

Ĵ ′
2
√
[1− (−1)J ′+T δad][1− (−1)J ′+T δcb]

×
{

ja jb J
jc jd J ′

}
〈a d ; J ′ T |VSDI|c b ; J ′ T 〉AT=1 . (16.68)

The particle–hole matrix elements are given by M(1)
phph(J) and M

(2)
phph(JT )

as

〈p1 p−12 ; J |VRES|p3 p−14 ; J〉 = 〈n1 n−12 ; J |VRES|n3 n−14 ; J〉
= A1M(1)

a1a2a3a4(J) , (16.69)

〈p1 p−12 ; J |VRES|n3 n−14 ; J〉 = 〈n1 n−12 ; J |VRES|p3 p−14 ; J〉
= A1M(2)

a1a2a3a4(J1) +A0M(2)
a1a2a3a4(J0) .

(16.70)

Taking the SDI two-body matrix elements from Table 8.2 we can calculate
and tabulate the auxiliary matrix elementsM(1)

abcd(J) andM
(2)
abcd(JT ) for the

0d-1s valence space. They are listed in Tables 16.1–16.3.
Calculations of the QTDA matrix A are simplified by the fact that the

complete matrix is always symmetric. In the case that the proton and neu-
tron two-quasiparticle bases are the same also the non-diagonal blocks are
symmetric. If, furthermore, the single-particle energies and interactions are
the same for protons and neutrons, the diagonal blocks are the same. These
symmetries are present in our applications.

In the following we apply the formalism to a simple example that displays
the essential features of even more realistic cases.

16.4.2 Excitation Energies of 2+ States in 24Mg

Consider the 2+ states of the nucleus 24
12Mg12 in the 0d5/2-1s1/2 valence space.

The two-quasiparticle basis states are

{|π1〉 , |π2〉 , |ν1〉 , |ν2〉} = {|(π0d5/2)2 ; 2+〉 , |π0d5/2 π1s1/2 ; 2+〉 ,
|(ν0d5/2)2 ; 2+〉 , |ν0d5/2 ν1s1/2 ; 2+〉} . (16.71)

We take the same single-particle energies and SDI parameters for protons and
neutrons, namely

ε0d5/2 = 0 , ε0s1/2 = 0.87MeV , A0 = A1 = 1.0MeV . (16.72)
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Table 16.1. QuantitiesM(1)
abcd(J) for the 0d-1s shells in the CS phase convention

abcd J M(1) J M(1) J M(1) J M(1) J M(1)

1111 0 −3.0000 1 1.6286 2 −0.6857 3 0.9143 4 −0.2857
1111 5 1.4286
1112 2 −0.6414 3 0.9389
1113 1 −1.2828 2 −0.3429 3 −0.4199 4 −0.4041
1121 2 −0.6414 3 0.9389
1122 0 −1.7320 1 1.1832
1123 1 0.4781 2 −0.5237
1131 1 1.2828 2 0.3429 3 0.4199 4 0.4041
1132 1 −0.4781 2 0.5237
1133 0 −2.4495 1 −1.1759 2 −0.5237 3 −0.3429
1212 2 −0.2000 3 1.0000
1213 2 0.2138 3 −0.5111
1221 2 −1.0000 3 1.0000
1223 2 0.0000
1231 2 0.8552 3 0.5111
1232 2 0.9798
1233 2 −0.4899 3 −0.1565
1313 1 1.8000 2 0.5429 3 0.3714 4 0.1429
1321 2 −0.8552 3 −0.5111
1322 1 −1.2649
1323 1 0.4472 2 0.3928
1331 1 −1.8000 2 0.8857 3 −0.3714 4 1.2857
1332 1 −0.4472 2 0.9165
1333 1 0.4000 2 −0.2619 3 −0.2799
2121 2 −0.2000 3 1.0000
2123 2 −0.9798
2131 2 −0.2138 3 0.5111
2132 2 0.0000
2133 2 −0.4899 3 −0.1565
2222 0 −1.0000 1 1.0000
2223 1 0.0000
2231 1 1.2649
2232 1 0.0000
2233 0 −1.4142 1 −0.6325
2323 1 1.0000 2 0.2000
2331 1 −0.4472 2 0.9165
2332 1 −1.0000 2 1.0000
2333 1 −0.8944 2 −0.4000
3131 1 1.8000 2 0.5429 3 0.3714 4 0.1429
3132 1 0.4472 2 0.3928
3133 1 −0.4000 2 0.2619 3 0.2799
3232 1 1.0000 2 0.2000
3233 1 0.8944 2 0.4000
3333 0 −2.0000 1 1.2000 2 −0.4000 3 1.2000

The states are numbered 1 = 0d5/2, 2 = 1s1/2 and 3 = 0d3/2. The first column

gives the state labels, and the following columns give J andM(1).
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Table 16.2. QuantitiesM(2)
abcd(JT ) for the 0d-1s shells in the CS phase convention

abcd JT M(2) JT M(2) JT M(2) JT M(2) JT M(2)

1111 00 −4.5000 01 −1.5000 10 −0.8143 11 0.8143 20 −1.0286
1111 21 −0.3429 30 −0.4571 31 0.4571 40 −0.4286 41 −0.1429
1111 50 −0.7143 51 0.7143
1112 20 −0.9621 21 −0.3207 30 −0.4695 31 0.4695
1113 10 0.6414 11 −0.6414 20 −0.5143 21 −0.1714 30 0.2100
1113 31 −0.2100 40 −0.6061 41 −0.2020
1121 20 −0.9621 21 −0.3207 30 −0.4695 31 0.4695
1122 00 −2.5981 01 −0.8660 10 −0.5916 11 0.5916
1123 10 −0.2390 11 0.2390 20 −0.7856 21 −0.2619
1131 10 −0.6414 11 0.6414 20 0.5143 21 0.1714 30 −0.2100
1131 31 0.2100 40 0.6061 41 0.2020
1132 10 0.2390 11 −0.2390 20 0.7856 21 0.2619
1133 00 −3.6742 01 −1.2247 10 0.5880 11 −0.5880 20 −0.7856
1133 21 −0.2619 30 0.1714 31 −0.1714
1212 20 −1.1000 21 −0.1000 30 −0.5000 31 0.5000
1213 20 −0.7483 21 0.1069 30 0.2556 31 −0.2556
1221 20 −0.7000 21 −0.5000 30 −0.5000 31 0.5000
1223 20 −0.9798 21 0.0000
1231 20 0.2138 21 0.4276 30 −0.2556 31 0.2556
1232 20 0.4899 21 0.4899
1233 20 −0.7348 21 −0.2449 30 0.0782 31 −0.0782
1313 10 −0.9000 11 0.9000 20 −0.6143 21 0.2714 30 −0.1857
1313 31 0.1857 40 −1.2143 41 0.0714
1321 20 −0.2138 21 −0.4276 30 0.2556 31 −0.2556
1322 10 0.6325 11 −0.6325
1323 10 −0.2236 11 0.2236 20 −0.7201 21 0.1964
1331 10 0.9000 11 −0.9000 20 −0.1000 21 0.4429 30 0.1857
1331 31 −0.1857 40 0.5000 41 0.6429
1332 10 0.2236 11 −0.2236 20 0.0655 21 0.4583
1333 10 −0.2000 11 0.2000 20 −0.3928 21 −0.1309 30 0.1400
1333 31 −0.1400
2121 20 −1.1000 21 −0.1000 30 −0.5000 31 0.5000
2123 20 −0.4899 21 −0.4899
2131 20 0.7483 21 −0.1069 30 −0.2556 31 0.2556
2132 20 0.9798 21 0.0000
2133 20 −0.7348 21 −0.2449 30 0.0782 31 −0.0782
2222 00 −1.5000 01 −0.5000 10 −0.5000 11 0.5000
2223 10 0.0000 11 0.0000
2231 10 −0.6325 11 0.6325
2232 10 0.0000 11 0.0000
2233 00 −2.1213 01 −0.7071 10 0.3162 11 −0.3162
2323 10 −0.5000 11 0.5000 20 −0.9000 21 0.1000

The states are numbered 1 = 0d5/2, 2 = 1s1/2 and 3 = 0d3/2. The first column
gives the state labels, and the following columns give the JT combinations and
M(2).



www.manaraa.com

496 16 Mixing of Two-Quasiparticle Configurations

Table 16.3. Continuation of Table 16.2

abcd JT M(2) JT M(2) JT M(2) JT M(2) JT M(2)

2331 10 0.2236 11 −0.2236 20 0.0655 21 0.4583
2332 10 0.5000 11 −0.5000 20 0.3000 21 0.5000
2333 10 0.4472 11 −0.4472 20 −0.6000 21 −0.2000
3131 10 −0.9000 11 0.9000 20 −0.6143 21 0.2714 30 −0.1857
3131 31 0.1857 40 −1.2143 41 0.0714
3132 10 −0.2236 11 0.2236 20 −0.7201 21 0.1964
3133 10 0.2000 11 −0.2000 20 0.3928 21 0.1309 30 −0.1400
3133 31 0.1400
3232 10 −0.5000 11 0.5000 20 −0.9000 21 0.1000
3233 10 −0.4472 11 0.4472 20 0.6000 21 0.2000
3333 00 −3.0000 01 −1.0000 10 −0.6000 11 0.6000 20 −0.6000
3333 21 −0.2000 30 −0.6000 31 0.6000

The first task is to solve the BCS equations for our two-level valence space.
Using the procedure described in Subsect. 14.1.1 we obtain the BCS occu-
pation amplitudes and quasiparticle energies given in Table 16.4. The same
values apply for protons and neutrons.

Table 16.4. BCS occupation amplitudes u and v and quasiparticle energies E
calculated for 24

12Mg12 with single-particle energies ε0d5/2 = 0 and ε1s1/2 = 0.87MeV
and SDI interaction strength A1 = 1.0MeV

Orbital u v E (MeV)

0d5/2 0.6685 0.7437 1.977
1s1/2 0.8119 0.5838 2.073

Next we turn to forming the QTDA matrix A. With the four basis states
(16.71) its dimension is 4-by-4, but because of the symmetries there are only
six different matrix elements: Aπ1π1 , Aπ1π2 , Aπ2π2 , Aπ1ν1 , Aπ1ν2 , Aπ2ν2 . These
are given by Eqs. (16.46), (16.69) and (16.70) with numerical data from
Tables 8.2, 16.1, 16.2 and 16.4:

Aπ1π1 = A
(
(π0d5/2)2, (π0d5/2)2

)
= 2× 1.977MeV + (0.66854 + 0.74374)(−0.6857A1)

+
1
2
[
2× 0.66852 × 0.74372(−0.6857A1)

− (−1) 52+ 5
2+2 × 2× 0.66852 × 0.74372(−0.6857A1)

]
= 3.954MeV− 0.686A1 , (16.73)
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Aπ1π2 = A
(
(π0d5/2)2, π0d5/2π1s1/2

)
= (0.66853 × 0.8119 + 0.74373 × 0.5838)(−0.9071A1)

+
1√
2

[
0.66852 × 0.7437× 0.5838 + 0.74372 × 0.6685× 0.8119)

× (−0.6414A1)− (−1)
5
2+

1
2+2 × (0.6685× 0.74372 × 0.8119

+ 0.7437× 0.66852 × 0.5838)(−0.6414A1)
]

= −0.886A1 , (16.74)

Aπ2π2 = A
(
π0d5/2π1s1/2, π0d5/2π1s1/2

)
= 1.977MeV + 2.073MeV

+ (0.66852 × 0.81192 + 0.74372 × 0.58382)(−1.2000A1)

+ (0.66852 × 0.58382 + 0.74372 × 0.81192)(−0.2000A1)

− (−1) 52+ 1
2+2 × 2× 0.6685× 0.5838× 0.7437× 0.8119

× (−1.0000A1) = 4.050MeV− 1.154A1 , (16.75)

Aπ1ν1 = A
(
(π0d5/2)2, (ν0d5/2)2

)
=
1
2
[
2× 0.66852 × 0.74372(−0.3429A1 − 1.0286A0)

− (−1) 52+ 5
2+2 × 2× 0.66852 × 0.74372(−0.3429A1 − 1.0286A0)

]
= −0.508A0 − 0.170A1 , (16.76)

Aπ1ν2 = A
(
(π0d5/2)2, ν0d5/2ν1s1/2

)
=

1√
2

[
(0.66852 × 0.7437× 0.5838 + 0.74372 × 0.6685× 0.8119)

× (−0.3207A1 − 0.9621A0)

− (−1) 52+ 1
2+2 × (0.6685× 0.74372 × 0.8119

+ 0.7437× 0.66852 × 0.5838)(−0.3207A1 − 0.9621A0)
]

= −0.672A0 − 0.224A1 , (16.77)

Aπ2ν2 = A
(
π0d5/2π1s1/2, ν0d5/2ν1s1/2

)
=

[
(0.66852 × 0.58382 + 0.74372 × 0.81192)(−0.1000A1 − 1.1000A0)

− (−1) 52+ 1
2+2 × 2× 0.6685× 0.5838× 0.7437× 0.8119

× (−0.5000A1 − 0.7000A0)
]
= −0.898A0 − 0.287A1 . (16.78)

We can now form the matrix AQTDA from the elements (16.73)–(16.78) in the
pattern (16.62). The complete matrix is symmetric; in this case the proton–
neutron block is also symmetric and the diagonal blocks are identical. The
complete matrix is
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AQTDA(2+)

=

⎛⎜⎝3.954− 0.686A1 −0.886A1 −0.508A0 − 0.170A1 −0.672A0 − 0.224A1

−0.886A1 4.050− 1.154A1 −0.672A0 − 0.224A1 −0.898A0 − 0.287A1

. . . . . . 3.954− 0.686A1 −0.886A1

. . . . . . −0.886A1 4.050− 1.154A1

⎞⎟⎠ ,

(16.79)

where the quasiparticle energies are in Mega-electronvolts and the dots rep-
resent the neutron–proton block that is identical with the proton–neutron
block.

Diagonalizing the matrix (16.79) with SDI parameters A0 = A1 = 1.0MeV
gives the eigenvalues

E(2+1 ) = 0.313MeV , E(2+2 ) = 3.945MeV ,

E(2+3 ) = 3.986MeV , E(2+4 ) = 4.082MeV . (16.80)

Experimentally, the first excited state of 24Mg is at 1.369MeV, so the
default values A0 = A1 = 1.0MeV do not produce realistic results. A better
choice, made also in the BCS calculation, is A0 = 0.7MeV, A1 = 1.4MeV.
The results are shown in Fig. 16.1 for our chosen valence space 0d5/2-1s1/2
and also for the complete 0d-1s valence space.

Although the description of the low-lying states shown is quite good, the
0+ states pose a problem. The lowest 0+ state of two-quasiparticle nature falls
below the QTDA ground state for our SDI parameters. Its energy is E(0+1 ) =
−3.389MeV in the 0d5/2-1s1/2 valence space and E(0+1 ) = −3.488MeV in the
complete 0d-1s valence space. This effect is due to a monopole residual inter-
action that is too strong in the T = 1 channel. Since monopole correlations of
this type are largely taken into account already at the BCS level, a smaller A1

is appropriate. Reducing A1 close to zero for states with Jπ = 0+ improves
the description of the 0+ spectrum.

16.4.3 Pairing Strength Parameters from Empirical Pairing Gaps

The problem with 0+ states discussed above suggests the use of different
T = 1 interactions in the BCS calculation and in the subsequent QTDA
matrix diagonalization. Let us therefore develop a scheme for determining
the SDI parameters A1 for protons and neutrons within the BCS calculation.
To distinguish these parameters from those of a later QTDA calculation, we
call them pairing parameters A

(p)
pair and A

(n)
pair. We proceed to demonstrate how

they can be determined by fitting the lowest proton and neutron quasiparticle
energies to the empirical pairing gaps extracted from the proton and neutron
separation energies.

The proton and neutron separation energies Sp(A,Z) and Sn(A,Z) are
defined in terms of atomic masses m(A,Z) as
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Fig. 16.1. QTDA spectrum of 24Mg in the valence spaces shown and the experi-
mental spectrum. The single-particle energies are from (14.12). The SDI was used
with parameters A0 = 0.7MeV and A1 = 1.4MeV

Sp(A,Z) ≡ m(A− 1, Z − 1)c2 +m(1H)c2 −m(A,Z)c2 , (16.81)

Sn(A,Z) ≡ m(A− 1, Z)c2 +Mnc
2 −m(A,Z)c2 , (16.82)

where Mn is the mass of the neutron and m(1H) is the mass of the hydrogen
atom. From the relation (12.2) between the atomic mass m(A,Z) and the
nuclear mass M(A,Z) we have

m(A,Z) =M(A,Z) + Zme −Be(Z)/c2 , (16.83)

m(1H) =Mp +me −Be(1)/c2 , (16.84)

where Mp is the proton mass. The atomic mass takes into account the mass
of the Z electrons and their total binding energy Be(Z). Substituting (16.83)
and (16.84) for the atomic masses in (16.81) and (16.82) gives the separation
energies in terms of nuclear masses as2

2 In Sp the difference Be(Z)−Be(Z−1) is negligible to a very good approximation.
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Sp(A,Z) =M(A− 1, Z − 1)c2 +Mpc
2 −M(A,Z)c2 , (16.85)

Sn(A,Z) =M(A− 1, Z)c2 +Mnc
2 −M(A,Z)c2 . (16.86)

Equation (12.1) gives the pairing gap Δ as

Δ = (2MA −MA−1 −MA+1)c2 , (16.87)

where the change in A is due to changing the number of only one kind of
nucleon. By means of (16.85) and (16.86) the pairing gaps can be expressed
in terms of the separation energies, with the result

Δp(A,Z) = 1
2 [Sp(A+ 1, Z + 1)− Sp(A,Z)] , (16.88)

Δn(A,Z) = 1
2 [Sn(A+ 1, Z)− Sn(A,Z)] . (16.89)

These equations can be replaced by more accurate interpolation formulas such
as the three-point formulas [78,79]

Δp(A,Z) = 1
4 (−1)

Z+1[Sp(A+ 1, Z + 1)− 2Sp(A,Z) + Sp(A− 1, Z − 1)] ,
Δn(A,Z) = 1

4 (−1)
A−Z+1[Sn(A+ 1, Z)− 2Sn(A,Z) + Sn(A− 1, Z)] .

(16.90)
In contrast to (16.90) we have the very simple formula (12.3), derived from

the liquid-drop model and empirical parameters,

Δ ≈ 12A−1/2MeV (16.91)

for protons and neutrons alike. We also note that it is not safe to use (16.90)
to determine a pairing gap in the immediate vicinity of a major shell closure
because the separation energies there behave irregularly. In the case of zero
or two particles or holes in a major shell it is better to use the simple smooth
formula (16.91).

In Subsect. 13.4.1 we discussed the relation between the pairing gap and
the quasiparticle energies. In particular, from (13.69) we have

Eqp ≥ Δsmallest . (16.92)

We interpret Δsmallest, separately for protons and neutrons, as the experimen-
tal pairing gap determined from e.g. (16.90). The lowest calculated quasipar-
ticle energies are then to be fitted according to

Ep
qp(lowest) = Δp , En

qp(lowest) = Δn . (16.93)

The pairing strength parameters A
(p)
pair and A

(n)
pair are varied in the BCS cal-

culations until the conditions (16.93) are satisfied with desired accuracy. This
procedure is illustrated by the following examples.

It is well to note that the lowest two-quasiparticle states used to determine
A
(p,n)
pair according to (16.93) occur at 2Δp,n. This energy is much higher than

the lowest excitation energies subsequently produced by the QTDA, as will
be seen from the examples.
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16.4.4 Excitation Spectrum of 2412Mg12

Our first example is 24Mg. By using (16.90) with the separation energies taken
from the atomic mass evaluations of [78,79] yields the pairing gaps

Δp(24Mg) = − 1
4 [Sp(25Al)− 2Sp(24Mg) + Sp(23Na)]

= − 1
4 [2271− 2× 11691 + 8794] keV = 3079 keV , (16.94)

Δn(24Mg) = − 1
4 [Sn(25Mg)− 2Sn(24Mg) + Sn(23Mg)]

= −1
4 [7331− 2× 16531 + 13148] keV = 3146 keV . (16.95)

We now make a set of BCS calculations for 2412Mg12, varying the parameters
A
(p)
pair and A

(n)
pair until the lowest proton and neutron quasiparticle energies

agree with the empirical pairing gaps according to Eq. (16.93). The parameters
found are recorded in Table 16.5.

The BCS stage is followed by QTDA calculations. The SDI parameters
A0 and A1 are adjusted with the aim of reproducing the lowest levels. In
particular, an approximate fit is made to the first excited 0+ and 2+ lev-
els. Having recognized the special nature of the 0+ excitations at the end of
Subsect. 16.4.2, we make separate fits for A1(Jπ 	= 0+) and A1(Jπ = 0+).
The interaction parameters are listed in Table 16.5, while the single-particle
energies are from (14.12). The energy spectra are shown in Fig. 16.2.

Table 16.5. SDI pairing parameters A
(p)
pair and A

(n)
pair and strengths A0 and A1 for

the QTDA calculation of the excitation spectrum of 24Mg in two different valence
spaces

Valence space A
(p)
pair A

(n)
pair A0 A1(J

π �= 0+) A1(J
π = 0+)

0d5/2-1s1/2 1.55 1.58 0.94 1.53 0.00
0d-1s 1.23 1.26 0.27 1.43 0.00

All energies are in Mega-electronvolts.

Comparison of Figs. 16.1 and 16.2 shows that the separate treatment of
the pairing and the QTDA degrees of freedom significantly improves the the-
oretical description of the excitation spectrum of 24Mg. It is expected that
this would be the case for all open-shell even–even nuclei.

The SDI parameters are seen to be valence-space dependent, with the
larger values associated with the smaller valence space. This demonstrates
the general feature that a bare two-body interaction has to be renormalized
more in a small valence space than in a large one to produce a suitable effective
interaction. The present renormalization amounts to a crude overall scaling of
the two-body matrix elements. In a more systematic approach each individual
two-body matrix element of the bare interaction is renormalized separately.
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Fig. 16.2. The same as Fig. 16.1 but with the SDI parameters of Table 16.5

For detailed information on renormalization and effective interactions see e.g.
[16].

16.4.5 Excitation Spectra of the Mirror Nuclei 3014Si16 and
30
16S14

We discuss next the excitation spectra of the mirror nuclei 3014Si16 and
30
16S14.

These nuclei were treated in connection with beta decay in Subsect. 15.4.2.
Only rudimentary, qualitative configuration mixing was included there. We
now proceed to a quantitative QTDA calculation of the excitation spectra.

Because of the charge independence of the nuclear force, we assume the
excitation spectra of a pair of mirror nuclei to be the same. This property of
the nuclear force was discussed at the end of Subsect. 5.5.1, in the context of
isospin symmetry of excitation spectra. As seen in the experimental spectra
of Chap. 5, the assumption of isospin symmetry is supported by the data. We
can thus describe a pair of mirror nuclei by one QTDA calculation.

We can build the spectra of both 30Si and 30S by taking 30Si as the refer-
ence nucleus. Equations (16.90) and data from [78,79] give the pairing gaps
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Δp(3014Si16) = 2308 keV , Δn(3014Si16) = 1539 keV , (16.96)

Δp(3016S14) = 1442 keV , Δn(3016S14) = 2387 keV . (16.97)

Thus for six active particles (protons in silicon, neutrons in sulphur) the pair-
ing gap is about 2.3MeV. For eight active particles (neutrons in silicon, pro-
tons in sulphur) the pairing gap is about 1.5MeV. The BCS calculations
reproduce these values with the pairing parameters given in Table 16.6.

Table 16.6. SDI pairing parameters A
(p)
pair and A

(n)
pair and strengths A0 and A1 for

the QTDA calculation of the excitation spectrum of 30Si in two different valence
spaces

Valence space A
(p)
pair A

(n)
pair A0 A1(J

π �= 0+) A1(J
π = 0+)

0d5/2-1s1/2 1.30 1.30 not active 1.58 0.00
0d-1s 1.00 1.00 0.25 1.10 0.00

All energies are in Mega-electronvolts.

The results of the subsequent QTDA calculations are shown in Fig. 16.3.
There the calculated spectra are compared with the experimental spectrum
of 30Si. As in the case of 24Mg, the strength parameters A0 and A1 were fixed
by fitting the first 0+ and 2+ excitation energies.

The smaller valence space 0d5/2-1s1/2 becomes a special case when the
number of active protons or neutrons is eight. Eight particles fill the valence
space completely, and only nucleons of the other kind are active in the calcu-
lations. Then only the parameter A1 of the SDI is operative. In this situation
the number of QTDA states is drastically reduced, as is visible in Fig. 16.3.

The correspondence between the theoretical and experimental spectra can
be further improved by using a more realistic two-body interaction or mak-
ing changes to the single-particle energies. Better single-particle energies can
come from a mean-field calculation of the Hartree–Fock type or from the use
of a Woods–Saxon potential. These approaches were discussed in Chap. 3.
The single-particle energies can also be adjusted by hand, e.g. by comparing
the lowest quasiparticle energies of the BCS calculation with the low-energy
spectra of the neighbouring odd-mass nuclei.

From Table 16.6 we can see that the interaction strengths decrease when
going from the restricted basis to the complete 0d-1s basis. This behaviour
was recognized and discussed at the end of the previous subsection.

16.4.6 Excitation Spectrum of 66Zn

Let us finally consider QTDA calculations in the 0f-1p and 0f-1p-0g9/2 valence
spaces, with 66

30Zn36 as a representative case. The single-particle energies are
taken from (14.13). Above the N = Z = 20 core we have 10 active protons
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Fig. 16.3. QTDA spectra of 30Si in the valence spaces shown and the experimental
spectrum. The single-particle energies are from (14.12). The SDI was used with the
parameters of Table 16.6

and 16 active neutrons. The corresponding quasiparticle spectra are presented
and compared with data in Figs. 14.5(a) and 14.6(a) for the SDI strength
parameter A1 = 1.0MeV. Relative energies of single-quasiparticle states are
not much affected by changes in A1, so we can expect a similar correspondence
between computed quasiparticle spectra and experiment also for other values
of A1.

The empirical pairing gaps, found as in the previous examples, are

Δp(6630Zn36) = 1283 keV , Δn(6630Zn36) = 1772 keV . (16.98)

Adjusting the pairing parameters to these values according to (16.93) results
in the parameter values recorded in Table 16.7.

The SDI strength parameters A0 and A1 of the QTDA calculation are
determined the same way as in the previous examples. The values obtained
are stated in Table 16.7, and the resulting energy spectra are depicted in
Fig. 16.4 for the two valence spaces.
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Table 16.7. SDI pairing parameters A
(p)
pair and A

(n)
pair and strengths A0 and A1 for

the QTDA calculation of the excitation spectrum of 66Zn in two different valence
spaces

Valence space A
(p)
pair A

(n)
pair A0 A1(J

π �= 0+) A1(J
π = 0+)

0f-1p 0.57 0.64 0.30 0.70 0.00
0f-1p-0g9/2 0.43 0.37 0.25 0.60 0.00

All energies are in Mega-electronvolts.

The spectrum from the small valence space in Fig. 16.4 has no negative-
parity states. This is because without orbitals of both parities available the
condition (16.25) allows only positive-parity two-quasiparticle states. In the
large valence space, negative-parity two-quasiparticle states can be generated
by combining the 0g9/2 orbital with the orbitals of the 0f-1p shell. Figure 16.4
also shows that the density of states increases notably through the inclusion
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Fig. 16.4. QTDA spectra of 66Zn in the valence spaces shown and the experimental
spectrum. The single-particle energies are from (14.13). The SDI was used with the
parameters of Table 16.7
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of the 0g9/2 orbital, although the energies of corresponding states do not
shift very much. To further illustrate the effect of enlarging the valence space,
Table 16.8 shows how the matrix dimensions grow when going from the trun-
cated 1d-0s shell to the full 0f-1p-0g9/2 shell.

Table 16.8. Dimension of the QTDA matrix for states of various Jπ in the 0d-1s
and 0f-1p-0g9/2 valence spaces and in their truncations

Valence space Dimension of QTDA matrix

0+ 2+ 3+ 4+ 6+ 3− 4− 5− 6− 7−

1s1/2-0d5/2 4 4 2 2
1s-0d 6 10 4 4
1p-0f 8 16 10 12 4

1p-0f-0g9/2 10 18 10 14 6 6 8 8 6 4

As discussed in Subsect. 16.4.5, the correspondence between experimental
and theoretical spectra can be improved, e.g. by fine tuning the single-particle
energies to better reproduce the low-energy spectra of the neighbouring even–
odd and odd–even nuclei at the BCS stage of the calculation. At the QTDA
stage one can try multipole-dependent strengths A1(Jπ), as we have indeed
done when using a separate A1(0+). More generally and beyond the SDI,
one can introduce a multipole–multipole effective interaction in the spirit of
(9.44), where each multipole component was multliplied with a phenomeno-
logical strength constant χJ .

To end this section, we comment on nuclear deformation. Many nuclei
in the middle region of a major shell have a non-spherical, deformed shape.
Spectra produced by theories built on the assumption of spherical shape are
not readily comparable with experimental spectra of deformed nuclei. Identi-
fication of corresponding theoretical and experimental states is not straight-
forward.

In the following sections we test our wave functions by computing electro-
magnetic decay rates in open-shell even–even nuclei.

16.5 Electromagnetic Transitions to the Ground State

In this section we consider electromagnetic transitions to the ground state.
Here we use the CS phase convention throughout. The corresponding expres-
sions for BR phasing can be read directly from Sect. 15.4.

16.5.1 Decay Amplitude

The wave function of a QTDA excited state is a linear combination of two-
quasiparticle components according to (16.55). The reduced matrix element
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for an electromagnetic transition from such a state to the ground state
|BCS〉 = |QTDA〉 was given in (15.59). With the CS phase factor from (15.25)
this decay amplitude is

(BCS‖Mσλ‖ω) = δλJ
∑
a≤b

Xω
abNab(J)(−1)lb(va|ub| ± vb|ua|)(a‖Mσλ‖b) ,

(16.99)
where the upper sign is for Eλ and the lower sign for Mλ transitions. Let us
discuss a few examples of application of (16.99).

16.5.2 E2 Decay of the Lowest 2+ State in 24Mg

Consider the E2 decay of the lowest 2+ state in 24Mg. We follow the evolution
of the decay rate as a function of the size of the valence space of the QTDA
calculation. This will give information about the convergence of the involved
nuclear wave function.

The 0d5/2-1s1/2 Valence Space

We start with the 1s1/2-0d5/2 valence space. The BCS problem was solved
in Subsect. 16.4.4, and the pairing strengths were listed in Table 16.5. The
occupation amplitudes are given in Table 16.9.

Table 16.9. BCS occupation amplitudes u and v and quasiparticle energies E
calculated for protons and neutrons in 24

12Mg12

Orbital up vp Ep (MeV) un vn En (MeV)

0d5/2 0.6821 0.7312 3.0848 0.6826 0.7308 3.1451
1s1/2 0.7773 0.6291 3.1464 0.7760 0.6307 3.2055

The SDI pairing parameters of Table 16.5 and the single-
particle energies ε0d5/2 = 0.0 and ε1s1/2 = 0.87MeV were used
in the calculation.

Proceeding as in Subsect. 16.4.2, we build the QTDA matrix for the 2+

states. With the SDI strengths A0 = 0.94MeV and A1 = 1.53MeV from
Table 16.5, the QTDA matrix becomes

AQTDA(2+) =

⎛⎜⎜⎝
5.120 −1.374 −0.742 −0.982
−1.374 4.425 −0.982 −1.296

. . . . . . 5.241 −1.375

. . . . . . −1.375 4.543

⎞⎟⎟⎠ MeV . (16.100)

Diagonalization yields the wave function for the lowest 2+ state as
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|24Mg ; 2+1 〉QTDA = X1|(π0d5/2)2 ; 2+〉+X2|π0d5/2 π1s1/2 ; 2+〉
+X3|(ν0d5/2)2 ; 2+〉+X4|ν0d5/2 ν1s1/2 ; 2+〉 ,

(16.101)

where the amplitudes are given by

X1 = 0.437 , X2 = 0.568 , X3 = 0.425 , X4 = 0.552 . (16.102)

By use of (16.99), (16.102) and Tables 6.4 and 16.9 we obtain the transition
amplitude

(BCS‖Q2‖2+1
)
= X1 ×

1√
2
× 2× 0.7312× 0.6821(−2.585epeffb2)

+X2 × (0.7312× 0.7773 + 0.6291× 0.6821)(−2.185epeffb2)

+X3 ×
1√
2
× 2× 0.7308× 0.6826(−2.585eneffb2)

+X4 × (0.7308× 0.7760 + 0.6307× 0.6826)(−2.185eneffb2)
= −(1.8233X1 + 2.1795X2)e

p
effb

2 − (1.8236X3 + 2.1798X4)eneffb
2

= −(2.035epeff + 1.978eneff)b2 . (16.103)

Equations (3.43) and (3.45) give the oscillator length b = 1.813 fm, and we
express the effective charges in the usual form epeff = (1 + χ)e, eneff = χe. The
transition amplitude (16.103) now becomes

(BCS‖Q2‖2+1 ) = −(6.69 + 13.19χ)e fm2 . (16.104)

This gives the reduced transition probability

B(E2 ; 2+1 → 0+gs) =
1
5
(6.69 + 13.19χ)2 e2fm4 . (16.105)

The experimental half-life of the 2+1 state is 1.44 ps and its excitation
energy is 1.3686MeV. From Table 6.8 we find

B(E2 ; 2+1 → 0+gs)exp = 82.0 e
2fm4 . (16.106)

This value is reproduced by choosing

χ = 1.03 (16.107)

in (16.105). This large electric polarization constant indicates that a larger
valence space is needed for a reasonable theoretical description.

The 0d-1s Valence Space

We now repeat the previous calculation in the complete 0d-1s valence space.
Table 16.5 gives the pairing parameters and QTDA strength parameters also
for this case. The proton basis states for Jπ = 2+ are
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{|π1〉 , |π2〉 , |π3〉 , |π4〉 , |π5〉}
= {|(π0d5/2)2 ; 2+〉 , |π0d5/2 π1s1/2 ; 2+〉 , |π0d5/2 π0d3/2 ; 2+〉 ,
|π1s1/2 π0d3/2 ; 2+〉 , |(π0d3/2)2 ; 2+〉} , (16.108)

and the neutron basis states are labelled similarly. The QTDA matrix is con-
structed the same way as in Subsect. 16.4.2. Diagonalization then gives the
lowest 2+ state as

|24Mg ; 2+1 〉QTDA = 0.409|π1〉+ 0.522|π2〉+ 0.147|π3〉+ 0.232|π4〉
+ 0.110|π5〉+ 0.385|ν1〉+ 0.493|ν2〉+ 0.141|ν3〉
+ 0.223|ν4〉+ 0.106|ν5〉 . (16.109)

The BCS calculation has produced the u and v occupation amplitudes that
modify and extend those in Table 16.9. With these amplitudes we proceed as
in (16.103) and obtain

(BCS‖Q2‖2+1 ) = −(2.451e
p
eff + 2.325e

n
eff)b

2 , (16.110)

whence

B(E2 ; 2+1 → 0+gs) =
1
5
(8.06 + 15.70χ)2 e2fm4 . (16.111)

Fitting the experimental value (16.106) gives the electric polarization constant

χ = 0.78 . (16.112)

This is notably smaller than 1.03 in (16.107) but still large. Smaller, more re-
alistic values of χ can be obtained when QRPA wave functions are introduced
in Chap. 18.

16.5.3 Collective States and Electric Transitions

Let us examine properties of E2 transitions from 2+ states to the ground state
in even–even nuclei. We start by continuing with the examples of the previous
subsection. The results are from the same calculations. However, instead of
using the fitted polarization constants (16.107) and (16.112), we here choose
χ = 0.3, leading to the effective charges epeff = 1.3e and eneff = 0.3e. Such
effective charges are generally considered reasonable.

All values of B(E2 ; 2+n → 0+gs) for
24
12Mg12 are displayed in Fig. 16.5, with

panel (a) for the 0d5/2-1s1/2 valence space and panel (b) for the complete
0d-1s valence space. Figure 16.5 shows not only the B(E2) values resulting
from the multi-component QTDA wave functions but also the values for pure
BCS states of two quasiparticles. They are labelled by n = 1–4 according
to (16.101) for the small space and by n = 1–10 according to (16.109) for
the large space. From the figure we see that the BCS strength is radically
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Fig. 16.5. B(E2) values for 24Mg in units of e2fm4. The solid bars give the QTDA
results. The dashed bars give two-quasiparticle BCS values at the unperturbed en-
ergies; the numbering is explained in the text. The valence space for panel (a)
is 0d5/2-1s1/2 and that for panel (b) is 0d-1s. The model parameters are from
Table 16.5. The electric polarization constant is χ = 0.3

redistributed by the QTDA procedure. The lowest transition collects most of
the strength, leaving only a small portion for the high-energy transitions.

From (16.102) and (16.103) we see that the X amplitudes of the lowest
2+ state, as well as the BCS amplitudes u and v of the valence space, are
all positive while the single-particle matrix elements are all negative. Such
coherence is a general feature of the lowest 2+ state but does not occur for
the higher states. The coherence produces a large B(E2) value, which signifies
collective behaviour of the nucleons.

The value B(E2 ; 2+1 → 0+gs) = 32.4 e2fm4 in Fig. 16.5(b), obtained with
the reasonable polarization constant χ = 0.3, is still only 40% of the experi-
mental value (16.106). This deficiency is remedied in Chap. 18 by the use of
QRPA wave functions. They contain ground-state correlations that lead to
enhancement of collective transitions. Such enhancement was observed when
comparing TDA and RPA results in Chap. 11.

The nucleus 30
14Si16 provides our next example. This nucleus was discussed

in Subsect. 16.4.5, with its energy spectrum in Fig. 16.3. Like Fig. 16.5,
Fig. 16.6 presents the E2 transitions from the 2+ states to the ground state.
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Fig. 16.6. E2 transitions in 30Si presented as in Fig. 16.5. The valence space is
0d-1s, the model parameters are from Table 16.6, and the polarization constant is
χ = 0.3

The calculations were performed with the model parameters of Table 16.6. As
in the case of 24Mg, the polarization constant was taken to be χ = 0.3.

We compare the computed and experimental values of B(E2 ; 2+1 → 0+gs).
The experimental half-life 0.24 ps and energy 2.2355MeV of the 2+1 state give

B(E2 ; 2+1 → 0+gs)exp = 42 e
2fm4 . (16.113)

Read off Fig. 16.6, the computed value is B(E2) ≈ 39 e2fm4, so we have good
agreement between theory and experiment. However, with the QRPA we can
expect good agreement with a smaller value of χ. As in 24Mg, the QTDA
redistributes the E2 strength from the pure two-quasiparticle case in favour
of the lowest-lying 2+ state.

Our final example is 6630Zn36, whose energy spectrum was discussed in Sub-
sect. 16.4.6. Figure 16.7 shows the values of B(E2 ; 2+n → 0+gs) for the valence
spaces 0f-1p (a) and 0f-1p-0g9/2 (b). The parameters are from Table 16.7, and
the chosen polarization constant is χ = 0.5. The two-quasiparticle components
for protons are numbered as

{|π1〉 , |π2〉 , |π3〉 , |π4〉 , |π5〉 , |π6〉 , |π7〉 , |π8〉 , |π9〉}
= {|(π0f7/2)2 ; 2+〉 , |π0f7/2 π0p3/2 ; 2

+〉 , |π0f7/2 π0f5/2 ; 2+〉 ,
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Fig. 16.7. E2 transitions in 66Zn presented as in Fig. 16.5. The valence space for
panel (a) is 0f-1p and that for panel (b) is 0f-1p-0g9/2. The model parameters are
from Table 16.7, and the polarization constant is χ = 0.5. The numbering of the
two-quasiparticle states is explained in the text

|π1p3/2 π1p3/2 ; 2
+〉 , |π1p3/2 π1p1/2 ; 2

+〉 , |π1p3/2 π0f5/2 ; 2+〉 ,
|π1p1/2 π0f5/2 ; 2+〉 , |π0f5/2 π0f5/2 ; 2+〉 , |π0g9/2 π0g9/2 ; 2

+〉} .

(16.114)

The corresponding neutron states are numbered 10–18. As in the previous
examples, the QTDA brings a strong concentration of E2 strength on the
lowest-lying 2+ state. That strength is greater in the large valence space than
in the small, although the relative difference is less than it is in the case of
24Mg.

From the experimental excitation energy E(2+1 ) = 1.0394MeV and decay
half-life 1.6 ps we find

B(E2 ; 2+1 → 0+gs)exp = 290 e
2fm4 . (16.115)

In spite of the large polarization constant used, the computed values are much
smaller. As noted before, the situation is remedied by the QRPA approach.
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16.6 QTDA Sum Rule for Electromagnetic Transitions

In this section we discuss the NEWSR for the QTDA. This sum rule is anal-
ogous to the one in Subsect. 9.4.2 for the particle–hole TDA. First we derive
the formalism and then present some applications.

16.6.1 Formalism

Consider the sum over all n of the quantities
∣∣(nλ‖Mσλ‖BCS)

∣∣2 within the
QTDA. Using the result (15.57) we obtain∑

n

∣∣(nλ‖Mσλ‖BCS)
∣∣2 =∑

n

∣∣(BCS‖Mσλ‖nλ)
∣∣2

=
∑
n

∣∣∣∑
a≤b

Xnλ
ab Nab(λ)θ(lb)(va|ub| ± vb|ua|)(a‖Mσλ‖b)

∣∣∣2
=

∑
n

∑
a≤b
a′≤b′

Xnλ
ab Xnλ∗

a′b′Nab(λ)Na′b′(λ)θ(lb)θ(lb′ )(va|ub| ± vb|ua|)

× (va′ |ub′ | ± vb′ |ua′ |)(a‖Mσλ‖b)(a′‖Mσλ‖b′)∗ , (16.116)

where the upper signs are for Eλ and the lower signs for Mλ transitions.
Substituting here the completeness relation (16.61) gives∑

n

∣∣(nλ‖Mσλ‖BCS)
∣∣2 =∑

a≤b

∣∣Nab(λ)(va|ub| ± vb|ua|)(a‖Mσλ‖b)
∣∣2 .

(16.117)
The relation (16.117) is the NEWSR of the QTDA. Except for the qua-

siparticle properties, it is like the NEWSR (9.103) of the particle–hole TDA.
The left-hand side depends on the structure of the QTDA states, whereas the
right-hand side depends only on the single-particle properties of the quasipar-
ticles and the single-particle matrix elements. The NEWSR can be used to
check a QTDA calculation of electromagnetic transition rates.

The squared amplitude on the left-hand side of (16.117) is called the tran-
sition strength to the |nλ〉 state. It is the same as the reduced transition
probability B(Eλ) to that state. Because of the definition (6.4) it is 2λ + 1
times greater than the B(Eλ) value in the opposite direction, which is the
actual direction of decay.

For electric transitions the sum rule (16.117) can be expressed in a form
displaying the effective charges, in analogy to (9.104). With the abbreviation

d
(λ)
ab ≡ Nab(λ)(va|ub|+ vb|ua|)(a‖Qλ‖b) , (16.118)

Eq. (16.117) gives
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k

∣∣(k λ‖Qλ‖BCS)
∣∣2 = (epeff/e)2 ∑

p≤p′

∣∣d(λ)pp′
∣∣2 + (eneff/e)2 ∑

n≤n′

∣∣d(λ)nn′
∣∣2 .

(16.119)
Below we apply this form of the sum rule to our previous examples of E2
transitions.

16.6.2 Examples of the NEWSR in the 0d-1s and 0f-1p-0g9/2 Shells

We test the NEWSR on our previous examples in the 0d-1s and 0f-1p-0g9/2
shells. The E2 strength distribution is given for 24Mg in Tables 16.10 and
16.11, and for 66Zn in Table 16.12. The first column labelled ‘Strength’ in
the tables lists individual terms of the right-hand side of (16.119) while the
second column so labelled lists k contributions from the left-hand side.

Table 16.10. Two-quasiparticle configurations, their energies and their E2 strengths
for 24Mg

Configuration E2qp (MeV) Strength (e
2fm4) k Ek (MeV) Strength (e

2fm4)

π0d5/2π0d5/2 6.170 60.39 1 1.374 112.88
π0d5/2π1s1/2 6.231 86.25 2 5.453 41.40
ν0d5/2ν0d5/2 6.290 3.22 3 6.191 0.09
ν0d5/2ν1s1/2 6.351 4.59 4 6.311 0.08

Sum 154.5 154.5

Column four labels the QTDA states, column five gives their energies and column
six the E2 decay strengths to them. The calculation was done in the 0d5/2-1s1/2
valence space with details reported in Subsect. 16.5.3.

We can conclude from the tables that

• the NEWSR is satisfied,
• the dominant contribution to QTDA strength comes from the lowest-lying

2+ state,
• the neutron two-quasiparticle contributions are much smaller than the

proton ones because of the small effective charge of the neutrons.

Tables 16.10, 16.11 and 16.12, respectively, essentially repeat the informa-
tion in Figs. 16.5(a), 16.5(b) and 16.7(b). Only the strengths in the tables
are to be divided by 5 to get the B(E2) values in the figures. Also it is not
quantitatively clear from the figures that the NEWSR is satisfied.
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Table 16.11. Two-quasiparticle configurations, their energies and their E2 strengths
for 24Mg

Configuration E2qp (MeV) Strength (e
2fm4) k Ek (MeV) Strength (e

2fm4)

π0d5/2π0d5/2 6.143 60.68 1 1.357 162.08
π0d5/2π1s1/2 6.267 84.95 2 4.221 53.07
π0d5/2π0d3/2 9.018 22.95 3 6.186 0.13
π1s1/2π0d3/2 9.142 36.41 4 6.362 0.03
π0d3/2π0d3/2 11.893 9.44 5 8.493 8.66
ν0d5/2ν0d5/2 6.318 3.23 6 8.640 0.04
ν0d5/2ν1s1/2 6.443 4.52 7 9.112 1.31
ν0d5/2ν0d3/2 9.164 1.23 8 9.266 0.27
ν1s1/2ν0d3/2 9.289 1.96 9 11.577 0.33
ν0d3/2ν0d3/2 12.010 0.52 10 11.697 0.00

Sum 225.9 225.9

Column four labels the QTDA states, column five gives their energies and column
six the E2 decay strengths to them. The calculation was done in the 0d-1s valence
space with details reported in Subsect. 16.5.3.

16.7 Transitions Between QTDA Excited States

In this section we consider electric and magnetic transitions between two
excited QTDA states of the form (16.55). The transition amplitudes are anal-
ogous to those of the particle–hole TDA in Subsect. 9.4.7.

16.7.1 Transition Amplitudes

The reduced matrix element for an electromagnetic transition between two
two-quasiparticle states was derived in Subsect. 15.5.1. The result is given in
(15.99) in its general form; in (15.100) it is specified to final angular momen-
tum Jf = 0.

From (16.55), the initial and final QTDA wave functions are

|ωi〉 = Q†ωi |BCS〉 =
∑
ai≤bi

Xωi
aibi

A†aibi(JiMi)|BCS〉 , (16.120)

|ωf 〉 = Q†ωf |BCS〉 =
∑

af≤bf
X

ωf
af bf

A†af bf (JfMf )|BCS〉 . (16.121)

The transition amplitude between these states is

(ωf‖Mσλ‖ωi)QTDA =
∑
ai≤bi
af≤bf

X
ωf∗
af bf

Xωi
aibi

(af bf ; Jf‖Mσλ‖ai bi ; Ji) ,

(16.122)
where the two-quasiparticle matrix element (15.99) appears on the right-hand
side. We next apply (16.122) to an example.



www.manaraa.com

516 16 Mixing of Two-Quasiparticle Configurations

Table 16.12. Two-quasiparticle configurations, their energies and their E2 strengths
for 66Zn

Configuration E2qp (MeV) Strength (e
2fm4) k Ek (MeV) Strength (e

2fm4)

π0f7/2π0f7/2 9.495 22.99 1 1.106 666.83
π0f7/2π1p3/2 6.042 341.51 2 2.568 16.71

π0f7/2π0f5/2 8.781 76.53 3 3.479 89.95
π1p3/2π1p3/2 2.589 129.96 4 3.962 0.73

π1p3/2π1p1/2 3.877 178.76 5 4.328 3.81

π1p3/2π0f5/2 5.328 45.47 6 4.529 2.73

π1p1/2π0f5/2 6.616 45.95 7 5.098 59.17

π0f5/2π0f5/2 8.066 22.93 8 5.191 1.71
π0g9/2π0g9/2 8.829 50.55 9 5.404 119.46

ν0f7/2ν0f7/2 15.055 1.88 10 5.942 0.04
ν0f7/2ν1p3/2 10.590 8.68 11 5.969 3.04

ν0f7/2ν0f5/2 9.567 7.27 12 7.715 4.77
ν1p3/2ν1p3/2 6.126 4.77 13 8.525 6.25

ν1p3/2ν1p1/2 4.869 19.55 14 8.996 17.51

ν1p3/2ν0f5/2 5.103 8.45 15 9.275 54.11

ν1p1/2ν0f5/2 3.846 30.32 16 9.444 0.50

ν0f5/2ν0f5/2 4.080 18.44 17 9.944 5.40
ν0g9/2ν0g9/2 4.552 39.10 18 14.644 0.09

Sum 1053 1053

Column four labels the QTDA states, column five gives their energies and col-
umn six gives the E2 decay strengths to them. The calculation was done in the
0f − 1p−Og9/2 valence space with details reported in Subsection 16.5.3.

16.7.2 Example: The 0+1 → 2+1 Transition in 24Mg

Consider an E2 transition between the first excited 0+ state and the first 2+

state in 24Mg. The experimental data for this transition are shown in Fig. 16.8.
We assume QTDA wave functions calculated in the 0d5/2-1s1/2 valence space
with the parameters of Table 16.5. The resulting level scheme is shown on the
left in Fig. 16.2. The initial and final wave functions are

|24Mg ; 0+1 〉 = 0.629|π1〉0 + 0.340|π2〉0 + 0.615|ν1〉0 + 0.334|ν2〉0 , (16.123)

|24Mg ; 2+1 〉 = 0.437|π1〉2 + 0.568|π2〉2 + 0.425|ν1〉2 + 0.552|ν2〉2 . (16.124)

The 0+ basis states for protons are

|π1〉0 = |(π0d5/2)2 ; 0+〉 , |π2〉0 = |(π1s1/2)2 ; 0+〉 (16.125)

and similarly for neutrons. The proton 2+ basis states are

|π1〉2 = |(π0d5/2)2 ; 2+〉 , |π2〉2 = |π0d5/2 π1s1/2 ; 2+〉 (16.126)

and similarly for neutrons. The 2+ state (16.124) is the one given by (16.101)
and (16.102).
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Fig. 16.8. Experimental low-energy spectrum of 24Mg. Measured half-lives are
given. The main decay cascade of the first excited 0+ state is shown with arrows

Equation (15.100) gives the transition amplitude between two-quasiparticle
states when the final state has J = 0. In the present case it is the initial state
that has J = 0. We use the CS phase convention, and then the transition
amplitude is unchanged because of the symmetry property (2.32). Applied to
the 2+ → 0+ transition, (15.100) gives(
(af )2 ; 0+‖Q2‖ai bi ; 2+

)
=
√
2 ĵaf

−1
Naibi(2)

× [δaiaf (ubiuaf − vbivaf )(af‖Q2‖bi)
− δbiaf (uaiuaf − vaivaf )(−1)

jai+jaf (af‖Q2‖ai)] . (16.127)

The BCS occupation amplitudes are listed in Table 16.9 and the single-particle
matrix elements in Table 6.4. The oscillator length is b = 1.813 fm.

It is useful to produce a table of the relevant quantities to sort out the
contributions to the sum (16.122). This is done in Table 16.13. The table lists
the contributing initial and final configurations in columns one and two and
their QTDA amplitudes in columns three and four. Furthermore, we divide the
two-quasiparticle transition matrix element (16.127) into two parts according
to (

(af )2 ; 0+‖Q2‖ai bi ; 2+
)
=
√
2 ĵaf

−1
Naibi(2)(M1 −M2) . (16.128)

Here M1 and M2 are the two terms in the square brackets in (16.127), and
they are tabulated in columns five and six of Table 16.13. The last column
lists the total individual contributions to the sum (16.122).

The QTDA transition amplitude (16.122) is the sum of the entries in the
last column of Table 16.13, so that
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Table 16.13. Contributions to the sum (16.122) for the transition 0+1 → 2+1 in
24Mg

aibi(2
+) (af )

2(0+) Xωi
aibi

X
ωf
af bf

M1 (fm
2) M2 (fm

2) Total (fm2)

π0d5/2π0d5/2 (π0d5/2)
2 0.437 0.629 0.590epeff −0.590epeff 0.132epeff

π0d5/2π0d5/2 (π1s1/2)
2 0.437 0.340 0 0 0

π0d5/2π1s1/2 (π0d5/2)
2 0.568 0.629 −0.504epeff 0 −0.104epeff

π0d5/2π1s1/2 (π1s1/2)
2 0.568 0.340 0 0.504epeff −0.097epeff

ν0d5/2ν0d5/2 (ν0d5/2)
2 0.425 0.615 0.579eneff −0.579eneff 0.124eneff

ν0d5/2ν0d5/2 (ν1s1/2)
2 0.425 0.334 0 0 0

ν0d5/2ν1s1/2 (ν0d5/2)
2 0.552 0.615 −0.494eneff 0 −0.097eneff

ν0d5/2ν1s1/2 (ν1s1/2)
2 0.552 0.334 0 0.494eneff −0.091eneff

The initial and final configurations and their QTDA amplitudes are listed in the
first four columns. The two terms in (16.128) are given in columns five and six.
The total contribution of the pair of configurations is given in the last column.

(0+1 ‖Q2‖2+1 ) = (0.132− 0.104− 0.097)e
p
eff fm

2

+ (0.124− 0.097− 0.091)eneff fm2

= −0.069epeff fm
2 − 0.064eneff fm2

= −(0.069 + 0.133χ)e fm2 . (16.129)

In subsect. 16.5.2 we found χ = 1.03 by fitting B(E2 ; 2+1 → 0+gs). This χ gives

(0+1 ‖Q2‖2+1 ) = −0.206e fm2 , (16.130)

whence
B(E2 ; 0+1 → 2+1 ) = 0.042 e

2fm4 . (16.131)

As shown in Fig. 16.8, the experimental half-life of the 0+1 state is 0.06 ps.
The main decay branch is the direct transition to the 2+1 state, so that this
transition essentially determines the value of the half-life. With the experi-
mental transition energy of 5.063MeV, Table 6.8 gives

B(E2 ; 0+1 → 2+1 )exp = 3 e
2fm4 . (16.132)

We see that the computed transition is two orders of magnitude too slow.
The discrepancy can come from several sources. The two-quasiparticle terms
(16.127) are sensitive to the BCS occupation amplitudes. The computed tran-
sition rates are sensitive to the choices of model space, single-particle energies
and pairing strengths. Small variations in them can cause large variations in
the decay rates.

Epilogue

This chapter constitutes the first level of handling quasiparticle configuration
mixing. The formalism, the quasiparticle TDA, is analogous to the particle–
hole TDA and describes excitations in even–even nuclei. Similarities between
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these two formalisms carry over into their results, in particular as regards
collective states.

In the following chapter we extend our investigations to proton–neutron
two-quasiparticle excitations and their mixing. This enables the description
of states and transitions in odd–odd nuclei.

Exercises

16.1. Derive (16.4) from (16.3).

16.2. Give a detailed derivation of (16.5).

16.3. Derive the identity (16.9).

16.4. Complete the details leading to the expression (16.10).

16.5. Derive the commutator relation (16.26).

16.6. Derive the commutator result (16.33).

16.7. Prove the condition (16.52).

16.8. By diagonalizing the matrix (16.79) verify the values of the eigenenergies
(16.80).

16.9. Derive the expressions (16.85) and (16.86) for the proton and neutron
separation energies.

16.10. Derive the expressions (16.88) and (16.89) for the pairing gapsΔp(A,Z)
and Δn(A,Z).

16.11. Verify the values of the pairing gaps (16.96) and (16.97).

16.12. Verify the values of the pairing gaps (16.98).

16.13. Derive the elements of the matrix (16.100).

16.14. By diagonalizing the matrix (16.100) verify the wave function given
by (16.101) and (16.102).

16.15. Derive the B(E2) values (16.106), (16.113) and (16.115) from the ex-
perimental data provided.

16.16. Consider 2+ excitations in 20Ne. You may use the BCS results of Table
14.1 computed for the complete 0d-1s valence space.

(a) Form the QTDA matrix for the 2+ states in the subset basis (dictated
by the lowest quasiparticle energies) constructed from the 0d5/2 and 1s1/2
proton and neutron orbitals.
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(b) Diagonalize the QTDA matrix to find the eigenenergies and eigenstates.
Use the SDI with parameters A0 = A1 = 1.0MeV. Compare the eigenen-
ergies with experiment and comment.

16.17. Continue Exercise 16.16 and compute the reduced transition proba-
bility B(E2 ; 2+1 → 0+gs) for

20Ne. By comparing with the experimental decay
half-life determine the electric polarization constant χ.

16.18. Consider 2+ excitations in 26Mg. You may use the BCS results of Table
14.1 computed for the complete 0d-1s valence space.

(a) Form the QTDA matrix for the 2+ states in the subset basis (dictated
by the lowest quasiparticle energies) constructed from the 0d5/2 and 1s1/2
proton orbitals and the 1s1/2 neutron orbital.

(b) Diagonalize the QTDA matrix to find the eigenenergies and eigenstates.
Use the SDI with parameters A0 = A1 = 1.0MeV. Compare the eigenen-
ergies with experiment and comment.

16.19. Continuation of Exercise 16.18.

(a) Compute the reduced transition probability B(E2 ; 2+1 → 0+gs) for
26Mg.

Determine the electric polarization constant χ by using available experi-
mental data.

(b) Compute the B(E2 ; 2+n → 0+gs) for the remaining values of n. Compute
the summed E2 strength. Check that the QTDA sum rule is satisfied.

16.20. Continuation of Exercise 16.18.

(a) Compute the QTDA energy for the first 3+ state in 26Mg by using the
SDI with parameters A0 = A1 = 1.0MeV.

(b) Compute the decay half-life of the 3+1 state by assuming that it decays to
the first 2+ state by an M1 transition. Use the bare gyromagnetic ratios
and the experimental gamma energy. Compare with experimental data
and comment.

16.21. Consider 2+ excitations in 30Si. You may use the BCS results of Table
14.1 computed for the complete 0d-1s valence space.

(a) Form the QTDA matrix for the 2+ states in the subset basis (dictated
by the lowest quasiparticle energies) constructed from the 0d5/2 and 1s1/2
proton orbitals and the 1s1/2 and 0d3/2 neutron orbitals.

(b) Diagonalize the QTDA matrix to find the eigenenergies and eigenstates.
Use the SDI with parameters A0 = A1 = 1.0MeV. Compare the eigenen-
ergies with experiment and with the complete d-s calculation of Fig. 16.3,
and comment.

16.22. Continuation of Exercise 16.21.

(a) Compute the wave function of the first 2+ state in 30Si and compare with
the rudimentary first guess (15.74).
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(b) Compute the reduced transition probability B(E2 ; 2+1 → 0+gs) for
30Si.

By comparing with the experimental decay half-life determine the electric
polarization constant χ.

16.23. Consider 2+ excitations in 34S. You may use the BCS results of Table
14.1 computed for the complete 0d-1s valence space.

(a) Form the QTDA matrix for the 2+ states in the subset basis (dictated
by the lowest quasiparticle energies) constructed from the 1s1/2 and 0d3/2
proton orbitals and the 0d3/2 neutron orbital.

(b) Diagonalize the QTDA matrix to find the eigenenergies and eigenstates.
Use the SDI with parameters A0 = A1 = 1.0MeV. Compare the eigenen-
ergies with experiment and comment.

16.24. Continuation of Exercise 16.23.

(a) Compute the reduced transition probability B(E2 ; 2+1 → 0+gs) for
34S.

Determine the electric polarization constant χ by using available experi-
mental data.

(b) Compute the B(E2 ; 2+n → 0+gs) for the remaining values of n. Compute
the summed E2 strength. Check that the QTDA sum rule is satisfied.

16.25. Continuation of Exercise 16.24.
Compute the reduced transition probability B(E2 ; 2+2 → 2+1 ) for

34S by using
the polarization constant found in Exercise 16.24. Determine the decay half-
life of the 2+2 state by taking into account also its decay to the ground state.
Use experimental gamma energies. Compare with experiment and comment.

16.26. Continuation of Exercise 16.23.

(a) Compute the excitation energy of the first 0+ state in 34S. Use the subset
basis of Exercise 16.23 and the SDI with parameters A0 = 1.0MeV and
A1 = 0.0MeV.

(b) Determine the decay half-life of the 0+1 state by assuming that it decays
mainly to the 2+1 state. Use the electric polarization constant of Exercise
16.24 and the experimental gamma energy. Compare with experiment and
comment.

16.27. Consider 38
18Ar20 as a d-s-shell two-hole nucleus. Apply the quasiparti-

cle formalism in the 0d-1s-0f7/2 valence space. Use the single-particle energies
ε0d5/2 = 0, ε1s1/2 = 1.5MeV, ε0d3/2 = 4.0MeV and ε0f7/2 = 7.0MeV. Do
a BCS calculation for protons and neutrons and determine the SDI pairing
parameters by comparing with the liquid-drop pairing-gap formula (16.91).
Note that it is not safe to use separation energies to determine the empirical
pairing gap at a major-shell closure.

16.28. Continuation of Exercise 16.27.
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(a) Form the QTDA matrix for the 2+ states in 38Ar in the subset basis
constructed from the 1s1/2 and 0d3/2 proton orbitals and the 0d3/2 and
0f7/2 neutron orbitals. Use the SDI with parameters A0 = A1 = 1.0MeV.

(b) Diagonalize the QTDA matrix to find the eigenenergies and eigenstates.
Compare the eigenenergies with experiment and with the two-hole calcu-
lation of Fig. 8.7, and comment.

16.29. Continuation of Exercise 16.28.

(a) Compute the reduced transition probability B(E2 ; 2+1 → 0+gs) for
38Ar.

Determine the electric polarization constant χ by using available experi-
mental data.

(b) Compute the B(E2 ; 2+n → 0+gs) for the remaining values of n. Compute
the summed E2 strength. Check that the QTDA sum rule is satisfied.

16.30. Continuation of Exercise 16.27.

(a) Form the QTDA matrix for the 3− states in the subset basis constructed
from the 0d3/2 and 0f7/2 proton and neutron orbitals. Use the SDI with
parameters A0 = A1 = 1.0MeV.

(b) Diagonalize the QTDA matrix to find the eigenenergies and eigenstates.
Compare the eigenenergies with experiment and comment.

16.31. Continuation of Exercise 16.30.

(a) Compute the reduced transition probabilities B(E3 ; 3−n → 0+gs) for
38Ar.

Use the electric polarization constant found in Exercise 16.29.
(b) Check that the QTDA sum rule is satisfied.

16.32. Continuation of Exercise 16.31.
Compute the decay half-life of the 3−1 state in 38Ar by considering its decay
branchings to the 0+gs and 2

+
1 states. Use experimental gamma energies and

the electric polarization constant determined in Exercise 16.29. Compare with
experiment and comment.

16.33. Verify the numbers in Table 16.10.

16.34. Calculate the wave functions (16.123) and (16.124).

16.35. Verify the numbers in Table 16.13.
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Two-Quasiparticle Mixing in Odd–Odd Nuclei

Prologue

In Chap. 16 the residual Hamiltonian was used to mix proton–proton and
neutron–neutron two-quasiparticle configurations. The resulting wave func-
tions described states in even–even open-shell nuclei. In this chapter we
develop a corresponding formalism, the proton–neutron QTDA, for mixing
proton–neutron two-quasiparticle configurations. This mixing produces wave
functions that describe states in odd–odd open-shell nuclei. The quasiparticles
are obtained from a BCS calculation for an even–even reference nucleus next
to the odd–odd nucleus of interest.

Of the decay transitions we take up the particularly interesting case of
charge-changing Gamow–Teller transitions to highly excited giant resonance
states. The Gamow–Teller giant resonance (GTGR) region accounts for the
lion’s share of a sum rule for transitions from the even–even reference nucleus
to the 1+ states of the two neighbouring odd–odd isobars.

17.1 The Proton–Neutron QTDA

In Chap. 16 the EOM method was used to derive both the QTDA and the
pnQTDA, proton–neutron QTDA. By the number-parity principle of Sub-
sect. 13.4.2 the QTDA describes excited states in the even–even reference
nucleus for which we perform the BCS or LNBCS calculation. The associ-
ated two-quasiparticle configurations are of the proton–proton and neutron–
neutron types.

In the pnQTDA the basic excitations are of the proton–neutron type and
thus describe states of odd–odd nuclei, again following the number-parity
principle. As discussed in the beginning of Sect. 16.3, the QTDA and the
pnQTDA come from a variational principle because the exact ground state
was used in (11.11).
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We assume that the pnQTDA wave functions give a reasonable description
of the two odd–odd isobars adjacent to the even–even reference nucleus. This
assumption is supported by the structure of the BCS (or LNBCS) ground
state. The number constraint condition (13.72) or (14.19) makes the particle
numbers peak at the nucleon numbers of the reference nucleus.

17.1.1 Equation of Motion

The pnQTDA equations (16.49)–(16.51) were derived as a by-product of the
QTDA equations. The eigenvalue equation is∑

p′n′
Apn,p′n′Xω

p′n′ = EωX
ω
pn , (17.1)

where ω = kJπ contains the eigenvalue index k and the spin–parity Jπ. The
matrix A is given by

Apn,p′n′(J) = (Ep + En)δpp′δnn′

+ (upunup′un′ + vpvnvp′vn′)〈p n ; J |V |p′ n′ ; J〉
+ (upvnup′vn′ + vpunvp′un′)〈p n−1 ; J |VRES|p′ n′−1 ; J〉 .

(17.2)

In the Baranger notation (16.20) and (16.21), this is

Apn,p′n′(J) = (Ep +En)δpp′δnn′ − 2(upunup′un′ + vpvnvp′vn′)G(pnp′n′J)
− 2(upvnup′vn′ + vpunvp′un′)F (pnp′n′J) . (17.3)

The matrix is Hermitian, so with real elements it is symmetric. Numerical
examples are given in Sect. 17.2.

The proton–neutron two-body matrix elements for (17.2) are decomposed
into their isospin components according to (8.26). For the SDI these com-
ponents are given by Tables 8.1–8.4. The particle–hole matrix elements for
(17.2) are reduced to two-body matrix elements by the Pandya transforma-
tion (16.51),

〈p n−1 ; J |VRES|p′ n′−1 ; J〉 = −
∑
J ′

Ĵ ′
2
{

jp jn J
jp′ jn′ J ′

}
〈p n′ ; J ′|V |p′ n ; J ′〉 .

(17.4)
Again (8.26) serves to decompose the two-body matrix elements into their
isospin components. For the SDI the result is then

〈p1 n−12 ; J |VRES|p3 n−14 ; J〉 = A1M(2)
a1a2a3a4(J1)−A0M(2)

a1a2a3a4(J0)

(17.5)
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with M(2)
a1a2a3a4(JT ) defined in (16.68). The auxiliary matrix elements are

listed in Tables 16.2 and 16.3 for the 0d-1s valence space. Note that the differ-
ent structure of the particle–hole matrix elements (16.70) and (17.5) results
in a sign difference on the right-hand side.

To end this subsection we consider the phase conventions. In analogy to
(16.53) the pnQTDA matrix obeys the relation

A
(BR)
pn,p′n′(J) = (−1)

1
2 (lp′+ln′−lp−ln)A(CS)

pn,p′n′(J) , (17.6)

where CS denotes the Condon–Shortley and BR the Biedenharn–Rose phase
convention. The phase differences show up in the solutions of (17.1) as different
phases for the X amplitudes. These phases, in turn, carry into the expressions
for decay amplitudes, as shown in Sects. 17.3 and 17.4.

17.1.2 Properties of Solutions

The solutions of the pnQTDA equation (17.1) have orthonormality and com-
pleteness properties similar to those of the QTDA, derived in Sect. 16.3. The
pnQTDA wave function is

|ω〉 = Q†ω|BCS〉 =
∑
pn

Xω
pnA

†
pn(JM)|BCS〉 , A†pn(JM) =

[
a†pa
†
n

]
JM

.

(17.7)
The derivations of the orthonormality and completeness conditions can be
traced back to Sect. 16.3, with the simplifying difference that now there is no
summation restriction. The pnQTDA orthonormality relation thus becomes∑

pn

XkJπ∗
pn Xk′Jπ

pn = δkk′ (pnQTDA orthonormality) , (17.8)

which is like (16.57) except for the summation difference. For the completeness
relation of the pnQTDA we have∑

k

XkJπ

pn XkJπ∗
p′n′ = δpp′δnn′ (pnQTDA completeness) , (17.9)

which is exactly like (16.61).

17.2 Excitation Spectra of Open-Shell Odd–Odd Nuclei

By the number-parity principle of Subsect. 13.4.2, states of odd–odd nuclei
can be described by proton–neutron two-quasiparticle configurations and their
mixing. This means that the pnQTDA is applicable to open-shell odd–odd
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nuclei. The matrix structure is that of the pnTDA, given in (10.7). In detail,
the pnQTDA matrix (17.2) differs from the pnTDA matrix (10.7) in three
ways: the particle–hole energies are replaced by two-quasiparticle energies;
not only the particle–hole matrix elements but also the two-particle matrix
elements are present; and the BCS occupation amplitudes enter.

Below we apply the pnQTDA formalism to examples within the 0d-1s
shell.

17.2.1 1+ States in the Mirror Nuclei 24Na and 24Al

Consider the 1+ states of the mirror nuclei 2411Na13 and
24
13Al11 in the simple

0d5/2-1s1/2 valence space. As explained in Subsect. 16.4.5, we can assume that
mirror nuclei have the same structure. Thus we propose to describe the energy
spectra of 24Na and 24Al by a single pnQTDA calculation. We choose 24Mg
as the reference nucleus.

In the 0d5/2-1s1/2 valence space the proton–neutron two-quasiparticle basis
states are

{|1〉 , |2〉} = {|π0d5/2 ν0d5/2 ; 1+〉 , |π1s1/2 ν1s1/2 ; 1+〉} . (17.10)

We take the BCS results for 24Mg from Table 16.5; the table caption explains
the input into the calculation. In particular the table gives the u,v occupation
amplitudes and the quasiparticle energies needed in (17.2).

The pnQTDA matrix elements can now be computed from (17.2). Substi-
tuting from the sources listed below the equation yields

A11(1+) = 3.0848MeV + 3.1451MeV

+ (0.68212 × 0.68262 + 0.73122 × 0.73082)(−1.6286A0)

+ (0.68212 × 0.73082 + 0.73122 × 0.68262)(0.8143A1 + 0.8143A0)
= 6.2299MeV− 0.4129A0 + 0.4052A1 , (17.11)

A12(1+) = (0.6821× 0.6826× 0.7773× 0.7760
+ 0.7312× 0.7308× 0.6291× 0.6307)(−1.1832A0)

+ (0.6821× 0.7308× 0.7773× 0.6307 + 0.7312× 0.6826× 0.6291× 0.7760)
× (0.5916A1 + 0.5916A0) = −0.2944A0 + 0.2887A1 , (17.12)

A22(1+) = 3.1464MeV + 3.2055MeV

+ (0.77732 × 0.77602 + 0.62912 × 0.63072)(−1.000A0)

+ (0.77732 × 0.63072 + 0.62912 × 0.77602)(0.5000A1 + 0.5000A0)
= 6.3519MeV− 0.2819A0 + 0.2393A1 . (17.13)
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With the default choice A0 = A1 = 1.0MeV the pnQTDA matrix given
by (17.11)–(17.13) becomes

ApnQTDA(1+) =
(
6.2222 −0.0057
−0.0057 6.3093

)
MeV . (17.14)

Diagonalization, which can be done by hand according to Subsect. 8.3.2, gives
the eigenvalues

E(2+1 ) = 6.222MeV , E(2+2 ) = 6.310MeV , (17.15)

and eigenvectors

|1+1 〉 = 0.998|1〉+ 0.065|2〉 , (17.16)

|1+2 〉 = −0.065|1〉+ 0.998|2〉 . (17.17)

As pointed out in the beginning of this subsection, the computed 1+ states
(17.16) and (17.17) describe the 1+ spectra of both 24Na and 24Al. The energy
difference between the computed 1+ states is 0.088MeV, which is far short of
the measured value of 0.874MeV in 24Na. For 24Al the experimental energy
difference is not known. Below we study the energy spectrum of 24Na more
extensively.

17.2.2 Energy Spectra in the d-s and f-p-0g9/2 Shells

We now continue the investigation of pnQTDA spectra started in the previous
subsection. Figure 17.1 shows two computed excitation spectra of 24Na. The
left panel displays all energy levels produced by the 0d5/2-1s1/2 model space,
calculated for all J with the SDI parameters of Subsect. 17.2.1. The middle
panel shows the spectrum from a full 0d-1s calculation, where we used the
SDI pairing parameters of Table 16.5 and A0 = A1 = 1.0MeV for all J . The
right panel shows all known experimental levels up to half an MeV.

Figure 17.1 shows that the density of states in the calculated spectra is
much too high. This is partly due to our choice A0 = A1. Breaking this
equality diminishes the level density but still does not reproduce the ob-
served sequence of states. The level density and sequence are influenced by
the single-particle energies and the characteristics of the two-body interaction.
The spacing increases with the model space because the higher multipoles of
an interaction operate more efficiently in a larger space.

The computed spectrum of 24Na can be interpreted to be a linear combi-
nation of the spectra of 24Na and 24Al. This stems from the basic feature of
losing good nucleon number in the two-quasiparticle configurations built on a
BCS (or LNBCS) vacuum. The nucleon number uncertainties, inherent in the
BCS (LNBCS) vacuum, show up as particle number fluctuations. These fluc-
tuations were addressed in Subsect. 13.4.2, and they are amplified by forming
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Fig. 17.1. Proton–neutron QTDA spectra of 24Na in two different valence spaces,
together with the experimental spectrum shown up to the 2+1 state. The single-
particle energies are from (14.12). The SDI was used with the pairing parameters of
Table 16.5 and the pnQTDA parameters A0 = A1 = 1.0MeV for all multipoles

proton–neutron two-quasiparticle excitations on top of a BCS (LNBCS) vac-
uum. Then the calculated energy spectrum mixes states of all nuclei that are
within one particle or one hole of the even–even reference nucleus. This in
fact partly explains the excessive density of low-lying states in the computed
spectra of 24Na.

As our next example we discuss the excitation spectrum of the self-
conjugate (N = Z) nucleus 30

15P15. The wave functions of its three lowest
states were discussed in Subsect. 15.4.2 in a very schematic fashion. Also the
beta and M1 decays of 30P were studied within a rudimentary configuration
mixing scheme in Subsects. 15.5.3 and 15.5.4.

The computed and experimental energy spectra of 30P are shown in
Fig. 17.2. The complete 0d-1s valence space was used in the computations.
Now the reference nucleus is 30Si, and its BCS ground state was computed
by using the pairing parameters of Table 16.6. The pnQTDA calculation was
done by using the SDI parameters A0 = A1 = 1.0MeV for all multipoles.
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Fig. 17.2. Proton–neutron QTDA spectrum of 30P in the 0d-1s valence space,
together with the experimental spectrum shown up to the 3+1 state. The single-
particle energies are from (14.12). The SDI was used with the pairing parameters of
Table 16.6 and the pnQTDA parameters A0 = A1 = 1.0MeV for all multipoles

As in the case of 24Na, the computed spectrum of 30P is much compressed
relative to the experimental one. As discussed in the context of 24Na, this
phenomenon can be explained by the particular choice A0 = A1 of the SDI
parameters and particle number fluctuations.

Consider next the nucleus 66
29Zn37 as a representative case of nuclei in the

0f-1p-0g9/2 shells. Figure 17.3 presents a comparison between the experimental
spectrum of 66Cu and two pnQTDA calculations. The calculations were done
in the 0f-1p (left) and 0f-1p-0g9/2 (middle) valence spaces by using the single-
particle energies of (14.13) and the pairing parameters of Table 16.7. The
SDI parameters A0 = 1.0MeV and A1 = 0.8MeV were used in the pnQTDA
calculation.

In the pnQTDA calculations the order of the 0+1 state and the 2+1 state
is sensitive to the relative magnitudes of the A0 and A1 strengths of the
SDI. In the present calculations the parameters were chosen such that the 1+1
state became the ground state. The correspondence between the experimental
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Fig. 17.3. Proton–neutron QTDA spectrum of 66Cu in two different valence spaces,
together with the experimental spectrum. The complete spectra are shown up to
an energy of 1.5MeV. The single-particle energies are from (14.13). The SDI was
used with the pairing parameters of Table 16.7 and the pnQTDA parameters A0 =
1.0MeV and A1 = 0.8MeV for all multipoles

spectrum and the calculated spectra in Fig. 17.3 is appreciably better than in
our previous examples.

The spectrum computed in the extended basis, which contains the intruder
state 0g9/2, is in fair qualitative agreement with the experimental spectrum.
The intruder allows the generation of negative-parity states. These states are
seen in the experimental spectrum, but half an MeV higher than the calculated
ones. This is due to the chosen, slightly too low single-particle energy of the
0g9/2 state.

17.2.3 Average Particle Number in the pnQTDA

Particle-number fluctuations are associated with the wave functions computed
in the pnQTDA. These fluctuations mix states of different nuclei in the pn-
QTDA wave functions. The most serious mixing occurs among nuclei that are
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immediate neighbours of the even–even reference nucleus for which the BCS
(LNBCS) calculation is carried out. The excessive density of states in light
nuclei was ascribed to this mixing.

Particle number fluctuations always contaminate computed quasiparticle
wave functions. It is therefore of interest to study quantitatively the average
particle number of a pnQTDA wave function. At the BCS (LNBCS) level
the average proton and neutron numbers were constrained to equal the cor-
rect nucleon numbers of the even–even reference nucleus. We expect that the
average nucleon numbers of pnQTDA wave functions closely coincide with
those of the reference. This is so because particle number fluctuations can
be expected to mix odd–odd nuclei adjacent to the reference in a democratic
fashion, which roughly preserves the average proton and neutron numbers of
the BCS (LNBCS).

Formalism

To access the average nucleon numbers we start from the proton and neutron
number operators n̂p and n̂n given in (4.16). With the pnQTDA wave function
(17.7) the effective, or average, number of protons in the pnQTDA state is

Zeff ≡ 〈ω|n̂p|ω〉

=
∑
pn
p′n′

Xω∗
pnXω

p′n′
∑

mπmν
mπ′mν′

(jp mπ jn mν |J M)(jp′ mπ′ jn′ mν′ |J M)〈n̂p〉 ,

(17.18)

where
〈n̂p〉 ≡ 〈BCS|aνaπn̂pa†π′a

†
ν′ |BCS〉 . (17.19)

We proceed to evaluate this expression.
Equation (13.38) gives the number operator in terms of quasiparticles,

whence

〈n̂p〉 = δππ′δνν′Zact + δνν′
∑
π′′
(u2p′′ − v2p′′)〈BCS|aπa

†
π′′aπ′′a†π′ |BCS〉 , (17.20)

where the number Zact of valence protons is the average number of active
protons in the BCS vacuum according to (13.37) and (13.39). To the second
term we apply Wick’s theorem of Subsect. 4.3.3 and find

〈n̂p〉 = δππ′δνν′(Zact + u2p − v2p) . (17.21)

An analogous relation applies to the neutrons. Substituting (17.21) into
(17.18) and using the orthonormality relation (17.8), we obtain

Zeff = Zact +
∑
pn

(u2p − v2p)|Xω
pn|2 ,

Neff = Nact +
∑
pn

(u2n − v2n)|Xω
pn|2 .

(17.22)
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From Eqs. (17.22) we see that the effective proton and neutron numbers
depend on the state ω and are not equal to the particle numbers of the odd–
odd nucleus. However, the basic relation (13.9) implies that −1 ≤ u2a−v2a ≤ 1,
which together with (17.8) leads to the conclusion

|Zeff − Zact| ≤ 1 , |Neff −Nact| ≤ 1 . (17.23)

Thus the average particle numbers in the states of an odd–odd nucleus stay
within unity of those of the even–even reference nucleus.

Examples

Table 17.1 gives effective particle numbers calculated from (17.22) with the
reference nucleus 2412Mg12. The pnQTDA wave functions were computed in the
0d-1s valence space. The excitation spectrum is shown in Fig. 17.1, with the
parameters stated in the figure caption. The table shows that the average
nucleon numbers of the pnQTDA wave functions are very close to the average
nucleon numbers of the reference nucleus and thus relatively far from the
nucleon numbers of the odd–odd nuclei described.

Table 17.1. Effective proton and neutron numbers (17.22) of the lowest pnQTDA
states for the reference nucleus 24Mg

Jπ Eex (MeV) Zeff Neff

0+ 0.000 4.07 4.07
1+ 0.098 4.02 4.03
2+ 0.122 4.01 4.01
3+ 0.125 4.00 4.01
4+ 0.126 4.00 4.01
5+ 0.126 4.00 4.01
3+ 0.228 4.15 4.13
2+ 0.234 4.16 4.12
2+ 0.250 4.12 4.16
3+ 0.269 4.13 4.15
0+ 0.284 4.23 4.23
1+ 0.285 4.26 4.26

The numbers of active particles in the reference BCS vacuum are
Zact = 4, Nact = 4. The energies Eex are the excitation energies.

Another example of the effective nucleon numbers of the pnQTDA wave
functions is given in Table 17.2. Here the reference nucleus is 66

30Zn36. The
computations were done in the 0f-1p-0g9/2 valence space. The resulting spec-
trum is displayed in Fig. 17.3, where also the relevant parameters are quoted.
In this case the deviations from the particle numbers Zact = 10 and Nact = 16
of the reference BCS vacuum are greater than in the case of 24Mg. The state
dependence of the average nucleon numbers is clearly visible in the table.
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Table 17.2. Effective proton and neutron numbers (17.22) of the lowest pnQTDA
states for the reference nucleus 66Zn

Jπ Eex (MeV) Zeff Neff

1+ 0.000 10.37 16.48
0+ 0.211 10.80 16.31
1+ 0.310 10.18 15.76
2+ 0.405 10.19 15.98
4− 0.495 10.35 16.64
2+ 0.501 10.20 16.25
3+ 0.522 10.24 16.52
4+ 0.548 10.17 16.53
6− 0.602 10.18 16.65
3− 0.667 10.20 16.65
5− 0.794 10.24 16.65
2− 0.874 10.95 16.59
3+ 1.260 10.80 16.49
1+ 1.369 10.51 15.85
3+ 1.479 10.07 15.24
2+ 1.481 10.69 16.26

The numbers of active particles in the reference BCS vacuum are
Zact = 10, Nact = 16. The energies Eex are the excitation energies.

17.3 Electromagnetic Transitions in the pnQTDA

In this section we discuss electromagnetic transitions in an odd–odd open-
shell nucleus. The wave functions are obtained by performing a pnQTDA
calculation in the adjacent even–even reference nucleus. The initial and final
wave functions, of the form (17.7), are

|ωi〉 =
∑
pini

Xωi
pini

[
a†pia

†
ni

]
JiMi
|BCS〉 , (17.24)

|ωf 〉 =
∑
pfnf

X
ωf
pfnf

[
a†pf a

†
nf

]
JfMf

|BCS〉 . (17.25)

Using these wave functions we can immediately write the decay amplitude as

(ωf‖Mσλ‖ωi) =
∑
pini
pfnf

X
ωf∗
pfnfX

ωi
pini(pf nf ; Jf‖Mσλ‖pi ni ; Ji) , (17.26)

where the reduced matrix element (pf nf ; Jf‖Mσλ‖pi ni ; Ji) is the proton–
neutron two-quasiparticle transition matrix element given in (15.103) for the
general case and in (15.104) for Jf = 0.

We next discuss an example that clarifies the use of (17.26) in practical
applications.
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Fig. 17.4. Experimental low-energy spectrum of 24Na. The measured half-life of
the 2+1 state and the decay branchings are indicated

17.3.1 Decay of the 2+1 State in 24Na

Consider the decay of the 2+1 state of
24Na. The decay channels are shown in

Fig. 17.4. We choose the valence space 0d5/2-1s1/2 and use the SDI with the
parameters stated in the caption to Fig. 17.1, which displays the computed
spectrum. We use the CS phase convention throughout the calculations.

For our calculation we need the structure of the nuclear wave functions
involved. Equations (17.10) and (17.16) give the 1+1 state as

|24Na ; 1+1 〉 = 0.998|1〉1 + 0.065|2〉1 (17.27)

with

|1〉1 = |π0d5/2 ν0d5/2 ; 1+〉 , |2〉1 = |π1s1/2 ν1s1/2 ; 1+〉 . (17.28)

The wave functions of the other relevant states, 4+gs and 2
+
1 , we obtain

by forming the corresponding pnQTDA matrices and diagonalizing them. For
the 2+ states we have the proton–neutron basis

{|1〉2 , |2〉2 , |3〉2}
= {|π0d5/2 ν0d5/2 ; 2+〉 , |π0d5/2 ν1s1/2 ; 2+〉 , |π1s1/2 ν0d5/2 ; 2+〉} .

(17.29)

By proceeding as in Subsect. 17.2.1 we find the pnQTDA matrix

ApnQTDA(2+) =

⎛⎝6.227 0.003 0.003
0.003 6.305 −0.001
0.003 −0.001 6.306

⎞⎠ MeV . (17.30)
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Diagonalization gives the lowest eigenvalue

E(2+1 ) = 6.226MeV (17.31)

with eigenvector

|24Na ; 2+1 〉 = 0.998|1〉2 − 0.040|2〉2 − 0.039|3〉2 . (17.32)

In the 0d5/2-1s1/2 valence space we have only one 4+ state, so that

|24Na ; 4+gs〉 = |π0d5/2 ν0d5/2 ; 4+〉 . (17.33)

Let us first discuss the M1 decay 2+1 → 1+1 . We write the two-quasiparticle
matrix element (15.103) in (17.26) as

(pf nf ; 1‖M1‖pi ni ; 2) =M (1)(pfnfpini) +M (2)(pfnfpini) , (17.34)

where we have abbreviated

M (1)(pfnfpini) ≡ δninf (−1)
jpf+jnf+1

√
15

{
1 2 1
jpi jpf jnf

}
× (upiupf + vpivpf )(pf‖M1‖pi) , (17.35)

M (2)(pfnfpini) ≡ δpipf (−1)jpi+jni
√
15

{
1 2 1
jni jnf jpf

}
× (uniunf + vnivnf )(nf‖M1‖ni) (17.36)

with the D factors inserted from (15.18).
The M1 single-particle matrix elements (6.47) are given by Tables 6.6 and

6.7. Table 16.9 gives the BCS occupation amplitudes. Inspection of the terms
(17.35) and (17.36) with the input of the present example reveals that, because
of the Kronecker deltas and 6j symbols, the only non-zero terms are obtained
for pini = pfnf = 0d5/20d5/2. Evaluated, these terms are

M (1)(0d5/20d5/20d5/20d5/2)

=
√
15

(
− 4
15

√
2
7

)
× 1× (2.832× 1 + 0.708gp)μN/c = −3.747μN/c ,

(17.37)

M (2)(0d5/20d5/20d5/20d5/2)

= −
√
15

(
− 4
15

√
2
7

)
× 1× (0 + 0.708gn)μN/c = −1.495μN/c , (17.38)

where we inserted the gyromagnetic factors (6.8). With the amplitudes from
(17.27) and (17.32), Eq. (17.26) now yields

(1+1 ‖M1‖2+1 ) = 0.998× 0.998× (−3.747− 1.495)μN/c = −5.221μN/c .
(17.39)
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This gives the reduced transition probability

B(M1 ; 2+1 → 1+1 ) =
1
5
(−5.221μN/c)2 = 5.452 (μN/c)2 . (17.40)

With the experimental gamma energy from Fig. 17.4, Table 6.9 gives the decay
probability

T (M1 ; 24Na) = 1.779×1013×0.09103×5.452 1/s = 7.31×1010 1/s . (17.41)

For the E2 transition 2+1 → 4+gs we obtain from (15.103)

(pf nf ; 4‖Q2‖pi ni ; 2) = Q(1)(pfnfpini) +Q(2)(pfnfpini) , (17.42)

where

Q(1)(pfnfpini) ≡ δninf (−1)
jpf+jnf

√
45

{
4 2 2
jpi jpf jnf

}
× (upiupf − vpivpf )(pf‖Q2‖pi) , (17.43)

Q(2)(pfnfpini) ≡ δpipf (−1)jpi+jni
√
45

{
4 2 2
jni jnf jpf

}
× (uniunf − vnivnf )(nf‖Q2‖ni) . (17.44)

With the single-particle matrix elements of Table 6.4 and the BCS occu-
pation amplitudes of Table 16.9 we produce the values of Q(1) and Q(2) given
in Table 17.3. Using these numbers and (17.26) we have the decay amplitude

(4+1 ‖Q2‖2+1 ) = 1× 0.998× (0.0815e
p
eff + 0.0800e

n
eff)b

2

+ 1× (−0.040)× (−0.1063eneffb2)
+ 1× (−0.039)× (−0.1085epeffb2)

= 0.281epeff fm
2 + 0.276eneff fm

2 , (17.45)

where the A = 24 oscillator length b = 1.813 fm was inserted.

Table 17.3. Contributions to the sum (17.26) for the 2+1 → 4+gs transition in
24Na

pini(2
+) pfnf (4

+) Xωi
pini X

ωf
pfnf Q(1) (epeffb

2) Q(2) (eneffb
2)

0d5/20d5/2 0d5/20d5/2 0.998 1 0.0815 0.0800
0d5/21s1/2 0d5/20d5/2 −0.040 1 0 −0.1063
1s1/20d5/2 0d5/20d5/2 −0.039 1 −0.1085 0

The initial and final quasiparticle configurations and the corresponding pnQTDA
amplitudes are listed in the first four columns. The quantities (17.43) and (17.44)
are given in columns five and six. CS phases are assumed.
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We can now take the electric polarization constant χ = 1.03 from (16.107).
It was obtained from a QTDA calculation for the even–even reference nucleus
24Mg in our presently adopted valence space. Substituted into (17.45) this
gives

(4+1 ‖Q2‖2+1 ) = 0.855 e fm2 , (17.46)

leading to the reduced transition probability

B(E2 ; 2+1 → 4+gs) = 0.146 e
2fm4 . (17.47)

This, in turn, leads to transition probability by the use of Table 6.8 and the
experimental gamma energy. The result is

T (E2 ; 24Na) = 1.223× 109 × 0.56335 × 0.146 1/s = 1.0× 107 1/s . (17.48)

The transition probability (17.48) is four orders of magnitude smaller than
the M1 transition probability (17.41), so that the M1 transition in fact deter-
mines the decay half-life of the 2+1 state. The half-life is then

t1/2(2+1 ) =
ln 2

T (M1)
= 9.5 ps . (17.49)

This is roughly one fourth of the experimental half-life of 35 ps, shown in
Fig. 17.4. It is possible to improve on the calculation by increasing the size of
the model space and performing a more careful analysis of the single-particle
energies and the interaction parameters.

17.4 Beta-Decay Transitions in the pnQTDA

In this section we discuss beta-decay transitions between an open-shell odd–
odd nucleus and the neighbouring even–even reference nucleus. This reference
nucleus is used to generate, in a pnQTDA calculation, the levels of the odd–
odd nucleus in question. First we discuss transitions involving the BCS ground
state of the reference nucleus.

17.4.1 Transitions to and from an Even–Even Ground State

As pointed out at the end of Subsect. 15.4.1, the decay amplitude for a beta
transition from a pnQTDA excited state |ω〉 to the BCS ground state can be
written immediately as

(BCS‖β∓F/GT‖ω) =
∑
pn

Xω
pnM

(∓)
F/GT(pnJ → BCS) . (17.50)

The appropriate Fermi (M(∓)
F ) and Gamow–Teller (M(∓)

GT) matrix elements
for β− and β+ decay are given by (15.63) and (15.64). When the initial state
is the even–even ground state we have similarly
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(ω‖β∓F/GT‖BCS) =
∑
pn

Xω∗
pnM

(∓)
F/GT(BCS→ pnJ) (17.51)

with the appropriate transition matrix elements given in (15.65) and (15.66).
The corresponding formulas for Kth-forbidden unique transitions can be

obtained from (17.50) and (17.51) by making the replacements

M(∓)
F/GT(pnJ → BCS)→M(∓)

Ku (pnJ → BCS) , (17.52)

M(∓)
F/GT(BCS→ pnJ)→M(∓)

Ku (BCS→ pnJ) , (17.53)

where the replacing matrix elements are given by (15.68) and (15.69).
Next we discuss an example which clarifies the use of the formalism.

17.4.2 Gamow–Teller Beta Decay of 30S

Consider the β+ decay of the 0+ ground state of 30
16S14 to the first two 1

+

states in 30
15P15. This decay pattern was presented in Fig. 15.4 and discussed

in the example of Subsect. 15.4.2. There we made a rudimentary, ad hoc
ansatz for two-quasiparticle mixing in the 1+ wave functions. In Exercise 17.19
these guessed wave functions are compared with wave functions obtained by
diagonalizing the pnQTDA matrix in a sub-basis of the 0d-1s shell. In this
subsection we obtain the wave functions from a pnQTDA calculation in the
0d-1s valence space using 30S as the reference nucleus.

The scheme is to adjust the SDI pairing parameters to reproduce the
empirical pairing gaps (16.97). However, we need not do this because we have
already determined the pairing parameters for 30Si, which is the mirror nucleus
of 30S, and we can assume the pairing gaps of mirror nuclei to be the same. Our
pairing parameters are then those in Table 16.6, i.e. A(p)

pair = A
(n)
pair = 1.0MeV.

The resulting BCS occupation amplitudes are listed in Table 14.1, and again
in Table 17.4 for convenience. If we make the usual choice A0 = A1 = 1.0MeV
for the pnQTDA calculation we obtain the spectrum of Fig. 17.2 for 30P.

The two 1+ states in 30P that we need are written as

|30P ; 1+1 〉 =
7∑

k=1

X
1+1
k |k〉1 , |30P ; 1+2 〉 =

7∑
k=1

X
1+2
k |k〉1 , (17.54)

where the configurations for the basis states |k〉1 are listed in Table 17.4.
After forming the pnQTDA matrix and diagonalizing it we obtain the states
(17.54) as the first two eigenvectors. The X amplitudes are listed in Table
17.5. It also gives the beta transition matrix elements in (17.51), computed
by using (15.66) and the occupation amplitudes and Gamow–Teller single-
particle matrix elements of Table 17.4. The fourth and sixth columns list the
products of the beta transition matrix element and the X amplitude of the 1+1
and 1+2 states, respectively. Each product is a contribution to the sum (17.51),
given in the last row of the table.
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Table 17.4. Proton–neutron quasiparticle configurations, labelled with k, used to
build the 1+ states of 30P in the 0d-1s valence space

k Configuration Epn (MeV) up vp un vn MGT(pn)

1 π0d5/2ν0d5/2 6.275 0.2285 0.9735 0.4996 0.8662
√

14
5

2 π0d5/2ν0d3/2 8.001 0.2285 0.9735 0.9619 0.2735 − 4√
5

3 π1s1/2ν1s1/2 5.210 0.2943 0.9557 0.6330 0.7741
√
2

4 π1s1/2ν0d3/2 7.248 0.2943 0.9557 0.9619 0.2735 0

5 π0d3/2ν0d5/2 5.125 0.9372 0.3488 0.4996 0.8662 4√
5

6 π0d3/2ν1s1/2 4.813 0.9372 0.3488 0.6330 0.7741 0

7 π0d3/2ν0d3/2 6.850 0.9372 0.3488 0.9619 0.2735 − 2√
5

The reference nucleus is 30S. Two-quasiparticle energies Epn ≡ Ep + En, BCS
occupation amplitudes and Gamow–Teller single-particle matrix elements from
Table 7.3 are also given.

Table 17.5. Contributions to the sum (17.51) for the β+/EC decay of 30S to the
two lowest 1+ states of 30P

k M(+)
GT(k) X

1+1
k Contribution X

1+2
k Contribution

1 −1.4096 0.470 −0.6625 −0.039 0.0550
2 2.9014 0.113 0.3279 −0.015 −0.0435
3 −1.4818 0.863 −1.2788 −0.126 0.1867
4 0 −0.028 0 −0.007 0
5 −0.5399 0.080 −0.0432 0.134 −0.0723
6 0 −0.120 0 −0.956 0
7 0.5198 −0.012 −0.0062 −0.226 −0.1175
Sum −1.6628 0.0084

The last row gives the sum of these contributions. The label k is that of Table 17.4.
The second column lists the Gamow–Teller matrix elements, and the third and
fifth columns list the amplitudes of the 1+1 and 1

+
2 wave functions in (17.54). CS

phases are assumed

With the sums in Table 17.5, Eqs. (7.14) and (7.15) give

B(GT ; 0+gs → 1+1 ) = 1.25
2(−1.6628)2 = 4.32 , (17.55)

B(GT ; 0+gs → 1+2 ) = 1.25
2 × 0.00842 = 1.10× 10−4 . (17.56)

Equations (7.16) and (7.33) then give

log ft(1+1 ) = 3.15 , log ft(1+2 ) = 7.75 . (17.57)

Figure 15.4 gives the experimental log ft values 4.4 and 5.7 for decay to the
1+1 and 1

+
2 states, respectively. Thus we predict the first decay to be too fast
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and second too slow. However, the qualitative trend is correctly reproduced,
contrary to the results (15.89) of the rudimentary approach, where the wave
functions (15.79) and (15.80) were merely an educated guess. In fact, compar-
ison of the wave functions (15.79) and (15.80) with those in Table 17.5 reveals
major differences.

We continue our analysis by studying the β+/EC transition

30P(1+gs)
β+/EC−→ 30Si(0+gs) , log ftexp = 4.8 , (17.58)

shown in Fig. 15.4. The 1+gs wave function of
30P is now computed by starting

from 30Si as the reference nucleus. Since 30Si is the mirror of 30P we proceed by
exchanging the proton and neutron labels of the configurations and occupation
amplitudes in Table 17.4. The transition amplitude is now given by (17.50).

The Gamow–Teller matrix elements are computed from (15.64) and the
last column of Table 17.4. The 1+gs wave function is obtained from the previ-
ously computed 1+1 wave function of

30P. Because the coupling order changes
when the proton and neutron labels are exchanged the new basis states dif-
fer from the previous ones by a factor of (−1)jp+jn ; see (5.25). The resulting
wave function is presented in Table 17.6, where we also list the Gamow–Teller
matrix elements.

The sum (17.50) stated in the last row of Table 17.6 gives the reduced
beta transition probability

B(GT ; 1+gs → 0+gs) =
1.252

3
× 1.66282 = 1.440 , (17.59)

which leads to
log ft(1+gs → 0+gs) = 3.63 . (17.60)

Table 17.6. Contributions to the sum (17.50) for the β+/EC decay of 30P to the
ground state of 30Si

k Configuration M(+)
GT(k) X

1+gs
k Contribution

1 π0d5/2ν0d5/2 −1.4096 −0.470 0.6625
2 π0d5/2ν0d3/2 0.5399 0.080 0.0432
3 π1s1/2ν1s1/2 −1.4818 −0.863 1.2788
4 π1s1/2ν0d3/2 0 −0.120 0
5 π0d3/2ν0d5/2 −2.9014 0.113 −0.3279
6 π0d3/2ν1s1/2 0 −0.028 0
7 π0d3/2ν0d3/2 0.5198 0.012 0.0062
Sum 1.6628

The last row gives the sum of the contributions. The configurations, labelled with
k as in Table 17.4, the Gamow–Teller matrix elements and the wave function
amplitudes are also given. CS phases are assumed.
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The experimental value from Fig. 15.4 is 4.8, which means that the theoretical
transition rate is too high.

We conclude the present examples by noting that∣∣(30Si ; 0+gs‖β+
GT‖30P ; 1+gs)

∣∣ = ∣∣(30P ; 1+1 ‖β+
GT‖30S ; 0+gs)

∣∣ = 1.663 . (17.61)

The equality is due to the symmetry under exchange of protons and neutrons.
The symmetry in turn comes from the use of the same single-particle energies
and interaction parameters for protons and neutrons. Such symmetries cease
to exist for heavier nuclei since their proton and neutron valence spaces are
different.

17.4.3 The Ikeda Sum Rule and the pnQTDA

Let us continue to examine beta-decay transitions where the even–even ground
state is either the initial or final state. Consider Gamow–Teller β− and β+

transitions from an initial state |0+i 〉. These transitions reach two complete sets
of final states, one for the beta-minus and one for the beta-plus transitions.
The states of these sets have angular momentum Jf = 1. We denote them
according to

|f∓〉 ≡ |n∓ 1+ Mf 〉 , ∓ for β∓ transitions . (17.62)

Here n∓ enumerates the 1+ states and Mf is the z projection of the angular
momentum for each set of states.

The initial state is the ground state of an even–even nucleus, and the
final states belong to the two adjacent odd–odd isobars. The charge-changing
transitions thus go from an even–even 0+ ground state to the 1+ states of the
two neighbouring odd–odd nuclei. These transitions are characterized by the
Gamow–Teller β− and β+ total transition strengths

S∓ ≡
∑
Mfμ
n∓

∣∣〈f∓|β∓GT(μ)|0
+
i 〉

∣∣2 (total β∓ strength) , (17.63)

where β∓GT(μ) is the spherical component μ of the Gamow–Teller operator as
defined in (7.69). The sum over n− or n+ runs over the respective complete
set. By means of the Wigner–Eckart theorem (2.27) Eq. (17.63) can be put
into the alternative form

S∓ =
∑
n∓

∣∣(f∓‖β∓GT‖0
+
i )

∣∣2 , (17.64)

where Mf is no longer included in the quantum numbers of f∓.
Next we derive an important property of the total strengths S∓, the so-

called Ikeda sum rule.
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Derivation of the Ikeda Sum Rule

Starting from (17.63) we write

S− =
∑
Mfμ
n−

〈0+i |
(
β−GT(μ)

)†|f−〉〈f−|β−GT(μ)|0
+
i 〉

=
∑
μ

〈0+i |
(
β−GT(μ)

)†
β−GT(μ)|0

+
i 〉 , (17.65)

where we used the completeness of the states |f−〉,∑
Mfn−

|f−〉〈f−| =
∑

Mfn−

|n− 1+ Mf 〉〈n− 1+ Mf | = 1 . (17.66)

In coordinate representation the Gamow–Teller operator is

β−GT(μ) =
A∑

k=1

σμ(k)t−(k) , (17.67)

where the isospin lowering operator t− = t1 − t2 changes a neutron into a
proton according to (5.75). The Hermitian conjugate of this is

(
β−GT(μ)

)† = A∑
k=1

(
σμ(k)

)†(
t−(k)

)† = (−1)μ A∑
k=1

σ−μ(k)t+(k)

= (−1)μβ+
GT(−μ) , (17.68)

where we used (2.15) and the fact that the Cartesian components of σ are
Hermitian. Note also that the spin and isospin operators commute. The ex-
pression (17.65) for S− now becomes

S− =
∑
μ

(−1)μ〈0+i |β+
GT(−μ)β−GT(μ)|0

+
i 〉 . (17.69)

Exchanging the plus and minus indices gives the corresponding expression for
S+.

We wish to evaluate the difference S− − S+. With the change μ→ −μ in
the summation index of S+ the difference becomes

S− − S+ =
∑
μ

(−1)μ〈0+i |β+
GT(−μ)β−GT(μ)− β−GT(μ)β

+
GT(−μ)|0+i 〉

=
∑
μ

(−1)μ〈0+i |
[
β+
GT(−μ), β−GT(μ)

]
|0+i 〉

=
∑
μ

(−1)μ
A∑

k,k′=1

〈0+i |
[
σ−μ(k)t+(k), σμ(k′)t−(k′)

]
|0+i 〉 . (17.70)
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We use the identity (11.22) and the spin and isospin relations (2.47), (2.49)
and (5.74) to evaluate the commutator. The result is[

σ−μ(k)t+(k), σμ(k′)t−(k′)
]

= 0 + σ−μ(k)σμ(k′)[t+(k), t−(k′)] + [σ−μ(k), σμ(k′)]t−(k′)t+(k) + 0

= δkk′
{[
(−1)μ12 − 2

√
2(1 −μ 1μ|1 0)σ0(k)

]
2t3(k)

− 2
√
2(1 −μ 1μ|1 0)σ0(k)t−(k)t+(k)

}
. (17.71)

With the last two terms combined and k′ = k, the sum over μ in (17.70) gives∑
μ

{
2t3(k)− 2

√
2(−1)μ(1 −μ 1μ|1 0)σ0(k)[2t3(k) + t−(k)t+(k)]

}
= 6t3(k) . (17.72)

Clebsch–Gordan orthogonality (1.26) causes the second term to vanish since
(−1)μ = −

√
3(1 −μ 1μ|0 0) according to (1.34).

We are now in a position to proceed to the final result. Equation (17.70)
and the isospin relation (5.81) yield

S− − S+ = 6
A∑

k=1

〈0+i |t3(k)|0+i 〉 = 6〈0+i |T3|0+i 〉 = 3(N − Z) . (17.73)

The Ikeda sum rule [80] is thus

S− − S+ = 3(N − Z) , (17.74)

where N and Z are the neutron and proton numbers of the initial 0+ state,
as indicated by (17.73).

Our derivation of the Ikeda sum rule shows that the rule is independent
of the structure of the initial 0+ state. It is only assumed that the state is
normalized, as indicated by the last step in (17.73). The sum rule is also
independent of the structure of the final 1+ states; the only assumption was
that they form two complete sets. This means that the Ikeda sum rule is model
independent. Any two complete sets of model wave functions should satisfy it.
In this way the Ikeda sum rule serves as an independent test of any calculated
complete sets of 1+ wave functions connected by Gamow–Teller transitions to
a 0+ state.

The Ikeda Sum Rule for the pnQTDA

Because of the model independence of the Ikeda sum rule we can use it to
test pnQTDA wave functions. We start from the BCS ground state of the
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even–even reference nucleus and apply the beta-plus and beta-minus Gamow–
Teller operators to it. This gives a set of 1+ states described by the pnQTDA
wave functions (17.7). These are states in the two odd–odd isobars next to
the reference nucleus. Note that a single pnQTDA calculation produces the
1+ states of both odd–odd nuclei in question. This is possible because wave
functions computed with BCS (LNBCS) quasiparticles do not have a good
nucleon number.

We take the states (17.7) as our (single) set of pnQTDA states. Their
quantum numbers are ω = nω, 1+. Expressed in terms of reduced matrix
elements, S− is given by (17.64) as

S− =
∑
nω

∣∣(ω‖β−GT‖BCS)
∣∣2 . (17.75)

The reduced matrix element is now the transition amplitude (17.51), whence

S− =
∑
nω

∣∣∣∑
pn

Xω
pnM

(−)
GT(BCS→ pnJ)

∣∣∣2
=

∑
nω

∑
pn
p′n′

Xω
pnX

ω∗
p′n′M(−)

GT(BCS→ pnJ)
[
M(−)

GT(BCS→ p′n′J)
]∗

. (17.76)

Use of the completeness relation (17.9) simplifies this to

S− =
∑
pn

∣∣M(−)
GT(BCS→ pnJ)

∣∣2 . (17.77)

We substitute for the transition matrix element from (15.65), which results in

S− = 3
∑
pn

u2pv
2
n[MGT(pn)]2 . (17.78)

The strength S+ is completely analogous. The minus indices are replaced by
plus indices and Eq. (15.66) is used instead of (15.65). The result is

S+ =
∑
nω

∣∣(ω‖β+
GT‖BCS)

∣∣2 = 3∑
pn

u2nv
2
p[MGT(pn)]2 . (17.79)

As in the case of the Ikeda sum rule, we now form the difference

S− − S+ = 3
∑
pn

(u2pv
2
n − u2nv

2
p)[MGT(pn)]2 = 3

∑
pn

(v2n − v2p)[MGT(pn)]2 .

(17.80)
Substituting the expression (7.21) for the Gamow–Teller single-particle matrix
element gives

S− − S+ = 6
∑
pn

(v2n − v2p)δnpnnδlpln ĵp
2
ĵn

2
{

1
2

1
2 1

jn jp lp

}2

. (17.81)
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Remembering that lp = ln we can separate the sums and write (17.81) as

S− − S+ = 6
∑
n

v2nĵn
2 ∑

jp

ĵp
2
{

1
2 1 1

2
jn ln jp

}2

− 6
∑
p

v2p ĵp
2 ∑

jn

ĵn
2
{

1
2 1 1

2
jp lp jn

}2

. (17.82)

By the 6j unitarity relation (1.66) the sums over jp and jn are both equal to
1
2 . Hence the final result is

S− − S+ = 3
∑
n

ĵn
2
v2n − 3

∑
p

ĵp
2
v2p = 3 (Nact − Zact) , (17.83)

where the BCS number constraint (13.72) was used in the last step.
The result (17.83) shows that indeed the wave functions from a single

pnQTDA calculation satisfy the model-independent Ikeda sum rule, but with
the difference that the true nucleon numbers are replaced by the active num-
bers chosen for the reference nucleus. For the pnQTDA the Ikeda sum rule
thus reads

S− − S+ = 3(Nact − Zact) (pnQTDA) , (17.84)

where the two total strengths are given by (17.75) and (17.79).
Note that the jp and jn sums in (17.82) run over the two spin–orbit part-

ners j = l ± 1
2 . If one of the partners is missing from the valence space the

sum rule is not satisfied. This is demonstrated by an example in the following
subsection.

In what follows we study the implications of the Ikeda sum rule for actual
pnQTDA calculations.

17.4.4 Examples of the Ikeda Sum Rule

We consider the Ikeda sum rule for a few pnQTDA calculations in the d-s and
0f-1p-0g9/2 valence spaces. Our first example is the reference nucleus 24Mg in
the d-s shell. In the BCS calculation we use the single-particle energies (14.12)
and the pairing parameters of Table 16.5. For the pnQTDA we use the SDI
interaction parameters A0 = A1 = 1.0MeV. The resulting pnQTDA energies
and transition strengths are listed in Table 17.7. The transition strengths are
those in the Ikeda sum rule (17.84). The summed strengths are stated in the
last line of the table.

Table 17.7 gives the strengths S− and S+. For the reference nucleus 2412Mg12
we have Zact = 4, Nact = 4. The left side and right side of the Ikeda sum rule
(17.84) are now

S− − S+ = 8.424− 8.424 = 0.000 ,

3(Nact − Zact) = 3(4− 4) = 0 . (17.85)
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Table 17.7. Ikeda sum rule for a pnQTDA calculation with the reference nucleus
24Mg

n E(1+n ) (MeV)
∣∣(1+n ‖β−

GT‖BCS)
∣∣2 ∣∣(1+n ‖β+

GT‖BCS)
∣∣2

1 6.202 2.9826 2.9960
2 6.389 0.9636 0.9526
3 8.389 0.7442 0.7533
4 8.700 2.5529 2.6202
5 9.317 0.1644 0.1419
6 9.548 1.0111 0.9557
7 11.292 0.0056 0.0047
Sum 8.424 8.424

The second column lists the pnQTDA energies. Columns three and four give
the β− and β+ Gamow–Teller strengths and the last row gives their sums.

Thus the sum rule is indeed satisfied. The table also shows that the β− and
β+ strength distributions are nearly the same.

The reference nucleus of our next example is 30Si. Its β− and β+ strength
distributions are shown in Fig. 17.5. Again the valence space is 0d-1s with the
single-particle energies (14.12), the pairing parameters are from Table 16.6,
and the pnQTDA parameters are A0 = A1 = 1.0MeV.

In this case the β− and β+ strength distributions are not as symmetric as
in the previous case. Now the total β− strength is larger than the total β+

strength as required by the Ikeda sum rule. With the reference nucleus 30
14Si16

we have Zact = 6, Nact = 8. The two sides of the sum rule give

S− − S+ = 13.163− 7.163 = 6.000 ,

3(Nact − Zact) = 3(8− 6) = 6 , (17.86)

so the rule is satisfied. Figure 17.5 shows that a large part of the sum rule is
exhausted by a β− transition to a state slightly below 10MeV of excitation
in 30P. On the β+ side there is a smaller major peak at around 6MeV of
excitation in 30Al.

Our final example concerns the 0f-1p-0g9/2 shell. The reference nucleus is
66Zn. We make two calculations, one in the 0f-1p valence space and the other
in the 0f-1p-0g9/2 valence space. The single-particle energies are from (14.13)
and the pairing parameters from Table 16.6. In both pnTDA calculations the
SDI parameters are A0 = 1.0MeV and A1 = 0.8MeV.

The β− and β+ strength distributions from our two calculations are dis-
played in Fig. 17.6. The dashed bars represent the 0f-1p calculation and the
solid bars the 0f-1p-0g9/2 calculation. For both valence spaces a considerable
part of the sum rule is exhausted by a single beta-minus transition, as was
the case in the 30Si example. The strong 1+ state resides at around 14MeV
of excitation in 66Ga. On the beta-plus side we have for both valence spaces
one strong peak at around 8MeV of excitation in 66Cu.
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Fig. 17.5. Calculated β− and β+ strengths for Gamow–Teller transitions from the
BCS ground state of 30Si to the 1+ pnQTDA states in 30P and 30Al

One can see from Fig. 17.6 that the total β− strength far exceeds the
total β+ strength. This is consistent with the Ikeda sum rule (17.84). With
the reference nucleus 66

30Zn36 we have Zact = 10, Nact = 16. For the 0f-1p
calculation the two sides of the sum rule give

S− − S+ = 26.269− 8.269 = 18.000 ,

3(Nact − Zact) = 3(16− 10) = 18 . (17.87)

For the 0f-1p-0g9/2 calculation we have similarly

S− − S+ = 27.047− 11.797 = 15.250 ,

3(Nact − Zact) = 3(16− 10) = 18 . (17.88)

From (17.87) and (17.88) we see that while the Ikeda sum rule is satisfied
for the 0f-1p valence space it is not satisfied for the 0f-1p-g9/2 space. This is
because the 1p-0f-0g9/2 valence space does not contain the spin–orbit partner
0g7/2 of the intruder orbital 0g9/2. This failure of the sum rule was discussed
at the end of Subsect. 17.4.3.
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Fig. 17.6. Calculated β− and β+ strengths for Gamow–Teller transitions from the
BCS ground state of 66Zn to the 1+ pnQTDA states in 66Ga and 66Cu. The dashed
bars represent the 0f-1p calculation and the solid bars the 0f-1p-0g9/2 calculation

17.4.5 Gamow–Teller Giant Resonance

Figures 17.5 and 17.6 contain one peak at E � 10MeV that towers above the
rest. This peak appears on the β− side and represents a high-lying excited 1+

state in the pnQTDA spectrum (in these cases the highest). Because the state
is strongly connected by the Gamow–Teller operator to the ground state of the
even–even reference nucleus it bears the name Gamow–Teller giant resonance,
GTGR for short.

In both cases the GTGR wave function is dominated by one component,
namely |π0d3/2ν0d5/2 ; 1+〉 for 30Si and |π0f5/2ν0f7/2 ; 1+〉 for 66Zn. These
configurations consist of spin–orbit partners. The Gamow–Teller operator con-
nects this type of configuration strongly to the BCS ground state of the refer-
ence nucleus. This is because the magnitude of the BCS factor upvn in the β−

amplitude (15.65) is nearly unity, due to a nearly empty, high-lying proton
orbital and a nearly full, low-lying neutron orbital. The configuration is nearly
of particle–hole character and has a high two-quasiparticle energy, which leads
to the high excitation energy of the GTGR.

Figures 17.5 and 17.6 display one rather strong peak also on the β+ side.
This peak stems from the reverse combination of the spin–orbit partners,
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namely the component |π0d5/2ν0d3/2 ; 1+〉 for 30Si and |π0f5/2ν0f7/2 ; 1+〉 for
66Zn. The occupation factor unvp, from (15.66), is enhanced by the same
mechanism as for the GTGR, but not as strongly. This is because the proton
side is less occupied than the neutron side (vp < vn) and the neutron side is
less empty than the proton side (|un| < |up|), so that |unvp| < |upvn|.

The strength difference between the GTGR and the reverse spin–orbit
state grows with increasing proton–neutron asymmetry. This happens when
we go to heavier nuclei or further away from the valley of beta stability towards
neutron-rich nuclei. The reverse state may lose most of its strength through
mixing with other low-lying 1+ excitations. This mixing can redistribute the
spin–orbit strength in such a way that no clearly visible peak is detected on
the β+ side. The residual interaction can redistribute some of the spin–orbit
configuration strength also in the vicinity of the GTGR. In spite of this the
GTGR remains visible with some acquired finite width.

There are empirical formulas for the energy of the GTGR, and we present
one of them [81,82]. Denote the energy of the GTGR (Z + 1, N − 1) relative
to the ground state of the reference nucleus (Z,N) by

ΔEGT ≡ E(1+GTGR)− E(0+gs) . (17.89)

The empirical formula for ΔEGT is composed of two terms. One of them is
the Coulomb energy, which we denote by ΔEC. To define it, recall the isospin
multiplets (triplets) in Figs. 5.4–5.11. For example, Fig. 5.4 shows the even–
even nucleus 6

2He4 and the adjacent odd–odd nucleus
6
3Li3. The 0

+ ground
state of 6He, of isospin T = 1 andMT = +1, and the 0+ state of 6Li, of isospin
T = 1 andMT = 0, are an example of a pair of isobaric analogue states (IAS).
They are shown level in the figure, but this is because the Coulomb energy
has been subtracted. In reality, the energy difference between the 0+ states of
6Li and 6He is just ΔEC.

The second term entering the empirical expression for (17.89) is the energy
difference, within the odd–odd (Z + 1, N − 1) nucleus, between the GTGR
and the 0+ state that is the IAS of the ground state of the reference nucleus.
This difference is E(1+GTGR)−E(0+IAS) ≡ ΔEZ+1,N−1. Empirical systematics
of ΔEC and ΔEZ+1,N−1 have produced the formula

ΔEGT = ΔEC +ΔEZ+1,N−1

= [1.444(Z + 1
2 )A

−1/3 − 30.0(N − Z − 2)A−1 + 5.57]MeV . (17.90)

Since the spin–orbit partner configuration driving the GTGR is largely
a particle–hole configuration, the particle–hole part of the pnQTDA matrix
element (17.2) is dominant. In some studies that part has therefore been multi-
plied by a phenomenological constant gph, called the particle–hole interaction
strength. The value of gph can be fixed by fitting the empirical location (17.90)
of the GTGR. For further information see Subsect. 19.7.4 and [51].
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17.4.6 Beta-Decay Transitions Between a QTDA
and a pnQTDA State

Consider β− and β+ decay transitions between a pnQTDA excitation and a
QTDA excitation. As discussed in Chap. 16, the QTDA describes excited
states of an even–even reference nucleus. Now we take the QTDA states
(16.55) to be final states,

|ωf 〉 =
∑

af≤bf
X

ωf
af bf

A†af bf (JfMf )|BCS〉 . (17.91)

As an initial state we have a pnQTDA excitation (17.7),

|ωi〉 =
∑
pini

Xωi
piniA

†
pini(JiMi)|BCS〉 . (17.92)

For allowed beta decay, the contributions from the wave functions (17.91)
and (17.92) are the two-quasiparticle matrix elements given by (15.111) and
(15.113). Thus we can write directly the decay amplitude

(ωf‖β∓F/GT‖ωi) =
∑
pini
pf≤p′f

X
ωf∗
pfp′f

Xωi
piniM

(∓)
F/GT(pi ni ; Ji → pf p′f ; Jf )

+
∑
pini

nf≤n′
f

X
ωf∗
nfn′

f
Xωi

piniM
(∓)
F/GT(pi ni ; Ji → nf n′f ; Jf ) .

(17.93)
For Kth-forbidden unique beta decay the transition matrix elements in

(17.93) are replaced as explained at the end of Subsect. 15.5.2.

17.4.7 Gamow–Teller Beta Decay of 30P

Let us apply (17.93) to the β+/EC decay of the 1+ ground state of 30P to
the 2+1 state of 30Si; see Fig. 15.4. The reference nucleus is 30Si. We take the
complete 0d-1s shell as the valence space and use the parameters from Sub-
sect. 17.2.2. The calculated pnQTDA spectrum of 30P is shown in Fig. 17.2.
The same parameters were used in the QTDA calculation in Subsect. 16.4.5,
with the resulting excitation spectrum of 30Si shown in Fig. 16.3.

The pnQTDA wave function for the state |1+1 〉 ≡ |1+gs〉 is given in (17.54),
with the X amplitudes listed in Table 17.6. The structure of the 2+1 QTDA
wave function is

|30Si ; 2+1 〉 =
10∑
k=1

X
2+1
k |k〉2 . (17.94)

The two-quasiparticle configurations k of the basis and the X amplitudes are
given in Table 17.8, together with the BCS occupation amplitudes needed to
compute the 1+gs → 2+1 decay amplitude.
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Table 17.8. Structure of the 2+1 state of
30Si

k Configuration X
2+1
k u1 v1 u2 v2

1 π0d5/2π0d5/2 0.462 0.4996 0.8662 0.4996 0.8662
2 π0d5/2π1s1/2 0.679 0.4996 0.8662 0.6330 0.7741
3 π0d5/2π0d3/2 0.135 0.4996 0.8662 0.9619 0.2735
4 π1s1/2π0d3/2 0.261 0.6330 0.7741 0.9619 0.2735
5 π0d3/2π0d3/2 0.115 0.9619 0.2735 0.9619 0.2735
6 ν0d5/2ν0d5/2 0.161 0.2285 0.9735 0.2285 0.9735
7 ν0d5/2ν1s1/2 0.260 0.2285 0.9735 0.2943 0.9557
8 ν0d5/2ν0d3/2 0.110 0.2285 0.9735 0.9372 0.3488
9 ν1s1/2ν0d3/2 0.272 0.2943 0.9557 0.9372 0.3488
10 ν0d3/2ν0d3/2 0.214 0.9372 0.3488 0.9372 0.3488

The second column lists the configurations and the third column the QTDA
amplitudes. The last four columns list the BCS occupation amplitudes of the
first (index 1) and second (index 2) orbitals in column two

In the present case the β+ transition matrix elements in (17.93) are

M(+)
GT(pi ni ; 1→ pf p′f ; 2) = 3

√
5(−1)jpf+jni+1Npfp′f (2)vni

{
2 1 1
jni jpf jp′f

}
× [δpip′f vpfMGT(pfni) + δpipf vp′fMGT(p′fni)] (17.95)

and

M(+)
GT(pi ni ; 1→ nf n′f ; 2) = 3

√
5(−1)jpi+jn′

fNnfn′
f
(2)upi

{
2 1 1
jpi jnf jn′

f

}
× [δnin′

f
unfMGT(pinf ) + δninfun′

f
MGT(pin′f )] . (17.96)

The non-zero matrix elements (17.95) and (17.96) are listed in Table 17.9.
Most of the matrix elements turn out to be zero because of the Kronecker
deltas and the selection rules on the Gamow–Teller single-particle matrix el-
ements. From the table we can see that the dominating contribution comes
from the pnQTDA component |π0d5/2ν0d5/2 ; 1+〉 and the QTDA component
|(π0d5/2)2 ; 2+〉. These components are based solely on the 0d5/2 orbital. The
remaining contributions together change the final sum by only 6%.

The same transition amplitude was calculated in the example of Sub-
sect. 15.5.3. There the structures (15.74) and (15.75) of the wave functions
were based on an educated guess. It is remarkable that these wave functions
do not contain the 0d5/2 orbital, which now turned out to be responsible for
practically all of the transition amplitude.

We can now use the sum of the contributions, given in the last line of
Table 17.9, to write down the value of the final transition amplitude:

(2+1 ‖β+
GT‖1

+
1 ) = 0.437 . (17.97)
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Table 17.9. Non-zero contributions to the sum (17.93) for the β+/EC transition
30P(1+gs)→ 30Si(2+1 )

k(pnQTDA) k′(QTDA) M(+)
GT(k → k′) X

1+gs
k X

2+1
k′ Contribution

1 1 −1.9082 −0.217 0.414
1 3 0.3195 −0.063 −0.020
1 6 0.2584 −0.076 −0.020
1 8 −0.5619 −0.052 0.029
2 1 −0.6395 0.037 −0.024
2 3 0.1071 0.011 0.001
2 8 0.1282 0.009 0.001
2 10 0.3244 0.017 0.006
4 2 −0.8107 −0.081 0.066
4 4 0.0522 −0.031 −0.002
4 9 0.5102 −0.033 −0.017
5 3 0.9466 0.015 0.014
5 5 0.1845 0.013 0.002
5 6 −0.4653 0.018 −0.008
5 8 1.0119 0.012 0.012
6 4 2.0262 −0.007 −0.014
6 7 −0.5898 −0.007 0.004
6 9 0.4938 −0.008 −0.004
7 3 0.6783 0.002 0.001
7 5 0.1322 0.001 0.000
7 8 −0.4935 0.001 −0.000
7 10 −1.2491 0.003 −0.004
Sum 0.437

The first two columns list the pnQTDA and QTDA configurations indexed
according to Tables 17.6 and 17.8. Column three gives the matrix elements
(17.95) and (17.96). Column four lists the products of the pnQTDA and QTDA
wave-function amplitudes from Tables 17.6 and 17.8. The last column gives the
contributions to the sum (17.93). The sum is stated in the bottom row.

This gives

BGT =
1.252

3
× 0.4372 = 0.0995 , log ft = 4.79 . (17.98)

Comparison with the experimental value log ft = 5.8 from Fig. 15.4 shows
that we predict too fast a transition.

From Table 17.9 it is evident that there are few strong transition matrix
elements M(+)

GT(k → k′). The largest occurs for k = 6, k′ = 4 and the next
largest for k = 1 = k′; the latter also provides the lion’s share to the final decay
amplitude. The k = 6, k′ = 4 contribution is negative while the dominant
contribution is positive. This indicates that relatively small changes in the X
amplitudes can result in a notable change in the final outcome.
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Epilogue

In this chapter we have developed a formalism which is able to describe states
of open-shell odd–odd nuclei by starting from the BCS ground state of the
neighbouring even–even reference nucleus. In the remaining two chapters of
the book we increase the level of sophistication in our attempt to describe
states of even–even and odd–odd open-shell nuclei. The framework to accom-
plish this is the QRPA, which builds on a correlated ground state consisting
of the BCS vacuum and its many-quasiparticle excitations.

Exercises

17.1. Derive the orthogonality relation (17.8).

17.2. Derive the completeness relation (17.9).

17.3. Complete the details of the derivation of Eqs. (17.22).

17.4. Verify the numbers in Table 17.1.

17.5. Verify the numbers in the matrix (17.30).

17.6. Verify the wave function (17.32).

17.7. Show that there is only one combination of the indices pini and pfnf
that produces a non-zero M1 transition matrix element in (17.34)–(17.36).

17.8. Verify the numbers in the second column of Table 17.5.

17.9. Verify the numbers in Table 17.6.

17.10. Derive (17.64) from (17.63).

17.11. Verify the numbers in the third column of Table 17.7.

17.12. Verify the numbers in the first two rows of Table 17.9.

17.13. Continuation of Exercise 16.16.
Use the reference nucleus 20Ne to discuss the 2+ states of 20Na. Use the SDI
with parameters A0 = A1 = 1.0MeV.

(a) Form the pnQTDA matrix for the 2+ states.
(b) Diagonalize the matrix and find the wave function of the lowest 2+ state

of 20Na.

17.14. Continuation of Exercise 17.13.
Calculate the log ft value for the β+/EC decay of the 2+ ground state of 20Na
to the first 2+ state in 20Ne. The wave function of that state was calculated
in Exercise 16.16. Compare the result with experimental data and comment.
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17.15. Continuation of Exercise 16.18.
Calculate the log ft values for the second-forbidden unique β+/EC decays of
the 5+ ground state of 26Al to the two lowest 2+ states in 26Mg. Assume a
one-component structure for the 5+ state. Compute also the decay half-life of
the 5+ state. Compare with experimental data and comment.

17.16. Continuation of Exercise 17.15.
Calculate the log ft value for to the β− decay of the 3+ ground state of 26Na
to the first 2+ state in 26Mg. Compare with experimental data and comment.

17.17. Calculate the log ft values for the β− and β+/EC decays of the 3+

ground states of 28Al and 28P to the first 2+ state in 28Si. For the reference
nucleus 28Si use the BCS results of Table 14.1. Diagonalize the QTDA and
pnQTDA matrices in the 0d5/2-1s1/2 valence space to find the wave functions.
Use the SDI with parameters A0 = A1 = 1.0MeV. Compare with experimen-
tal data and comment.

17.18. Consider 1+ states in 30P. Start from the reference nucleus 30Si and
use the BCS results of Table 14.1, computed in the full d-s valence space.
Write down the pnQTDA matrix in the sub-basis 1s1/2-0d3/2 for protons and
0d5/2-1s1/2 for neutrons. Use the SDI with parameters A0 = A1 = 1.0MeV.

17.19. Continuation of Exercise 17.18.
Diagonalize the pnQTDA matrix to find the eigenenergies and eigenstates.
Compare the eigenenergies with experimental data and with the results of the
complete d-s shell calculation of Fig. 17.2. Compare the eigenstates with the
guessed wave functions of Subsect. 15.4.2.

17.20. Continuation of Exercise 17.19.
Calculate the log ft values for the β+/EC decay of 30S to the 1+ states in
30P. Compare with experimental data and comment.

17.21. Continuation of Exercise 17.20.
Evaluate the difference S− − S+ of the total strengths for Gamow–Teller
transitions from the ground state of 30Si to the 1+ states of 30P and 30Al.
Compare with the value of the Ikeda sum rule. Explain your observation.

17.22. Consider 1+ states in 34P and 34Cl. Start from the reference nucleus
34S and use the BCS results of Table 14.1, computed in the full d-s valence
space.

(a) Form the pnQTDA matrix for the 1+ states of 34P and 34Cl in the sub-
basis (dictated by the lowest quasiparticle energies) 0d3/2 for neutrons and
1s1/2-0d3/2 for protons.

(b) Diagonalize the pnQTDA matrix to find the eigenenergies and eigenstates.
Use the SDI with parameters A0 = A1 = 1.0MeV. Compare with experi-
mental data and comment.



www.manaraa.com

Exercises 555

17.23. Continuation of Exercise 17.22.
Calculate the log ft values for the beta decays
(a) 34P(1+gs)→ 34S(0+gs),
(b) 34Cl(0+gs)→ 34S(0+gs).
Compare with experimental data.

17.24. Study the validity of the Ikeda sum rule for the Gamow–Teller transi-
tions from the ground state of 34S to the 1+ states in 34P and 34Cl. Perform
a pnQTDA calculation set up in Exercise 17.22.

17.25. Continuation of Exercises 17.22 and 17.23.
Calculate the log ft values for the beta decays
(a) 34P(1+gs)→ 34S(2+1 ),
(b) 34Cl(3+1 )→ 34S(2+1 ).
The wave function of the 2+1 state has been calculated in Exercise 16.23.
Compare with experimental data.

17.26. Continuation of Exercise 17.22.
Calculate the partial half-lives of the following electromagnetic transitions in
34Cl:
(a) 1+1 → 3+1 ,
(b) 1+1 → 0+gs.
(c) Calculate also the total half-life of the 1+1 state.
Use experimental gamma energies. Compare with experimental data and com-
ment.

17.27. Continuation of Exercise 16.27.
Consider the 1+ states of 38K by using 38Ar as the reference nucleus.

(a) Form the pnQTDA matrix in the sub-basis 1s1/2-0d3/2 for both protons
and neutrons.

(b) Diagonalize the pnQTDA matrix to find the eigenenergies and eigenstates.
Use the SDI with parameters A0 = A1 = 1.0MeV. Compare with the ex-
perimental spectrum and the result of the two-hole calculation of Fig. 8.8.
Comment on the similarities and differences.

17.28. Continuation of Exercise 17.27.
Calculate the log ft values for the β+/EC decays 38Ca(0+gs)→ 38K(1+m), m =
1, 2, 3, 4. Note that by isospin symmetry

M(+)
GT(

38Ca→ 38K) =M(−)
GT(

38Ar→ 38K) . (17.99)

Compare with experimental data by plotting the theoretical and experimental
1+ spectra and indicating the β+/EC feeding. Comment on the results.

17.29. Continuation of Exercise 17.28.
Evaluate the difference S−−S+ of the total strengths for transitions from the
ground state of 38Ar to the 1+ states of 38K and 38Cl. Apply the Ikeda sum
rule and comment.



www.manaraa.com

18

Two-Quasiparticle Mixing by the QRPA

Prologue

In the previous two chapters we introduced two-quasiparticle configuration
mixing. The method was based on the QTDA. In this chapter we extend the
formalism to the QRPA. We derive the QRPA equations by the equations-of-
motion method. Due to approximations in the derivation the resulting equa-
tions do not satisfy a variational principle. The properties of QRPA solutions
are similar to those of the particle–hole RPA of Chap. 11.

The most significant improvement of the QRPA over the QTDA is the
replacement of the BCS vacuum by a correlated vacuum as the ground state
of an even–even nucleus. The ground-state correlations promote collectivity
of electromagnetic decays, which was the case also in the particle–hole RPA.
In both theories, electromagnetic transitions obey the EWSR.

18.1 The QRPA Equations

As was the case for the RPA in Sect. 11.2, the QRPA equations can be derived
in several ways. We choose the EOM method since it has been systematically
applied earlier in this book.

We derived the QTDA equation (16.47) by the EOM. The derivation was
based on the use of the BCS vacuum as the exact vacuum of the QTDA.
Thus the QTDA equations emerge from a variational principle. Below we
derive also the QRPA equations by using the BCS vacuum as the operative
vacuum during the derivation. This vacuum, however, is not the exact vacuum
of the QRPA. The resulting QRPA equations are therefore approximate and
do not satisfy a variational principle. This is analogous to the particle–hole
RPA of Chap. 11 where the operative vacuum |Ψ0〉 = |HF〉 was not the exact
ground state.
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18.1.1 Derivation of the QRPA Equations by the EOM

The starting point in the EOM is the definition of a suitable excitation op-
erator according to (11.1). Table 11.1 contains a compilation of excitation
operators and related basic elements. It gives the QRPA excitation operator
as

Q†ω =
∑
a≤b

[
Xω

abA
†
ab(JM)− Y ω

abÃab(JM)
]
, (18.1)

where ω = nJπM and the summation is restricted to avoid double counting.
The two-quasiparticle operators were defined in (11.17) and (11.19),

A†ab(JM) = Nab(J)
[
a†aa
†
b

]
JM

, (18.2)

Ãab(JM) = (−1)J+MAab(J −M) = −Nab(J)
[
ãaãb

]
JM

. (18.3)

From (18.1) we see immediately that Qω|BCS〉 	= 0, so the simple BCS vacuum
is not the vacuum of the QRPA. Instead, many-quasiparticle components are
expected to appear in the QRPA vacuum, in analogy to (11.91). That is why
we call it a correlated vacuum.

Hermitian conjugation of the basic excitation (18.1) gives

Qω =
∑
a≤b

[
Xω∗

ab Aab(JM)− Y ω∗
ab Ã†ab(JM)

]
. (18.4)

From Table 11.1 we obtain the basic variations as

δQ = Aab(JM) , δQ = Ã†ab(JM) , (18.5)

and they are Bose-like entities. With |BCS〉 as the approximate vacuum |Ψ0〉
the equation of motion (11.11) becomes

〈BCS|[δQ,H, Q†ω]|BCS〉 = Eω〈BCS|[δQ,Q†ω]|BCS〉 , (18.6)

where H is the complete Hamiltonian expressed in terms of quasiparticle op-
erators in (16.32).

To evaluate the right-hand side of (18.6) we need the BCS expectation
values of the commutators of the quasiparticle pair operators A and A†. Equa-
tions (16.27) and (16.58), together with (18.3), give

〈BCS|
[
Aab(JM), A†cd(J

′M ′)
]
|BCS〉 = δacδbdδJJ ′δMM ′ , (18.7)

〈BCS|
[
Ãab(JM), Ã†cd(J

′M ′)
]
|BCS〉 = δacδbdδJJ ′δMM ′ . (18.8)

Here and in the sequel we assume the restrictions

a ≤ b , c ≤ d . (18.9)

Equations (18.7) and (18.8) are analogous to the RPA equations (11.44) and
(11.45) respectively.
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The following steps of the derivation are obtained directly from the results
of Subsect. 11.2.1 by analogy. Here the BCS vacuum |BCS〉 plays the same
role for the quasiparticle pair operators A†, A as the particle–hole vacuum
|HF〉 played for the particle–hole operators A†,A. We define analogously to
(11.48)

Aab,cd(J) ≡ 〈BCS|
[
Aab(JM),H, A†cd(JM)

]
|BCS〉 ,

Bab,cd(J) ≡ −〈BCS|
[
Aab(JM),H, Ãcd(JM)

]
|BCS〉 .

(18.10)

In analogy with (11.54) and (11.55) we then obtain∑
c≤d

Aab,cdX
ω
cd +

∑
c≤d

Bab,cdY
ω
cd = EωX

ω
ab , (18.11)

−
∑
c≤d

(
B†

)
ab,cd

Xω
cd −

∑
c≤d

(
AT

)
ab,cd

Y ω
cd = EωY

ω
ab . (18.12)

These are the QRPA equations. Combined into a matrix equation they read(
A B
−B∗ −A∗

)(
Xω

Yω

)
= Eω

(
Xω

Yω

)
. (18.13)

Since the matrix elements (18.10) are independent of M , the X and Y ampli-
tudes must also be independent of M .

Equation (18.13) is formally identical with the RPA equation (11.60). Both
constitute a non-Hermitian eigenvalue problem. As can be seen from (16.38),
the matrix A defined in (18.10) is nothing but the QTDA matrix (16.46). The
relations (11.58) apply here too and show that the matrix A is Hermitian and
the matrix B is symmetric. In analogy to (11.63) the correlation matrix B can
be written as

Bab,cd(J) = 〈BCS|Aab(JM)Ãcd(JM)H|BCS〉 . (18.14)

18.1.2 Explicit Form of the Correlation Matrix

In this subsection we derive an explicit expression for the elements (18.14)
of the correlation matrix B. From (18.14) we see that only the H40 term
contributes to B. We expand the angular momentum couplings in Aab and
Ãcd and use the uncoupled expression for H40 in (16.4). Substitution into
(18.14), with the summation index changes γ′ → −γ′ and δ′ → −δ′, yields
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Bab,cd(J)

= 1
4 (−1)

J+MNab(J)Ncd(J)
∑

mαmβ
mγmδ

(ja mα jb mβ |J M)(jc mγ jd mδ|J −M)

×
∑

α′β′γ′δ′
ua′ub′vc′vd′(−1)jc′−mγ′+jd′−mδ′ v̄α′β′,−γ′,−δ′

× 〈BCS|aβaαaδaγa†α′a
†
β′a
†
δ′a
†
γ′ |BCS〉 ≡

24∑
i=1

Bi . (18.15)

The 24 terms Bi come from all possible contractions in the BCS vacuum
expectation value:

〈BCS|aβaαaδaγa†α′a
†
β′a
†
δ′a
†
γ′ |BCS〉

= −δαα′δββ′δγγ′δδδ′ + δαα′δββ′δγδ′δδγ′ + δαα′δβδ′δδβ′δγγ′

− δαα′δβδ′δδγ′δγβ′ − δαα′δβγ′δδβ′δγδ′ + δαα′δβγ′δδδ′δγβ′

− δαβ′δβα′δδγ′δγδ′ + δαβ′δβα′δδδ′δγγ′ − δαβ′δβδ′δδα′δγγ′

+ δαβ′δβδ′δδγ′δγα′ − δαβ′δβγ′δδδ′δγα′ + δαβ′δβγ′δδα′δγδ′

− δαδ′δβα′δδβ′δγγ′ + δαδ′δβα′δδγ′δγβ′ + δαδ′δββ′δδα′δγγ′

− δαδ′δββ′δδγ′δγα′ + δαδ′δβγ′δδβ′δγα′ − δαδ′δβγ′δδα′δγβ′

− δαγ′δβα′δδδ′δγβ′ + δαγ′δβα′δδβ′δγδ′ − δαγ′δββ′δδα′δγδ′

+ δαγ′δββ′δδδ′δγα′ − δαγ′δβδ′δδβ′δγα′ + δαγ′δβδ′δδα′δγβ′ , (18.16)

where the sequence of terms corresponds to the numbering in (18.15).
Because of the symmetry relations (4.29), the contributions from (18.16)

to (18.15) form six groups of four equal terms according to

B1 = B2 = B7 = B8 , B3 = B5 = B9 = B12 ,

B4 = B6 = B10 = B11 , B13 = B15 = B20 = B21 ,

B14 = B16 = B19 = B22 , B17 = B18 = B23 = B24 . (18.17)

Thus it remains to calculate

Bab,cd = 4(B1 +B3 +B4 +B13 +B14 +B17) . (18.18)

The six different terms are processed below.
For the term B1 of (18.15) we obtain

B1 = 1
4 (−1)

J+M+1Nab(J)Ncd(J)uaubvcvd

×
∑

mαmβ
mγmδ

(ja mα jb mβ |J M)(jc mγ jd mδ|J −M)(−1)jc−mγ+jd−mδ v̄αβ,−γ,−δ .

(18.19)

Inverting the two-body matrix element to coupled form by (8.17) gives
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B1 = 1
4 (−1)

J+M+1Nab(J)Ncd(J)uaubvcvd

×
∑

mαmβ
mγmδ

(ja mα jb mβ |J M)(jc mγ jd mδ|J −M)(−1)jc−mγ+jd−mδ

×
∑
J ′M ′

[Nab(J ′)Ncd(J ′)]−1(ja mα jb mβ |J ′M ′)(jc −mγ jd −mδ|J ′M ′)

× 〈a b ; J ′|V |c d ; J ′〉 . (18.20)

Basic properties of Clebsch–Gordan coefficients allow the sums to be per-
formed, with the result

B1 = − 1
4uaubvcvd〈a b ; J |V |c d ; J〉 . (18.21)

As in (18.20) the term B3 becomes

B3 = 1
4 (−1)

J+MNab(J)Ncd(J)uaudvbvc

×
∑

mαmβ
mγmδ

(ja mα jb mβ |J M)(jc mγ jd mδ|J −M)(−1)jc−mγ+jb−mβ

×
∑
J ′M ′

[Nad(J ′)Ncb(J ′)]−1(ja mα jd mδ|J ′M ′)(jc −mγ jb −mβ |J ′M ′)

× 〈a d ; J ′|V |c b ; J ′〉 . (18.22)

Now the sums cannot be evaluated immediately. However, the four Clebsch–
Gordan coefficients with the phase factors sum into a 6j symbol. The result
for B3 is (Exercise 18.3)

B3 = − 1
4Nab(J)Ncd(J)uaudvbvc

∑
J ′
[Nad(J ′)Ncb(J ′)]−1

× Ĵ ′
2
{

ja jb J
jc jd J ′

}
〈a d ; J ′|V |c b ; J ′〉

= 1
4Nab(J)Ncd(J)uaudvbvc〈a b−1 ; J |VRES|c d−1 ; J〉 , (18.23)

where the generalized particle–hole matrix element (16.19) was identified in
the last step.

Treating B4 in the same way as B3 leads to the result

B4 = (−1)jc+jd+J+1B3(c↔ d)

= 1
4 (−1)

jc+jd+J+1Nab(J)Ncd(J)uaucvbvd〈a b−1 ; J |VRES|d c−1 ; J〉 .
(18.24)

Substitution of the Kronecker deltas into (18.15) shows that B13 is related to
B4 through the symmetry relations (4.29) and (13.127). The term B13 can
then be deduced from B4 as



www.manaraa.com

562 18 Two-Quasiparticle Mixing by the QRPA

B13 = 1
4 (−1)

jc+jd+J+1Nab(J)Ncd(J)ubudvavc〈a b−1 ; J |VRES|d c−1 ; J〉 .
(18.25)

The term B14 is similarly obtained from B3,

B14 = 1
4Nab(J)Ncd(J)ubucvavd〈a b−1 ; J |VRES|c d−1 ; J〉 . (18.26)

Finally, B17 is found similarly from the expression (18.21) for B1, with the
result

B17 = − 1
4ucudvavb〈a b ; J |V |c d ; J〉 . (18.27)

With the six different terms calculated, (18.18) gives for the correlation
matrix

Bab,cd(J) = −(uaubvcvd + vavbucud)〈a b ; J |V |c d ; J〉
+Nab(J)Ncd(J)

[
(uavbvcud + vaubucvd)〈a b−1 ; J |VRES|c d−1 ; J〉

− (−1)jc+jd+J(uavbucvd + vaubvcud)〈a b−1 ; J |VRES|d c−1 ; J〉
]
.

(18.28)
Written in terms of the Baranger matrix elements (16.20) and (16.21) the B
matrix is

Bab,cd(J) = 2Nab(J)Ncd(J)
[
(uaubvcvd + vavbucud)G(abcdJ)

− (uavbvcud + vaubucvd)F (abcdJ)

+ (−1)jc+jd+J(uavbucvd + vaubvcud)F (abdcJ)
]
. (18.29)

This expression differs from the original one [31] through the normalization
factors N ; see the footnote at the end of Sect. 16.2.

To end this section we note the difference of the CS and BR phase con-
ventions as regards the correlation matrix. The relation is the same as for A
in (16.53), namely

B
(BR)
ab,cd(J) = (−1)

1
2 (lc+ld−la−lb)B(CS)

ab,cd(J) . (18.30)

18.2 General Properties of QRPA Solutions

In this section we list the main properties of solutions of the QRPA equation
(18.13). These properties are one-to-one with those of the RPA solutions as
discussed in Sect. 11.3. The QRPA solutions possess a richer structure than
the QTDA solutions discussed in Sect. 16.3. This is due to the complicated
structure of the correlated ground state of the QRPA.
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18.2.1 QRPA Energies and Wave Functions

As an extension of (11.1), a QRPA excitation is written as

|ω〉 = Q†ω|QRPA〉 (18.31)

with the phonon operator Q†ω given in (18.1). The ket vector |QRPA〉 des-
ignates the correlated ground state of the QRPA, the QRPA vacuum. Its
explicit form can be determined from the condition

Qω|QRPA〉 = 0 for all ω , (18.32)

where Qω is given by (18.4).
We consider next the orthogonality and completeness of the QRPA solu-

tions (18.31).

Normalization and Orthogonality

The orthogonality of two QRPA states (18.31) produces a constraint on the
X and Y amplitudes of the QRPA phonon operator (18.1). We also require
normalization and write

δωω′ = 〈ω|ω′〉 = 〈QRPA|QωQ
†
ω′ |QRPA〉 = 〈QRPA|

[
Qω, Q

†
ω′

]
|QRPA〉

=
∑
a≤b
c≤d

{
Xω∗

ab Xω′
cd 〈QRPA|

[
Aab(JM), A†cd(J

′M ′)
]
|QRPA〉

+ Y ω∗
ab Y ω′

cd 〈QRPA|
[
Ã†ab(JM), Ãcd(J ′M ′)

]
|QRPA〉

}
. (18.33)

We can now use the quasiboson approximation (QBA), which was intro-
duced in Chap. 11 for the RPA. In the present application we replace the
correlated QRPA vacuum by the simple BCS vacuum when taking vacuum
expectation values of commutators. By use of (18.7) and (18.8) the vacuum
expectation values in (18.33) then become

〈QRPA|
[
Aab(JM), A†cd(J

′M ′)
]
|QRPA〉

QBA
≈ 〈BCS|

[
Aab(JM), A†cd(J

′M ′)
]
|BCS〉

= δacδbdδJJ ′δMM ′ (a ≤ b , c ≤ d) , (18.34)

〈QRPA|
[
Ã†ab(JM), Ãcd(J ′M ′)

]
|QRPA〉

QBA
≈ 〈BCS|

[
Ã†ab(JM), Ãcd(J ′M ′)

]
|BCS〉

= −δacδbdδJJ ′δMM ′ (a ≤ b , c ≤ d) . (18.35)

In this approximation (18.33) becomes

δωω′ = δnn′δJJ ′δMM ′δππ′ = δJJ ′δMM ′δππ′
∑
a≤b

(
Xω∗

ab Xω′
ab −Y ω∗

ab Y ω′
ab

)
, (18.36)
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where the δππ′ on the right-hand side is implied by the factor δacδbd in (18.34)
and (18.35).

Equation (18.36) gives the orthonormality relation of the QRPA as∑
a≤b

(
XnJπ∗

ab Xn′Jπ
ab − Y nJπ∗

ab Y n′Jπ
ab

)
= δnn′ (QRPA orthonormality) .

(18.37)
A special case of this is the normalization condition∑

a≤b

(
|Xω

ab|2 − |Y ω
ab|2

)
= 1 . (18.38)

Except for the QRPA summation restriction, Eqs. (18.37) and (18.38) are the
same as the respective RPA equations (11.82) and (11.83).

Completeness

Equation (11.84) states the two completeness relations of the RPA. Their
proof was omitted, with reference to a similar proof in this subsection.

We now set out to derive the QRPA completeness relations. The QBA
result (18.34) gives

δacδbd = 〈QRPA|
[
Aab(JM), A†cd(JM)

]
|QRPA〉

= 〈QRPA|Aab(JM)A†cd(JM)|QRPA〉
− 〈QRPA|A†cd(JM)Aab(JM)|QRPA〉 (18.39)

with the usual restrictions a ≤ b, c ≤ d. For the QRPA states

|ω〉 = |nJπ M〉 = Q†ω|QRPA〉 , (18.40)

|ω̃〉 ≡ (−1)J+M |nJπ −M〉 ≡ Q̃†ω|QRPA〉 (18.41)

with fixed values of Jπ and M the completeness relations are∑
n

|ω〉〈ω| =
∑
n

|nJπ M〉〈nJπ M | = 1 , (18.42)∑
n

|ω̃〉〈ω̃| =
∑
n

|nJπ −M〉〈nJπ −M | = 1 . (18.43)

Inserting (18.42) and (18.43) into (18.39) gives
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δacδbd

=
∑
n

〈QRPA|Aab(JM)Q†ω|QRPA〉〈QRPA|QωA
†
cd(JM)|QRPA〉

−
∑
n

〈QRPA|A†cd(JM)Q̃†ω|QRPA〉〈QRPA|Q̃ωAab(JM)|QRPA〉

=
∑
n

〈QRPA|
[
Aab(JM), Q†ω

]
|QRPA〉〈QRPA|

[
Qω, A

†
cd(JM)

]
|QRPA〉

−
∑
n

〈QRPA|
[
A†cd(JM), Q̃†ω

]
|QRPA〉〈QRPA|

[
Q̃ω, Aab(JM)

]
|QRPA〉 .

(18.44)

Noting that the coefficients X and Y are independent of M , we insert the
expansions of the QRPA phonon operators, apply again the QBA to the com-
mutators and use (18.7). This yields

δacδbd
QBA
≈

∑
n

∑
a′≤b′
c′≤d′

Xω
a′b′X

ω∗
c′d′〈BCS|

[
Aab(JM), A†a′b′(JM)

]
|BCS〉

× 〈BCS|
[
Ac′d′(JM), A†cd(JM)

]
|BCS〉

−
∑
n

∑
c′≤d′

a′≤b′

(−Y ω
c′d′)(−Y ω∗

a′b′)〈BCS|
[
A†cd(JM), Ac′d′(JM)

]
|BCS〉

× 〈BCS|
[
A†a′b′(JM), Aab(JM)

]
|BCS〉

=
∑
n

Xω
abX

ω∗
cd −

∑
n

Y ω
cdY

ω∗
ab . (18.45)

This concludes the derivation of completeness relation I of the QRPA:∑
n

(
XnJπ

ab XnJπ∗
cd − Y nJπ∗

ab Y nJπ

cd

)
= δacδbd , a ≤ b , c ≤ d . (18.46)

To derive the second completeness relation of the QRPA we start from the
expression for the vacuum expectation value of the commuting operators A
and Ã. Insertion of the completeness relations (18.42) and (18.43) then gives

0 = 〈QRPA|
[
Aab(JM), Ãcd(JM)

]
|QRPA〉

=
∑
n

〈QRPA|Aab(JM)Q†ω|QRPA〉〈QRPA|QωÃcd(JM)|QRPA〉

−
∑
n

〈QRPA|Ãcd(JM)Q̃†ω|QRPA〉〈QRPA|Q̃ωAab(JM)|QRPA〉 .

(18.47)

As explained above, we expand the QRPA phonon operators and use the
quasiboson approximation. The result is
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0
QBA
≈

∑
n

∑
a′≤b′
c′≤d′

Xω
a′b′(−Y ω∗

c′d′)〈BCS|
[
Aab(JM), A†a′b′(JM)

]
|BCS〉

× 〈BCS|
[
Ã†c′d′(JM), Ãcd(JM)

]
|BCS〉

−
∑
n

∑
c′≤d′

a′≤b′

Xω
c′d′(−Y ω∗

a′b′)〈BCS|
[
Ãcd(JM), Ã†c′d′(JM)

]
|BCS〉

× 〈BCS|
[
A†a′b′(JM), Aab(JM)

]
|BCS〉

=
∑
n

Xω
abY

ω∗
cd −

∑
n

Xω
cdY

ω∗
ab . (18.48)

This is completeness relation II of the QRPA,∑
n

(
XnJπ

ab Y nJπ∗
cd − Y nJπ∗

ab XnJπ

cd

)
= 0 , a ≤ b , c ≤ d . (18.49)

The completeness relations (11.84) stated for the RPA have now become
derived together with the QRPA completeness relations (18.46) and (18.49).
The correspondence follows from the fact that the QRPA equation (18.13)
is formally identical with the RPA equation (11.60). The correspondence im-
plies that the conclusions on positive- and negative-energy states at the end of
Subsect. 11.3.1 apply to the QRPA as well. Thus the QRPA solutions are dou-
bled and only the positive-energy solutions are physical. Hence the eigenvalue
index n in (18.46) and (18.49) runs only over the positive-energy solutions.

The completeness conditions (18.46) and (18.49) can be combined into a
matrix equation:∑

n
En>0

[(
Xω

Yω

)(
Xω†,−Yω†)− (

Yω∗

Xω∗

)(
YωT,−XωT

)]
=

(
1 0
0 1

)
. (18.50)

This form of the completeness relations is suitable for formal derivation of
many results on QRPA solutions.

Positive- and Negative-energy Solutions

As asserted above, the positive- and negative-energy solutions of the QRPA
behave exactly as those of the RPA. The discussion at the end of Sub-
sect. 11.3.1, including Eqs. (11.86)–(11.88), is directly applicable to the QRPA.

Just as the RPA represents a refinement of the TDA, so is the QRPA a
refinement of the QTDA. Equation (11.88) describes this condition,

|Y ω
ab| � 1 for all ω, ab , (18.51)

also for the QRPA solutions. Only the positive-energy solutions conform to
(18.51). Its physical meaning is that the ground-state correlations remain
small, so that we can write schematically
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|QRPA〉 = |BCS〉+ small corrections . (18.52)

The small corrections are four-quasiparticle, eight-quasiparticle, etc., compo-
nents as demonstrated in the first part of Subsect. 18.2.2.

Breaking Point of the QRPA

For a sufficiently strong two-body interaction the QRPA formalism breaks
down. At this breaking point the lowest root of the QRPA equation (18.13)
becomes imaginary. This circumstance implies the need of a different type of
mean field, namely a deformed one, as the starting point of the calculation.

The dynamics of the breaking point can be tangibly seen in the elemen-
tary case of one active two-quasiparticle excitation. Then the QRPA equation
becomes a two-by-two matrix equation like (11.136). The positive, physical
root in (11.138) becomes imaginary as soon as b2 exceeds a2, i.e. at the critical
strength of the two-body interaction. The numbers in (11.133) and (11.135)
demonstrate that this happens when the two-body interaction becomes large
compared with the single-particle energies.

18.2.2 The QRPA Ground State and Transition Densities

The QRPA Ground State

The QRPA ground state (vacuum) is defined by the annihilation condition
(18.32). This condition is analogous to the RPA condition (11.89). The con-
struction of the QRPA ground state proceeds in analogy with Subsect. 11.3.2.
Thus we write the Thouless theorem as

|QRPA〉 = N0eS |BCS〉 , (18.53)

where N0 is a normalization constant and

S = 1
2

∑
JM

∑
a≤b
c≤d

Cabcd(J)A
†
ab(JM)Ã†cd(JM) , Ccdab(J) = Cabcd(J) . (18.54)

This operator S differs from (11.92) through the presence of quasiparticle pair
operators A† instead of particle–hole operatorsA† and through the summation
restrictions. The coefficients Cabcd(J) are to be determined so that (18.32) is
satisfied.

The result is analogous to (11.101) and reads∑
a≤b

Xω∗
ab Cabcd(J) = Y ω∗

cd , for all ω, c ≤ d . (18.55)

Solving this set of linear equations yields the C coefficients. From (18.53) and
(18.54) we see that the first term in the expansion of the exponent is the BCS
vacuum and the succeeding terms introduce contributions with 4, 8, 12, . . .
quasiparticles.
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One-quasiparticle Densities

The quantity
〈QRPA|a†a|QRPA〉 (18.56)

is known as the one-quasiparticle density. It is a useful concept for discussing
many-body aspects of the QRPA vacuum. The corresponding one-particle
densities were defined in (11.102) to study correlations in the RPA vacuum.

The evaluation of (18.56) proceeds in analogy to the derivation of the
one-particle density (11.108). The starting point is the commutation relation∑

mα′

[
a†α′aα′ , A†ab(JM)

]
= (δa′a + δa′b)A

†
ab(JM) , (18.57)

derived same as (11.103). The analogy between (11.103) and (18.57) is not
complete because the δa′b term appears only here. However, this second
term can be taken into account without a detailed calculation following Sub-
sect. 11.3.3. The Kronecker delta δa′a causes the replacement a→ a′ in the in-
termediate equations in the RPA derivation. To accomplish the QRPA deriva-
tion we add to the RPA-like term a second term where the replacement is
b→ a′, due to δa′b.

Another change from the RPA form of the intermediate equations is
the QRPA summation restriction a ≤ b for operators like A†ab(JM). Trac-
ing the changes through the equations of Subsect. 11.3.3 we see that they
carry through to the final result (11.108) for particle operators. For the one-
quasiparticle density we can then write

ĵa′
2
〈QRPA|a†α′aα′ |QRPA〉 =

∑
b(≥a′)Jn
En>0

Ĵ 2
∣∣Y nJπ

a′b

∣∣2 + ∑
a(≤a′)Jn
En>0

Ĵ 2
∣∣Y nJπ

aa′
∣∣2 .

(18.58)
The index a′ is shown in parenthesis under the sums to make clear that it is
a fixed index and not summed over. We write (18.58) in the final form

〈QRPA|a†αaα|QRPA〉 = ĵa
−2 ∑

nJ
En>0

Ĵ 2
( ∑
b(≥a)

∣∣Y nJπ

ab

∣∣2 + ∑
b(≤a)

∣∣Y nJπ

ba

∣∣2) .

(18.59)
For the QRPA ground state to consist mainly of the quasiparticle vacuum

|BCS〉, the right-hand side of (18.59) must be small. This requires that∣∣Y nJπ

ab

∣∣� 1 for all nJ, ab . (18.60)

If this condition holds, the quasiboson approximation is also good.
The one-quasiparticle densities (18.59) open up a way to improve the

QRPA description towards higher-QRPA frameworks. The procedure was
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briefly discussed with regard to higher-RPA frameworks at the end of Sub-
sect. 11.3.3. The point of departure is to retain the exact QRPA ground state
in the equation of motion (11.11). As a result the matrices (18.10) are replaced
with the exact expressions

Aab,cd ≡ 〈QRPA|
[
Aab,H, A†cd

]
|QRPA〉 , (18.61)

Bab,cd ≡ −〈QRPA|
[
Aab,H, Ãcd

]
|QRPA〉 . (18.62)

Use of (18.61) and (18.62) leads to a self-consistent iterative solution of
the higher-QRPA equations, which are of the general form (11.114). In prac-
tice, approximations are necessary. The degree of approximation in handling
Eqs. (18.61) and (18.62) can be governed by the degree of approximation
adopted for the evaluation of the one-quasiparticle densities (18.59). As was
discussed in the RPA context, a higher-QRPA framework accounts more ac-
curately for the Pauli principle than does the standard one.

18.3 QRPA Description of Open-Shell Even–Even Nuclei

The QRPA is designed for the description of excited states of spherical even–
even nuclei. Based on BCS quasiparticles, it is suited for applications to open-
shell nuclei whenever the BCS produces meaningful results. In practice we
apply the QRPA in the same way as the QTDA.

18.3.1 Structure of the Correlation Matrix

Equation (16.62) states the structure of the QTDA matrix A. The same matrix
goes into the QRPA equation (18.13). Additionally we need to include the
correlation matrix B, given by (18.28), in the matrix equation (18.13). The
general form of the B matrix is

B =
(
VQRPA(pp− pp) VQRPA(pp− nn)
VQRPA(nn− pp) VQRPA(nn− nn)

)
. (18.63)

The isospin structure of the blocks is shown schematically in (16.65) and
(16.66), and the particle–hole matrix elements are given specifically by (16.69)
and (16.70). The auxiliary particle–hole matrix elements used are defined in
(16.67) and (16.68) and tabulated for the 0d-1s shell in Tables 16.1–16.3.

As pointed out before, the matrix B is symmetric. If the proton and neu-
tron two-quasiparticle bases are the same, also the non-diagonal blocks are
symmetric. In addition, when the single-particle energies and interactions are
the same for protons and neutrons the diagonal blocks are the same. All these
symmetries are present in the applications below.

We illustrate the computation of the elements of the B matrix and the
QRPA eigenvalue problem by extending the QTDA example of Subsect. 16.4.2
to the QRPA.
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18.3.2 Excitation Energies of 2+ States in 24Mg

Let us calculate the 2+ energy spectrum of 2412Mg12 in the 0d5/2-1s1/2 valence
space in the QRPA. The two-quasiparticle basis states are given in (16.71)
and the single-particle energies in (16.72). The input into the BCS calculation
and the resultant occupation amplitudes and quasiparticle energies are stated
in Table 16.4.

Equations (16.73)–(16.78) show the calculation of the A matrix. We now
calculate the correlation matrix B. Because of the symmetries, like the A
matrix, the B matrix has only six different elements. They are constructed by
use of (18.28), (16.69) and (16.70) with numerical data from Tables 8.2, 16.1,
16.2 and 16.4.

To illustrate the method we form in detail the three different elements of
the pp− pp block:

Bπ1π1 = B
(
(π0d5/2)2, (π0d5/2)2

)
= −2× 0.66852 × 0.74372(−0.6857A1)

+
1
2
[
2× 0.66852 × 0.74372(−0.6857A1)

− (−1) 52+ 5
2+2 × 2× 0.66852 × 0.74372(−0.6857A1)

]
= 0.0000A1 , (18.64)

Bπ1π2 = B
(
(π0d5/2)2, π0d5/2π1s1/2

)
= −(0.66852 × 0.7437× 0.5838

+ 0.74372 × 0.6685× 0.8119)(−0.9071A1)

+
1√
2

[
(0.6685× 0.74372 × 0.8119

+ 0.7437× 0.66852 × 0.5838)(−0.6414A1)

− (−1) 52+ 1
2+2 × (0.66852 × 0.7437× 0.5838

+ 0.74372 × 0.6685× 0.8119)(−0.6414A1)
]

= 0.0000A1 , (18.65)

Bπ2π2 = B
(
π0d5/2π1s1/2, π0d5/2π1s1/2

)
= −2× 0.6685× 0.8119× 0.7437× 0.5838(−1.2000A1)
+ 2× 0.6685× 0.5838× 0.7437× 0.8119(−0.2000A1)

− (−1) 52+ 1
2+2 × (0.66852 × 0.58382

+ 0.74372 × 0.81192)(−1.0000A1)
= −0.0456A1 . (18.66)
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The nn–nn block is the same as the pp–pp block due to the same single-
particle energies and interaction parameters for protons and neutrons. The
pp–nn block is handled same as the calculation of (16.76)–(16.78). We thus
obtain for the complete B matrix

BQRPA(2+)

=

⎛⎜⎜⎝
0 0 −0.508A0 − 0.169A1 −0.672A0 − 0.224A1

0 −0.046A1 −0.672A0 − 0.224A1 −0.880A0 − 0.306A1

. . . . . . 0 0

. . . . . . 0 −0.046A1

⎞⎟⎟⎠ , (18.67)

where exact zeros are placed for (18.64) and (18.65) and the dots represent
the nn–pp block which is identical to the pp–nn block.

We now diagonalize the supermatrix of Eq. (18.13) by the Ullah–Rowe
procedure developed for the RPA in Subsect. 11.5.2. This means that we insert
the matrices (16.79) and (18.67) into (18.13) and transform the equation into
a real symmetric eigenvalue problem. There is a choice between proceeding
from one of the matrices M∓ = A ∓ B. The resultant eigenvalue equation
(11.161) or (11.162), respectively, is then solved for the eigenstates Rω− or R

ω
+.

After this we obtain the X and Y amplitudes by using (11.165) or (11.167).
The procedure was applied in detail to two examples in Subsects. 11.5.3 and
11.5.4.

We choose for the SDI parameters the values A0 = A1 = 0.6MeV so
as to roughly reproduce the experimental location of the first 2+ state in
24Mg. Going through the steps of the Ullah–Rowe method we find the QRPA
eigenvalues

En = (1.388, 3.852, 3.988, 4.012)MeV . (18.68)
To write down the eigenvectors we denote by |π−1〉 and |ν−1〉 the two-

quasiparticle annihilations corresponding to the two-quasiparticle basis states
|π〉 and |ν〉 of (16.71). The X amplitudes multiply the two-quasiparticle basis
states and the Y amplitudes the two-quasiparticle annihilation part in the
QRPA wave function (18.1). The eigenvectors are

|24Mg ; 2+1 〉 = 0.468|π1〉+ 0.164|π−11 〉+ 0.595|π2〉+ 0.215|π−12 〉
+ 0.468|ν1〉+ 0.164|ν−11 〉+ 0.595|ν2〉+ 0.215|ν−12 〉 , (18.69)

|24Mg ; 2+2 〉 = 0.621|π1〉 − 0.057|π−11 〉+ 0.351|π2〉 − 0.072|π−12 〉
− 0.621|ν1〉+ 0.057|ν−11 〉 − 0.351|ν2〉+ 0.072|ν−12 〉 , (18.70)

|24Mg ; 2+3 〉 = 0.554|π1〉 − 0.002|π−11 〉 − 0.439|π2〉 − 0.004|π−12 〉
+ 0.554|ν1〉 − 0.002|ν−11 〉 − 0.439|ν2〉 − 0.004|ν−12 〉 , (18.71)

|24Mg ; 2+4 〉 = −0.345|π1〉 − 0.024|π−11 〉+ 0.619|π2〉 − 0.029|π−12 〉
+ 0.345|ν1〉+ 0.024|ν−11 〉 − 0.619|ν2〉+ 0.029|ν−12 〉 . (18.72)

Next we continue with further examples of calculations in the 0d-1s shell.
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18.3.3 Further Examples in the 0d-1s Shell

As discussed in Subsect. 16.4.3, we can use the empirical pairing gaps Δp and
Δn, given by (16.90), to determine the proton and neutron pairing strengths
according to (16.93). In the subsequent QRPA calculation, the values of the
SDI parameters A0 and A1 can be fixed by available spectroscopic data.

Figures 18.1 and 18.2 show the spectra of 24Mg and 30Si as examples of
QRPA computations in the full 0d-1s shell. These nuclei were treated at the
QTDA level in Sect. 16.4, with the energy spectra shown in Figs. 16.2 and
16.3. The SDI pairing parameters in the present calculations are those listed
in Tables 16.5 and 16.6. The SDI parameters for the QRPA calculations are
listed in Table 18.1. They differ somewhat from the corresponding QTDA
parameters in Tables 16.5 and 16.6.

Comparison of the QRPA spectra of Figs. 18.1 and 18.2 with the corre-
sponding QTDA spectra in Figs. 16.2 and 16.3 shows a remarkable similarity.
Since the parameters used in the two approximations differed little, we can
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Fig. 18.1. QRPA spectrum and experimental spectrum of 24Mg. The valence space
is 0d-1s with the single-particle energies (14.12). The SDI pairing parameters are
given in Table 16.5 and the SDI QRPA parameters in Table 18.1
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Fig. 18.2. QRPA spectrum and experimental spectrum of 30Si. The valence space
is 0d-1s with the single-particle energies (14.12). The SDI pairing parameters are
given in Table 16.6 and the SDI QRPA parameters in Table 18.1

Table 18.1. SDI parameters A0 and A1 used in the QRPA calculations of Figs. 18.1
and 18.2

Nucleus Valence space A0 A1(J �= 0) A1(J = 0)

24Mg 0d-1s 0.27 1.25 0.00
30Si 0d-1s 0.25 1.00 0.00

All energies are in Mega-electron volts.

conclude that the ground-state correlations of the QRPA do not play a major
role in these cases.

18.3.4 Spurious Contributions to 1− States

One particular problem with nuclear structure calculations is the appear-
ance of unphysical states or unphysical components of states. These unwanted
spurious effects can invalidate computed wave functions or at least tend to
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contaminate them and thus reduce their physical rigour. We have already met
this problem at the end of Subsect. 6.4.2 in connection with the electric dipole
operator.

The problem arises from the fact that in calculations the nuclear centre,
the geometrical origin of the nucleon coordinates, is kept fixed in space. When
the nucleons move, the centre of mass of the nucleus moves about this origin.
This is unphysical because in actual fact the centre of mass remains stationary
and the nucleon motion occurs about it.

The momentum operator for the spurious centre-of-mass motion is

P = −i�∇R , (18.73)

where

R =
1
A

A∑
i=1

ri (18.74)

is the centre-of-mass coordinate and the ri are the coordinates of the nucleons.
Eigenstates of P mix with the physical states in typical nuclear structure
calculations. This is to say that the simple translational motion, including zero
motion, of the centre of mass of a nucleus does not separate from the relative
motion of the nucleons, described by the relative coordinates rij = ri − rj .

Since the momentum operator (18.73) is a vector, of spin–parity Jπ = 1−,
spurious components tend to contaminate the computed 1− states. As an
example, we follow in Table 18.2 the evolution of the energies of the first two
1− states in the TDA and RPA calculations for the particle–hole nucleus 16O.
The results of the corresponding calculations for the 2− and 3− states were
shown in Figs. 9.3 and 11.3.

From Table 18.2 we see that the TDA energy of the first 1− state shifts
considerably down when the size of the valence space is slightly increased.
The situation is even more drastic with the RPA, for which the energy of the
first 1− state becomes imaginary and therefore unphysical. The energy of the
second 1− state is much less affected by the size of the valence space, so the
state is expected to be less affected by spuriosities. A similar pattern emerges
in the quasiparticle theories, QTDA and QRPA.

The sensitivity of the energy of the first 1− state to the size of the model
space is an indication of spuriosity in the wave functions. Projection methods

Table 18.2. TDA and RPA energies of the first two 1− states of 16O in two different
particle–hole valence spaces for the SDI parameter values A0 = A1 = 1.0MeV

Valence space (0d5/2-1s)-(0p)
−1 (0d-1s)-(0p)−1

Model TDA RPA TDA RPA

E(1−1 ) (MeV) 10.186 7.816 7.795 imaginary
E(1−2 ) (MeV) 13.218 13.200 13.192 13.148
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can be used to restore the translational invariance and to obtain nuclear states
free of spuriosities. For further discussion of centre-of-mass spuriosities see
[16].

18.4 Electromagnetic Transitions
in the QRPA Framework

In this section we discuss electromagnetic transitions in the QRPA framework.
As in the case of the QTDA in Sect. 16.5, we divide the discussion into two
parts. They deal with electromagnetic decays to the QRPA ground state and
with decay transitions between two QRPA states. It is to be expected that
the Y amplitudes of the QRPA phonon can make important contributions
beyond the QTDA level of approximation.

18.4.1 Transitions to the QRPA Ground State

Consider a transition from a QRPA excitation (18.31) to the QRPA ground
state |QRPA〉. We write the transition amplitude according to (4.25) and
apply the Wigner–Eckart theorem (2.27) to the transition density to return
to a non-reduced matrix element. The result is

(QRPA‖Mσλ‖ω) = λ̂−1
∑
ab

(a‖Mσλ‖b)(QRPA‖
[
c†ac̃b

]
λ
‖ω)

= (J M λμ|0 0)−1λ̂−1
∑
ab

(a‖Mσλ‖b)〈QRPA|
[
c†ac̃b

]
λμ

Q†ω|QRPA〉 . (18.75)

To reduce the particle rank1 of the operator in the last matrix element we
introduce the commutator form

〈QRPA|[c†ac̃b]λμQ†ω|QRPA〉 = 〈QRPA|
[
[c†ac̃b]λμ, Q

†
ω

]
|QRPA〉 . (18.76)

To evaluate (18.76) we substitute from (15.4) and (18.1) for the operators.
This gives

〈QRPA|
[
[c†ac̃b]λμ, Q

†
ω

]
|QRPA〉

=
∑
c≤d

(
− vaubX

ω
cd〈QRPA|

[
[ãaãb]λμ, A

†
cd(JM)

]
|QRPA〉

− uavbY
ω
cd〈QRPA|

[
[a†aa

†
b]λμ, Ãcd(JM)

]
|QRPA〉

)
= N−1ab (λ)

∑
c≤d

(
vaubX

ω
cd〈QRPA|

[
Ãab(λμ), A

†
cd(JM)

]
|QRPA〉

− uavbY
ω
cd〈QRPA|

[
A†ab(λμ), Ãcd(JM)

]
|QRPA〉

)
, (18.77)

1 See Subsect. 11.1.1.
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where (18.2) and (18.3) were used in the last step. We now make the quasi-
boson approximation and apply (16.27), finding

〈QRPA|
[
[c†ac̃b]λμ, Q

†
ω

]
|QRPA〉

QBA
≈ (−1)J+MδλJδμ,−MNab(J)

×
∑
c≤d
(vaubXω

cd + uavbY
ω
cd)[δacδbd − (−1)ja+jb+Jδadδbc] . (18.78)

Having found (18.78) we now substitute it into (18.75) through (18.76),
which yields

(QRPA‖Mσλ‖ω) = (−1)J+MδλJδμ,−M (J M λμ|0 0)−1λ̂−1

×
∑
c≤d
Ncd(J)

[
(c‖Mσλ‖d)(vcudXω

cd + ucvdY
ω
cd)

− (−1)jc+jd+J(d‖Mσλ‖c)(vducXω
cd + udvcY

ω
cd)

]
. (18.79)

From the symmetry properties (6.27)–(6.30) of the single-particle matrix ele-
ments we have

(−1)jc+jd+λ+1(d‖Mσλ‖c) = ζ(λ)(c‖Mσλ‖d) , (18.80)

where the phase factor ζ(λ) was defined in (11.223) as

ζ(λ) =

⎧⎪⎨⎪⎩
(−1)λ CS phase convention ;
±1 BR phase convention,

+ for σ = E , − for σ = M .

(18.81)

This allows us to combine the terms in (18.79), and with use of (1.34) it
becomes

(QRPA‖Mσλ‖ω)

= δλJ
∑
c≤d
Ncd(J)(c‖Mσλ‖d)(vcud + ζ(λ)ucvd)(Xω

cd + ζ(λ)Y ω
cd) . (18.82)

Equations (13.56) and (13.58) state the phases for the BCS occupation
amplitudes in terms of the phase factor

θ(lc) =

{
(−1)lc CS phase convention ,

1 BR phase convention .
(18.83)

It follows that the occupation factor in (18.82) can be written as

vcud + ζ(λ)ucvd = θ(ld)(vc|ud| ± vd|uc|) , (18.84)

with the + sign for σ = E and the minus sign for σ = M. With a change of
the index names the final result for the decay amplitude is then
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(QRPA‖Mσλ‖ω) = δλJ
∑
a≤b
Nab(J)θ(lb)(va|ub| ± vb|ua|)(a‖Mσλ|b)

× (Xω
ab + ζ(λ)Y ω

ab) ,
+ for σ = E , − for σ = M .

(18.85)
With CS phases and Y = 0 the transition amplitude (18.85) is reduced to

the corresponding QTDA result (16.99). The Y term can have a large effect
on the decay amplitude and half-life. Let us now study examples of the use of
(18.85) in actual computations.

18.4.2 E2 Decays in the 0d-1s and 0f-1p-0g9/2 Shells

The 2+1 State in 24Mg

We continue the example of Subsect. 18.3.2 and study the E2 decay of the
2+1 state in 24Mg using the 0d5/2-1s1/2 valence space. All parameters are the
same as in Subsect. 18.3.2, and they reproduce the experimental energy of the
2+1 state. The X and Y amplitudes of the 2+1 state are given in (18.69) and
recapitulated in Table 18.3. We also perform a QTDA calculation for compar-
ison. In the QTDA the experimental energy of the 2+1 state is reproduced by
the SDI parameters A0 = A1 = 0.71MeV.2 The X amplitudes produced by
the QTDA calculation are listed in Table 18.3.

Table 18.3. Two-quasiparticle configuration ab in the 0d5/2-1s1/2 valence space and
the quantity Qab defined in (18.86) for the 2

+
1 state of

24Mg

QTDA QRPA

ab Qab (fm
2) X

2+1
ab Cab (eefffm

2) X
2+1
ab Y

2+1
ab Cab (eefffm

2)

π0d5/2π0d5/2 −5.97epeff 0.439 −2.62 0.468 0.164 −3.77
π0d5/2π1s1/2 −7.17epeff 0.554 −3.97 0.595 0.215 −5.81
ν0d5/2ν0d5/2 −5.97eneff 0.439 −2.62 0.468 0.164 −3.77
ν0d5/2ν1s1/2 −7.17eneff 0.554 −3.97 0.595 0.215 −5.81
The QTDA and QRPA amplitudes and the contributions Cab to the sum
(18.87) are given in the following columns

To tabulate the contributions to (18.85) we define the abbreviation

Qab ≡ Nab(2)(vaub + vbua)(a‖Mσλ|b)
eeff
e

. (18.86)

2 This calculation differs from those of Subsects. 16.4.2 and 16.5.2 because of dif-
ferent SDI parameters in the QTDA calculations.
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This quantity is listed in Table 18.3 for the 24Mg oscillator length b = 1.813 fm.
With effective charges inserted, the decay amplitude (18.85) now reads

(QRPA‖Q2|2+1 ) =
∑
a≤b

Qab(X
2+1
ab + Y

2+1
ab ) ≡

∑
a≤b

Cab . (18.87)

In the present application, Eqs. (18.86) and (18.87) are independent of phase
convention. The QTDA and QRPA contributions Cab of each configuration
are stated in Table 18.3.

From Table 18.3 we can read for the summed QTDA and QRPA decay
amplitudes

(BCS‖Q2‖2+1 )QTDA = −6.59(epeff + eneff) fm
2 , (18.88)

(QRPA‖Q2‖2+1 )QRPA = −9.58(epeff + eneff) fm
2 . (18.89)

By using the effective charges epeff = 1.3e and eneff = 0.3e we obtain the reduced
transition probabilities

B(E2 ; 2+1 → 0+gs)QTDA = 22.2 e2fm4 , (18.90)

B(E2 ; 2+1 → 0+gs)QRPA = 47.0 e2fm4 . (18.91)

The results (18.90) and (18.91) demonstrate the enhancement of the decay
probability when going from the QTDA to the QRPA. The enhancement is
due to QRPA ground-state correlations, which show up in the presence of the
Y amplitudes and in the increase of the X amplitudes in Table 18.3.

The transition amplitudes and reduced probabilities for all of the 2+ states
are collected in Table 18.4. The E2 strength is seen to be strongly concentrated
in the lowest state, indicating its collective (vibrational) character.

Table 18.4. QRPA energies and E2 decay amplitudes and reduced transition prob-
abilities for 2+ states in 24Mg

n En (MeV) (QRPA‖Q2‖2+n ) (fm2) B(E2 ; 2+n → 0+gs) (e
2fm4)

1 1.388 −9.58e+ 47.0
2 3.852 −5.36e− 5.75
3 3.988 −0.136e+ 0.01
4 4.012 −2.00e− 0.80

The calculation was done in the 0d5/2-1s1/2 valence space with details
given in the text. Note abbreviations e± ≡ epeff ± eneff

Other Examples

We now continue with calculations using the full 0d-1s oscillator shell as va-
lence space. As examples we take the nuclei 24Mg and 30Si and calculate the
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wave functions of their first 2+ states. We use the pairing parameters of Tables
16.5 and 16.6 and the QRPA parameters of Table 18.1. With effective charges
epeff = 1.3e and eneff = 0.3e the resulting B(E2) values are

B(E2 ; 2+1 → 0+gs)QRPA = 78.8 e2fm4 for 24Mg , (18.92)

B(E2 ; 2+1 → 0+gs)QRPA = 50.0 e2fm4 for 30Si . (18.93)

These are very close to the experimental values quoted in (16.106) and
(16.113).

The B(E2) values (18.92) and (18.93) are appreciably larger than the
corresponding QTDA values displayed in Fig. 16.5(b) for 24Mg and in Fig. 16.6
for 30Si. So even when the QTDA and QRPA energies of the 2+1 state are the
same (adjusted to the experimental energy), their decay probabilities deviate
considerably. The QRPA generates more collectivity than does the QTDA,
with coherent contributions coming from both the X and the Y amplitudes.
The ground-state correlations thus play an important role as generators of
low-energy collectivity.

Our final example 66Zn illustrates E2 transitions in the 1p-0f-0g9/2 major
shell. Table 18.5 lists the calculated QRPA values of B(E2 ; 2+n → 0+gs) for
all 2+ states arising from the 1p-0f-0g9/2 valence space. The calculation was
done with the BCS pairing parameters of Table 16.7. The SDI parameters for
the QRPA were chosen to reproduce the experimental energy of the 2+1 state,
with the result A0 = 0.25MeV and A1 = 0.53MeV. The effective charges
were selected as epeff = 1.5e and eneff = 0.5e.

From Table 18.5 we see that the QRPA calculation reproduces the exper-
imental decay probability (16.115) from the 2+1 state. The same is not true of
the corresponding QTDA calculation, as seen from Fig. 16.7(b). This is fur-
ther evidence that the QRPA produces strong collectivity for low-lying states
in spherical open-shell nuclei.

18.4.3 Energy-Weighted Sum Rule of the QRPA

The EWSR of the QRPA is exactly analogous to the EWSR of the particle–
hole RPA, discussed in Subsect. 11.6.4 and stated in general form by (11.237).
The EWSR of the RPA was put into compact matrix form (11.254), and we
strive for a similar expression here.

Starting from the decay amplitude (18.85) and following Subsect. 11.6.4,
we write

(nλπ‖Mσλ‖QRPA) = ζ(λ)
∑
ab

(Xω∗
ab pλab + Y ω∗

ab qλab)

= ζ(λ)
(
Xω†, −Yω†)(

pλ

−qλ
)

. (18.94)

This is identical in form with (11.240). As an extension of (11.239) the defin-
itions are now
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Table 18.5. Energies of 2+ states and reduced E2 transition probabilities for 66Zn

n En (MeV) B(E2 ; 2+n → 0+gs) (e
2fm4)

1 1.070 284
2 2.522 0.751
3 3.473 19.3
4 3.957 0.073
5 4.328 0.813
6 4.543 1.44
7 5.083 17.5
8 5.177 0.024
9 5.386 21.8
10 5.950 0.009
11 5.976 0.881
12 7.729 0.586
13 8.532 1.03
14 8.997 3.54
15 9.170 16.2
16 9.505 0.253
17 9.885 1.12
18 14.667 0.007

The calculation was done in the 1p-0f-0g9/2 valence
space with details reported in the text

pλab ≡ ζ(λ)Nab(λ)θ(lb)(va|ub| ± vb|ua|)(a‖Mσλ‖b) , qλab ≡ ζ(λ)pλab ;
+ for σ = E , − for σ = M . (18.95)

The phase factors ζ(λ) and θ(lb) are given by (18.81) and (18.83) respectively.
By analogy with the RPA result (11.254) we can write the EWSR of the
QRPA directly as∑

n

Eω

∣∣(nλπ‖Mσλ‖QRPA)
∣∣2 = pλ

T[
A− ζ(λ)B

]
pλ . (18.96)

The elements of the column vector pλ are given by (18.95), and A is the QTDA
matrix (16.46) and B the correlation matrix (18.28).

18.4.4 Electric Quadrupole Sum Rule in 24Mg

To see how the EWSR (18.96) works in practice, we continue with the first
example of Subsect. 18.4.2. So we consider E2 decay of the 2+ states in 24Mg
using the 0d5/2-1s1/2 valence space with the single-particle energies of (16.72).
As before, we use the SDI with the BCS pairing parameters A

(p)
pair = A

(n)
pair =

1.0MeV and the QRPA parameters A0 = A1 = 0.6MeV. We use the CS phase
convention.
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We set out to evaluate the right-hand side of (18.96). Comparing (18.86)
and (18.95), the latter with effective charges inserted, shows that

p2ab = Qab . (18.97)

The A and B matrices are given in (16.79) and (18.67). Their difference is

A− B

=

⎛⎜⎜⎝
3.542 −0.532 −0.407 −0.538
−0.532 3.358 −0.538 −0.711
−0.407 −0.538 3.542 −0.532
−0.538 −0.711 −0.532 3.358

⎞⎟⎟⎠−
⎛⎜⎜⎝

0 0 −0.406 −0.538
0 −0.028 −0.538 −0.712

−0.406 −0.538 0 0
−0.538 −0.712 0 −0.028

⎞⎟⎟⎠

=

⎛⎜⎜⎝
3.542 −0.532 −0.001 0.000
−0.532 3.386 0.000 0.001
−0.001 0.000 3.542 −0.532
0.000 0.001 −0.532 3.386

⎞⎟⎟⎠ , (18.98)

with all elements given in Mega-electronvolts. With the values of Qab = p2ab
from Table 18.3, the right-hand side of (18.96) becomes

p2
T
(A− B)p2 =

(
−5.97epeff , −7.17epeff , −5.97eneff , −7.17eneff

)
×

⎛⎜⎜⎝
3.542 −0.532 −0.001 0.000
−0.532 3.386 0.000 0.001
−0.001 0.000 3.542 −0.532
0.000 0.001 −0.532 3.386

⎞⎟⎟⎠
⎛⎜⎜⎝
−5.97epeff
−7.17epeff
−5.97eneff
−7.17eneff

⎞⎟⎟⎠ MeV fm4

= 255[(epeff)
2 + (eneff)

2]MeV fm4 . (18.99)

Next we evaluate the left-hand side of (18.96). With the energies and E2
matrix elements of Table 18.4 we obtain

4∑
n=1

En

∣∣(2+n ‖Q2‖QRPA)
∣∣2

= 1.388MeV× (−9.58e+ fm2)2 + 3.852MeV× (−5.36e− fm2)2

+ 3.988MeV× (−0.136e+ fm2)2 + 4.012MeV× (−2.00e− fm2)2

= 254[(epeff)
2 + (eneff)

2]MeV fm4 + 1.5epeffe
n
effMeV fm

4 . (18.100)

This agrees with (18.99) to within one-half per cent. Rounding errors are re-
sponsible for the small discrepancy. In particular we note that the off-diagonal
blocks of the matrix (18.98) would be zero in an accurate calculation. Also,
the small epeffe

n
eff term in (18.100) would vanish in an accurate calculation. We

conclude that within rounding errors the EWSR is indeed satisfied.
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18.4.5 Electromagnetic Transitions Between Two QRPA
Excitations

Equation (16.122) is a straightforward QTDA recipe for electromagnetic tran-
sitions from one QTDA excitation to another. To derive a corresponding ex-
pression for the QRPA we have to resort to the commutator technique of the
RPA in order to include the Y contributions to the transition amplitude. We
first establish an approximate boson commutation rule for two QRPA phonons
through the quasiboson approximation:[

Qω, Q
†
ω′

] QBA
≈ 〈BCS|

[
Qω, Q

†
ω′

]
|BCS〉 = δωω′ . (18.101)

The second step follows from substituting (18.1) and (18.4) into the commu-
tator, noting the expectation values (18.7) and (18.8) and applying the ortho-
normality relation (18.37). The approximate commutation result (18.101) is
analogous to the RPA result (11.275).

By analogy with the derivation in Subsect. 11.6.9 we can write the electro-
magnetic transition amplitude for transitions between two QRPA excitations
as

〈nf Jf Mf |Mσλμ|ni Ji Mi〉
QBA
≈ 〈BCS|

[
Qωf ,Mσλμ, Q

†
ωi

]
|BCS〉 , (18.102)

where

Q†ωi =
∑
ai≤bi

[
Xωi

aibi
A†aibi(JiMi)− Y ωi

aibi
Ãaibi(JiMi)

]
, (18.103)

Q†ωf =
∑

af≤bf

[
X

ωf
af bf

A†af bf (JfMf )− Y
ωf
af bf

Ãaf bf (JfMf )
]
. (18.104)

To proceed with the calculation we need to insert for the transition oper-
ator (15.1) its quasiparticle representation with the transition density (15.4).
The resulting expression is simplified by the fact that

〈BCS|
[
Qωf , [a

†
aa
†
b]λμ, Q

†
ωi

]
|BCS〉 = 0 , (18.105)

〈BCS|
[
Qωf , [ãaãb]λμ, Q

†
ωi

]
|BCS〉 = 0 . (18.106)

This leaves the two a†a terms of (15.4) as the only non-zero contributions to
the double commutator in (18.102), whence

〈nf Jf Mf |Mσλμ|ni Ji Mi〉

= λ̂−1
∑
ab

(a‖Mσλ‖b)
{
uaub〈BCS|

[
Qωf , [a

†
aãb]λμ, Q

†
ωi

]
|BCS〉

+ (−1)ja+jb+λvavb〈BCS|
[
Qωf , [a

†
bãa]λμ, Q

†
ωi

]
|BCS〉

}
. (18.107)

By means of (18.80) and (15.137) this becomes
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〈nf Jf Mf |Mσλμ|ni Ji Mi〉

= λ̂−1
∑
ab

(a‖Mσλ‖b)D(λ)
ab 〈BCS|

[
Qωf , [a

†
aãb]λμ, Q

†
ωi

]
|BCS〉 , (18.108)

where the factor D(λ)
ab was defined in (15.18).

Expanded, the double commutator in (18.108) is like (11.280) with quasi-
particle operators replacing the particle operators. Its BCS expectation value
is like (11.281) with the BCS vacuum replacing the particle–hole vacuum and
the quasiparticle pair operators A, Ã, A† and Ã† replacing the respective
particle–hole operators A, Ã, A† and Ã†. To proceed with the expectation
value we need instead of (11.282) the commutator (Exercise 18.27)[

Aab(JM), A†cd(J
′M ′)

]
= δJJ ′δMM ′N 2

ab(J)[δacδbd − (−1)ja+jb+Jδadδbc]

+Nab(J)Ncd(J ′)
∑

mαmβ
mγmδ

(ja mα jb mβ |J M)(jc mγ jd mδ|J ′M ′)

× [δαδa†γaβ + δβγa
†
δaα − δαγa

†
δaβ − δβδa

†
γaα] .
(18.109)

Similar to the particle–hole case, this commutation relation implies that only
the first two terms of the analogue of (11.281) are non-zero. Thus we have

〈BCS|
[
Qωf , [a

†
aãb]λμ, Q

†
ωi

]
|BCS〉

=
∑
ai≤bi
af≤bf

{
X

ωf∗
af bf

Xωi
aibi
〈BCS|Aaf bf (JfMf )[a†aãb]λμA

†
aibi

(JiMi)|BCS〉

+ Y
ωf∗
af bf

Y ωi
aibi
〈BCS|Ãaibi(JiMi)[a†aãb]λμÃ

†
af bf

(JfMf )|BCS〉
}

.

(18.110)

The matrix elements on the right-hand side of (18.110) can be expressed
in terms of the quantities Kλ

ab(fi) defined in (15.16). Doing this and using
Clebsch–Gordan identities we find

〈BCS|
[
Qωf , [a

†
aãb]λμ, Q

†
ωi

]
|BCS〉

=
∑
ai≤bi
af≤bf

[
X

ωf∗
af bf

Xωi
aibi

Ĵf
−1
(Ji Mi λμ|Jf Mf )Kλ

ab(fi)

+ Y
ωf∗
af bf

Y ωi
aibi

(−1)Jf+Mf+Ji+Mi Ĵi
−1
(Jf −Mf λμ|Ji −Mi)Kλ

ab(if)
]

= Ĵf
−1
(Ji Mi λμ|Jf Mf )

∑
ai≤bi
af≤bf

[
X

ωf∗
af bf

Xωi
aibi
Kλ
ab(fi) + Y

ωf∗
af bf

Y ωi
aibi
Kλ
ab(if)

]
.

(18.111)

We substitute this into (18.108) and apply the Wigner–Eckart theorem, which
gives
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(nf Jf‖Mσλ‖ni Ji)

= λ̂−1
∑
ab

ai≤bi
af≤bf

(a‖Mσλ‖b)D(λ)
ab

[
X

ωf∗
af bf

Xωi
aibi
Kλ
ab(fi) + Y

ωf∗
af bf

Y ωi
aibi
Kλ
ab(if)

]
.

(18.112)

With (15.98) this becomes

(nf Jf‖Mσλ‖ni Ji) =
∑
ai≤bi
af≤bf

[
X

ωf∗
af bf

Xωi
aibi

(af bf ; Jf‖Mσλ‖ai bi ; Ji)

+ Y
ωf∗
af bf

Y ωi
aibi

(ai bi ; Ji‖Mσλ‖af bf ; Jf )
]
.

(18.113)

We transpose the second reduced matrix element on the right-hand side the
same way as in passing from (11.285) to (11.286). Equation (11.290) provides
the necessary symmetry relation, and the two-quasiparticle matrix elements
(15.99) are real. We then write the final result as

(ωf‖Mσλ‖ωi)QRPA =
∑
ai≤bi
af≤bf

[
X

ωf∗
af bf

Xωi
aibi

+ (−1)ΔJ+λζ(λ)Y
ωf∗
af bf

Y ωi
aibi

]
× (af bf ; Jf‖Mσλ‖ai bi ; Ji) .

(18.114)
The convention-dependent phase factor is given through (11.223). Our result
has the same form as the RPA result (11.286), and in the limit of vanishing
Y terms it coincides with the QTDA expression (16.122).

Let us next put (18.114) into practice and present an example of its use.

18.4.6 Electric Quadrupole Transition 4+1 → 2+1 in 24Mg

We continue the example of Subsect. 18.4.2 and calculate the E2 transition
probability for the 4+1 → 2+1 decay in 24Mg. As before, the valence space is
0d5/2-1s1/2, and the parameters are unchanged. For comparison we continue
also the QTDA calculation from Subsect. 18.4.2. The CS phase convention
is used throughout. The QTDA and QRPA amplitudes for the 2+1 state are
listed in Table 18.3.

The Hamiltonian matrix for the 4+ states is formed in the basis

{|π1〉 , |ν1〉} = {|(π0d5/2)2 ; 4+〉 , |(ν0d5/2)2 ; 4+〉} , (18.115)

and its diagonalization yields the wave functions

|24Mg ; 4+1 〉QTDA =
1√
2

(
|π1〉+ |ν1〉

)
, (18.116)
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|24Mg ; 4+1 〉QRPA = 0.707|π1〉+0.017|π−11 〉+0.707|ν1〉+0.017|ν−11 〉 . (18.117)
As before, the notation |π−11 〉 stands for two-quasiparticle annihilation from
the QRPA ground state. This part of the wave function is multiplied by the
Y amplitude and corresponds to the two-proton configuration π1 of (18.115).

Equation (16.122) gives the QTDA decay amplitude

(2+1 ‖Q2‖4+1 )QTDA =
[
Xf

1 (QTDA)X
i
1(QTDA)Q

2
11

+Xf
2 (QTDA)X

i
1(QTDA)Q

2
21

]
(epeff + eneff) , (18.118)

and (18.114) gives the QRPA decay amplitude

(2+1 ‖Q2‖4+1 )QRPA =
{
[Xf

1 (QRPA)X
i
1(QRPA) + Y f

1 (QRPA)Y
i
1 (QRPA)]Q

2
11

+ [Xf
2 (QRPA)X

i
1(QRPA) + Y f

2 (QRPA)Y
i
1 (QRPA)]Q

2
21

}
(epeff + eneff) .

(18.119)

Table 18.3 and Eqs. (18.116) and (18.117) give the QTDA numerical values

Xf
1 (QTDA) = 0.439 , Xf

2 (QTDA) = 0.554 , Xi
1(QTDA) = 0.707

(18.120)
and the QRPA numerical values

Xf
1 (QRPA) = 0.468 , Xf

2 (QRPA) = 0.595 , Xi
1(QRPA) = 0.707 ,

Y f
1 (QRPA) = 0.164 , Y f

2 (QRPA) = 0.215 , Y i
1 (QRPA) = 0.017 .

(18.121)

The two-quasiparticle E2 matrix elements in (18.118) and (18.119) are abbre-
viated as

eQ2
11 ≡ (0d5/2 0d5/2 ; 2+‖Q2‖0d5/2 0d5/2 ; 4+) , (18.122)

eQ2
21 ≡ (0d5/2 1s1/2 ; 2+‖Q2‖0d5/2 0d5/2 ; 4+) . (18.123)

These are the same for protons and neutrons because we have the same pairing
parameters for them. The effective charges account for protons and neutrons
in (18.118) and (18.119).

The matrix elements (18.122) and (18.123) are evaluated by means of
(15.99). The resulting expressions are

eQ2
11 = −6

√
5
{
2 4 2
5
2

5
2

5
2

}
(u20d5/2 − v20d5/2)(0d5/2‖Q2‖0d5/2) , (18.124)

eQ2
21 = −3

√
10

{
2 4 2
5
2

1
2

5
2

}
(u0d5/2u1s1/2 − v0d5/2v1s1/2)(1s1/2‖Q2‖0d5/2) .

(18.125)

Table 6.4 gives the single-particle matrix elements and Table 16.4 gives the
occupation amplitudes. Inserting them and the 6j symbols gives
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Q2
11 = −6

√
5
(
− 3
14
√
10

)
(0.66852 − 0.74372)(−2.585b2) = 0.8204 fm2 ,

(18.126)

Q2
21 = −3

√
10

(
− 1
3
√
10

)
(0.6685× 0.8119− 0.7437× 0.5838)(−2.185b2)

= −0.7798 fm2 , (18.127)

where we used b = 1.813 fm.
Substituting the amplitudes (18.120) and the matrix elements (18.126)

and (18.127) into (18.118) we find the QTDA transition amplitude

(2+1 ‖Q2‖4+1 )QTDA

= [0.439× 0.707× 0.8204 fm2 + 0.554× 0.707(−0.7798 fm2)](epeff + eneff)

= −0.0508(epeff + eneff) fm
2 . (18.128)

Likewise we substitute (18.121), (18.126) and (18.127) into (18.119) to find
the QRPA transition amplitude

(2+1 ‖Q2‖4+1 )QRPA = [(0.468× 0.707 + 0.164× 0.017)× 0.8204 fm2

+ (0.595× 0.707 + 0.215× 0.017)(−0.7798 fm2)]

× (epeff + eneff) = −0.0571(e
p
eff + eneff) fm

2 . (18.129)

With the effective charges epeff = 1.3e and eneff = 0.3e these give

(2+1 ‖Q2‖4+1 )QTDA = −0.081 e fm2 , (18.130)

(2+1 ‖Q2‖4+1 )QRPA = −0.091 e fm2 . (18.131)

These lead to the B(E2) values

B(E2 ; 4+1 → 2+1 )QTDA = 7.3× 10−4e2fm4 , (18.132)

B(E2 ; 4+1 → 2+1 )QTDA = 9.2× 10−4e2fm4 . (18.133)

With the experimental decay energy of 2.754MeV we find from Table 6.8 the
theoretical half-lives

t1/2(E2)QTDA = 5ns , (18.134)
t1/2(E2)QRPA = 4ns . (18.135)

The theoretical E2 decay half-lives (18.134) and (18.135) are close to each
other but totally different from the experimental figure of 25 fs. One possible
reason for the large deviation is the sign difference between Q2

11 and Q2
21 in

(18.126) and (18.127). The relative sign is governed by the BCS occupation
amplitudes. With equal signs the theoretical result would be about 10 ps. The
result can be improved by a suitable choice of the SDI interaction strengths
and by enlarging the valence space. Other possible explanations for the large
measured B(E2) value are surveyed in the following subsection.
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18.4.7 Collective Vibrations and Rotations

In the previous subsection we saw that the experimental B(E2) value for the
transition 4+1 → 2+1 in 24Mg was several orders of magnitude larger than
our computed values. One possibility to account for this discrepancy is to
consider the 4+1 state to be a collective vibrational two-phonon state. The 4+1
state could also be a member of a ground-state rotational band. In both cases
the transition would be strongly enhanced.

In the two-phonon case the enhancement is due to the strong collectiv-
ity of the one-phonon 2+1 vibrational state, which is the building block of
the 4+1 state. In the rotational case the enhancement comes from collective
rotation, which puts the 4+1 → 2+1 transition on an equal footing with the
strongly collective 2+1 → 0+gs transition. Rotational states are well established
by experiments. Their description requires that the nucleus has a deformed,
non-spherical shape. The most common deformed shape is spheroidal, prolate
or oblate. Softer deformations occur for gamma-unstable nuclei, where the
instability refers to departure from axial symmetry.

The rotational degree of freedom can couple to vibrational degrees of free-
dom. The best-known example are the beta-vibrational and gamma-vibrational
rotation bands. Interaction between collective rotation and collective vibra-
tion can be treated in macroscopic collective models. Microscopically such
complex interplay can be treated by coupling a deformed QTDA or QRPA
phonon to a rotating nuclear core.

For more information on collective rotations and their coupling to vibra-
tional degrees of freedom see, e.g. [16, 83]. The case of collective two-phonon
vibrations is discussed in some detail in Sect. 18.5.

18.5 Collective Vibrational Two-Phonon States

Let us consider the first 4+ state as a vibrational two-phonon state in a spher-
ical nucleus. A normalized two-phonon state has the form

|ω ω′ ; J M〉 = 1√
1 + δωω′

[
Q†ωQ

†
ω′

]
JM
|vac〉 . (18.136)

The phonon operators Q†ω can be creation operators for collective QTDA or
QRPA vibrational excitations, usually of the quadrupole (2+1 state) or octupole
(3−1 state) type. The associated QTDA or QRPA vacuum is here denoted
generally as |vac〉, with the defining property

Qω|vac〉 = 0 for all ω . (18.137)

Collective phonons of type ω are assumed to be identical bosons. In the
case ω = ω′ the angular momentum J can take only even values due to the
exchange symmetry of two identical bosons, and the parity is positive. Com-
binations of two quadrupole phonons or two octupole phonons are well known
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experimentally. Also the combination of a quadrupole and an octupole phonon
is known, with Jπ = 1−, 2−, 3−, 4−, 5−. For theoretical and experimental as-
pects of collective vibrational states see [84,85].

An ideal state of two identical phonons is a degenerate multiplet of the
allowed J states at twice the energy of the one-phonon state. Two quadrupole
phonons thus form a degenerate triplet of Jπ = 0+, 2+, 4+ states, and two
octupole phonons form a degenerate quartet of Jπ = 0+, 2+, 4+, 6+ states.

Experimentally, nearly degenerate two-phonon multiplets are common.
Multiplets of three and even four quadrupole phonons have been suggested.
Some cadmium isotopes are good examples of such multiphonon states [85].

Apart from belonging to a group of nearly degenerate states with proper
quantum numbers, an n-phonon state is characterized by its strong electric
decay to the (n− 1)-phonon states. Consider a state of two phonons of multi-
polarity λ and its Eλ decay to the state of one λ phonon. It turns out that the
B(Eλ) value of this transition is twice the B(Eλ) value of the ground-state
decay of the one-phonon state. We proceed to derive this result on the basis
of the commutation rule[

Qω, Q
†
ω′

]
= δωω′ for ideal bosons . (18.138)

The matrix element for Eλ decay of the two-λ-phonon state to the one-λ-
phonon state is

〈λMf |MEλμ|λ2 ; J Mi〉 =
1√
2
〈vac|QλMf

MEλμ

[
Q†λQ

†
λ

]
JMi
|vac〉 . (18.139)

We expand the tensor product and make use of (18.137) to write

〈λMf |MEλμ|λ2 ; J Mi〉

=
1√
2

∑
mm′

(λmλm′|J Mi)〈vac|
[
QλMf

,MEλμQ
†
λmQ†λm′

]
|vac〉 . (18.140)

Expanding the commutator and using (18.138) we obtain[
QλMf

,MEλμQ
†
λmQ†λm′

]
=MEλμQ

†
λm

[
QλMf

, Q†λm′
]

+MEλμ

[
QλMf

, Q†λm
]
Q†λm′ +

[
QλMf

,MEλμ

]
Q†λmQ†λm′

=MEλμQ
†
λmδMfm′ +MEλμδMfmQ†λm′ +

[
QλMf

,MEλμ

]
Q†λmQ†λm′ .

(18.141)

When this is substituted into (18.140) the last term vanishes since it does not
contain an equal number of quasiparticle annihilation and creation operators.
The remaining terms give

〈λMf |MEλμ|λ2 ; J Mi〉

=
1√
2

∑
m

[(λmλMf |J Mi) + (λMf λm|J Mi)]〈vac|MEλμ|λm〉 , (18.142)

where the summation index was renamed in the second term.
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The matrix element on the right-hand side of (18.142) vanishes except for
m = −μ, and the two Clebsch–Gordan coefficients combine. We then have

〈λMf |MEλμ|λ2 ; J Mi〉

=
1 + (−1)2λ−J√

2
(λ −μλMf |J Mi)〈vac|MEλμ|λ −μ〉 . (18.143)

This result in fact proves that J is even. Application of the Wigner–Eckart
theorem to both sides yields

λ̂−1(J Mi λμ|λMf )(λ‖MEλ‖λ2 ; J)
=
√
2(λ −μλMf |J Mi)(λ −μλμ|0 0)(vac‖MEλ‖λ) . (18.144)

With the Clebsch–Gordan relations (1.34) and (1.37) this becomes

Ĵ−1(λ‖MEλ‖λ2 ; J) =
√
2 λ̂−1(vac‖MEλ‖λ) . (18.145)

Squaring both sides and identifying the vacuum as the 0+ ground state we
have the final result

B(Eλ ; λ2J → λ) = 2B(Eλ ; λ→ 0+gs) . (18.146)

The result (18.146) relies on the assumption (18.138) of ideal bosonic
phonons. Note that the ratio is independent of the multipolarity λ and the
angular momentum J of the two-phonon state. The rule has been found quite
well obeyed in experiments for the λ = 2 case [85].

Another decay characteristic of the ideal two-phonon state is that

B(Eλ ; λ2J → 0+gs) = 0 . (18.147)

Also this characteristic has been experimentally verified as a valid approxi-
mation.

More information on collective vibrations and their coupling to rotational
degrees of freedom can be found, e.g. in [16,83,84]. A microscopic approach to
the interplay between two-phonon and one-phonon states is presented in [66].

Epilogue

In this chapter we have extended the QTDA level of two-quasiparticle mixing
to the more sophisticated QRPA level. The QRPA vacuum builds on many-
quasiparticle correlations, which play an important role in producing states
of great collectivity in open-shell even–even nuclei. Next, in the last chapter
of this book, we will discuss the proton–neutron variant of the QRPA. There
the ground-state correlations play an important role for the beta decay of
odd–odd spherical nuclei.
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Exercises

18.1. Make a detailed derivation of Eqs. (18.11) and (18.12).

18.2. Verify the relations (18.17).

18.3. Make a detailed derivation of (18.23).

18.4. Show that the matrix equation (18.50) contains the completeness con-
ditions (18.46) and (18.49).

18.5. Verify the commutation relation (18.57).

18.6. Produce the eigenenergies (18.68) by diagonalizing the supermatrix con-
sisting of the QTDA matrix (16.79) and the correlation matrix (18.67).

18.7. Continue Exercise 18.6 and produce the eigenvectors (18.69)–(18.72).

18.8. Produce the spectrum of 24Mg by using the valence space and SDI
parameters of Subsect. 18.3.2. Compare with the calculated and experimental
spectra of Fig. 18.1 and comment.

18.9. Produce the spectrum of 30Si by using the 0d5/2-1s1/2 valence space
and the pairing and A1 parameters of Table 16.6. Take the single-particle
energies from (14.12). Compare with the calculated and experimental spectra
of Fig. 18.2 and comment.

18.10. Verify the numbers in Table 18.3.

18.11. Verify the numbers in Table 18.4.

18.12. Continuation of Exercise 16.16.

(a) Form the correlation matrix for the 2+ states of 20Ne in the 0d5/2-1s1/2
valence space.

(b) Form the QRPA matrix and diagonalize it to find the eigenenergies and
eigenstates. Use the SDI with parameters A0 = A1 = 1.0MeV. Com-
pare with the QTDA results of Exercise 16.16 and experimental data, and
comment.

18.13. Continue Exercise 18.12 and compute the reduced transition proba-
bility B(E2 ; 2+1 → 0+gs) for

20Ne. By comparing with the experimental decay
half-life determine the electric polarization constant χ. Compare with the
QTDA result of Exercise 16.17 and comment.

18.14. Continuation of Exercise 16.18.

(a) Form the correlation matrix for the 2+ states of 26Mg in the basis con-
structed from the 0d5/2 and 1s1/2 proton orbitals and the 1s1/2 neutron
orbital.
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(b) Form the QRPA matrix and diagonalize it to find the eigenenergies and
eigenstates. Use the SDI with parameters A0 = A1 = 1.0MeV. Compare
with the QTDA results of Exercise 16.18 and experiment, and comment.

18.15. Continue Exercise 18.14 and compute the reduced transition proba-
bility B(E2 ; 2+1 → 0+gs) for

26Mg. By comparing with the experimental decay
half-life determine the electric polarization constant χ. Compare with the
QTDA result of Exercise 16.19 and comment.

18.16. Continue Exercise 18.15 and compute B(E2 ; 2+n → 0+gs) for the re-
maining values of n. Compute the summed E2 strength. Check that the QRPA
sum rule is satisfied.

18.17. Continuation of Exercise 16.21.

(a) Form the correlation matrix for the 2+ states of 30Si in the basis con-
structed from the 0d5/2 and 1s1/2 proton orbitals and the 1s1/2 and 0d3/2
neutron orbitals.

(b) Form the QRPA matrix and diagonalize it to find the eigenenergies and
eigenstates. Use the SDI with parameters A0 = A1 = 1.0MeV. Compare
with the QTDA results of Exercise 16.21 and experiment, and comment.

18.18. Continue Exercise 18.17 and compute the reduced transition proba-
bility B(E2 ; 2+1 → 0+gs) for

30Si. By comparing with the experimental decay
half-life determine the electric polarization constant χ. Compare with the
QTDA result of Exercise 16.22 and comment.

18.19. Continuation of Exercise 16.23.

(a) Form the correlation matrix for the 2+ states of 34S on the basis con-
structed from the 1s1/2 and 0d3/2 proton orbitals and the 0d3/2 neutron
orbital.

(b) Form the QRPA matrix and diagonalize it to find the eigenenergies and
eigenstates. Use the SDI with parameters A0 = A1 = 1.0MeV. Compare
with the QTDA results of Exercise 16.23 and experiment, and comment.

18.20. Continue Exercise 18.19 and compute the reduced transition proba-
bility B(E2 ; 2+1 → 0+gs) for

34S. By comparing with the experimental decay
half-life determine the electric polarization constant χ. Compare with the
QTDA result of Exercise 16.24 and comment.

18.21. Continue Exercise 18.20 and compute B(E2 ; 2+n → 0+gs) for the re-
maining values of n. Compute the summed E2 strength. Check that the QRPA
sum rule is satisfied.

18.22. Continuation of Exercise 16.28.

(a) Form the correlation matrix for the 2+ states of 38Ar in the basis con-
structed from the 1s1/2 and 0d3/2 proton orbitals and the 0d3/2 and 0f7/2
neutron orbitals. Use the SDI with parameters A0 = A1 = 1.0MeV.
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(b) Form the QRPA matrix and diagonalize it to find the eigenenergies and
eigenstates. Compare with the QTDA results of Exercise 16.28. Compare
also with the experimental energies and two-hole calculation in Fig. 8.7
and comment.

18.23. Continue Exercise 18.22 and compute the reduced transition proba-
bility B(E2 ; 2+1 → 0+gs) for

38Ar. By comparing with the experimental decay
half-life determine the electric polarization constant χ. Compare with the
QTDA result of Exercise 16.29 and comment.

18.24. Continue Exercise 18.23 and compute B(E2 ; 2+n → 0+gs) for the re-
maining values of n. Compute the summed E2 strength. Check that the QRPA
sum rule is satisfied.

18.25. Continuation of Exercise 16.30.

(a) Form the QRPA matrix for the 3− states in 38Ar in the basis constructed
from the 0d3/2 and 0f7/2 proton and neutron orbitals. Use the SDI with
parameters A0 = A1 = 1.0MeV.

(b) Diagonalize the QRPA matrix to find the eigenenergies and eigenstates.
Compare the eigenenergies with the QTDA results of Exercise 16.30 and
experiment, and comment.

18.26. Continuation of Exercise 18.25.

(a) Calculate the reduced transition probabilities B(E3 ; 3−n → 0+gs) for the 3
−

states of Exercise 18.25 by using the effective charges obtained in Exercise
18.23.

(b) Check that the QRPA sum rule is satisfied.

18.27. Derive the commutation relation (18.109).

18.28. Form the QRPA supermatrix for the 4+ states of the example in Sub-
sect. 18.4.6.

18.29. Continue Exercise 18.28 and diagonalize the QRPA matrix to find the
eigenenergies and eigenstates. Check with the wave function (18.117).

18.30. Continuation of Exercise 16.20.

(a) Compute the QRPA energy for the first 3+ state in 26Mg by using the
SDI with parameters A0 = A1 = 1.0MeV.

(b) Compute the decay half-life of the 3+1 state by assuming that it decays to
the first 2+ state by an M1 transition. Use the bare gyromagnetic ratios
and the experimental gamma energy. Compare with experimental data
and the QTDA result of Exercise 16.20, and comment.
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18.31. Continuation of Exercise 18.21.
Compute the reduced transition probability B(E2 ; 2+2 → 2+1 ) for

34S by using
the effective charges determined in Exercise 18.20. Determine the decay half-
life of the 2+2 state by taking into account also its decay to the ground state.
Use experimental gamma energies. Compare with the QTDA result of Exercise
16.25 and experiment, and comment.

18.32. Continuation of Exercise 16.26.

(a) Compute the excitation energy of the first excited 0+ state (0+1 ) in
34S.

Use the basis of Exercise 18.19 and the SDI with parameters A0 = 1.0MeV
and A1 = 0.0MeV.

(b) Determine the decay half-life of the 0+1 state by assuming that it decays
mainly to the 2+1 state. Use the electric polarization constant of Exer-
cise 18.20 and the experimental gamma energy. Compare with the QTDA
results of Exercise 16.26 and experiment, and comment.

18.33. Try to improve on the result (18.135) by changing the SDI pairing
parameters and the parameters of the QRPA. You can also try to use the full
0d-1s valence space. Comment on the results.

18.34. Continuation of Exercise 18.26.
Compute the decay half-life of the 3−1 state in 38Ar by considering its decay
branchings to the 0+gs and 2

+
1 states. Use experimental gamma energies and

the electric polarization constant determined in Exercise 18.23. Compare with
the QTDA result of Exercise 16.32 and experiment, and comment.

18.35. Derive the result (18.147).
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Proton–Neutron QRPA

Prologue

We discussed proton–neutron two-quasiparticle excitations and their electro-
magnetic and beta decays in Chap. 15. In Chap. 17 we introduced the pn-
QTDA, the simplest configuration mixing scheme of these excitations. The
vacuum of the pnQTDA is the BCS vacuum, and the solutions of the pn-
QTDA satisfy a variational principle.1

Our next task is to derive the equations of motion of the pnQRPA. This
model is more sophisticated than the pnQTDA, but its solutions do not satisfy
a variational principle. The vacuum of the pnQRPA contains correlations
that affect quantitative and even qualitative features of electromagnetic and
beta decays. The pnQRPA satisfies the Ikeda sum rule for Gamow–Teller
transitions, as did the pnQTDA.

19.1 The pnQRPA Equation and its Basic Properties

In this section we introduce the pnQRPA equation and discuss properties of
its solutions. These properties bear a close resemblance to those of the RPA
and QRPA, discussed in detail in Chaps. 11 and 18.

19.1.1 The pnQRPA Equation

Just as the RPA and QRPA equations (11.60) and (18.13), the pnQRPA
equation also can be derived by using the EOM method of Sect. 11.1. The
basic excitation is

|ω〉 = Q†ω|pnQRPA〉 , (19.1)

1 For a discussion of variational principles in the present context, see the beginning
of Sect. 18.1.
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where the pnQRPA phonon creation operator is

Q†ω =
∑
pn

[
Xω

pnA
†
pn(JM)− Y ω

pnÃpn(JM)
]

(19.2)

and |pnQRPA〉 denotes the pnQRPA vacuum.
The creation operator (19.2) can be viewed as a special case of (18.1).

Then the derivation of the QRPA equation in Subsect. 18.1.1 serves also as a
derivation of the pnQRPA equation. The matrix A for the pnQRPA is given
by pnQTDA result (17.2). From (18.28) we write, by changing the ab indices
to pn indices, the elements of matrix B as

Bpn,p′n′(J) = −(upunvp′vn′ + vpvnup′un′)〈p n ; J |V |p′ n′ ; J〉
+ (upvnvp′un′ + vpunup′vn′)〈p n−1; J |VRES|p′ n′−1 ; J〉 .

(19.3)
Because of charge conservation, the last term of (18.28) is zero for proton–

neutron two-quasiparticle excitations. Equation (17.4) gives the particle–hole
matrix element 〈p n−1 ; J |VRES|p′ n′−1 ; J〉. The relation between CS and BR
phases is contained in (17.6) and (18.30).

The pnQRPA equations are given by (18.11) and (18.12), with the change
of the restricted ab sums to unrestricted pn sums, as∑

p′n′
Apn,p′n′Xω

p′n′ +
∑
p′n′

Bpn,p′n′Y ω
p′n′ = EωX

ω
pn , (19.4)

−
∑
p′n′

(B†)pn,p′n′Xω
p′n′ −

∑
p′n′

(AT)pn,p′n′Y ω
p′n′ = EωY

ω
pn . (19.5)

These are the pnQRPA equations. In matrix form they are identical with
(18.13), i.e. (

A B
−B∗ −A∗

)(
Xω

Yω

)
= Eω

(
Xω

Yω

)
. (19.6)

As in the case of the QRPA, A is Hermitian and B is symmetric. The eigenvalue
problem is non-Hermitian.

Following the QRPA scheme and invoking analogies, we list below general
properties of solutions of (19.6).

19.1.2 Basic Properties of the Solutions of the pnQRPA Equation

The structure of the pnQRPA vacuum can be determined from the annihila-
tion condition

Qω|pnQRPA〉 = 0 for all ω , (19.7)

where
Qω =

∑
pn

[
Xω∗

pnApn(JM)− Y ω∗
pn Ã†pn(JM)

]
. (19.8)
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Orthonormality

The orthonormality condition for pnQRPA solutions can be adopted from the
QRPA result (18.37), so that it becomes∑

pn

(
XkJπ∗

pn Xk′Jπ
pn − Y kJπ∗

pn Y k′Jπ
pn

)
= δkk′ (pnQRPA orthonormality) .

(19.9)
A special case is the normalization condition∑

pn

(
|Xω

pn|2 − |Y ω
pn|2

)
= 1 (pnQRPA normalization) . (19.10)

Completeness

Completeness relations for the pnQRPA follow from Subsect. 18.2.1 by anal-
ogy. Thus (18.46) implies∑

k

(
XkJπ

pn XkJπ∗
p′n′ − Y kJπ∗

pn Y kJπ

p′n′
)
= δpp′δnn′ , (19.11)

which is completeness relation I of the pnQRPA. Similarly, from Eq. (18.49)
we have ∑

k

(
XkJπ

pn Y kJπ∗
p′n′ − Y kJπ∗

pn XkJπ

p′n′
)
= 0 , (19.12)

which is completeness relation II of the pnQRPA.
Equations (19.11) and (19.12) combine into the matrix equation∑

n
En>0

[(
Xω

Yω

)(
Xω†,−Yω†)− (

Yω∗

Xω∗

)(
YωT,−XωT

)]
=

(
1 0
0 1

)
. (19.13)

This is identical with (18.50).

Positive- and Negative-energy Solutions

Like the RPA and QRPA equations, the pnQRPA equation has positive- and
negative-energy solutions. The discussion in Subsect. 18.2.1 applies essentially
unchanged.

The condition (18.51) now takes the form

|Y ω
pn| � 1 for all ω, pn . (19.14)

On this condition the pnQRPA solutions are close to the corresponding
pnQTDA solutions. Then it is true that

|pnQRPA〉 = |BCS〉+ small corrections . (19.15)

The corrections are two-proton-quasiparticle–two-neutron-quasiparticle, four-
proton-quasiparticle–four-neutron-quasiparticle, etc., components.
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The pnQRPA Ground State

In analogy to (18.53) and (18.54) we have for the pnQRPA ground state

|pnQRPA〉 = N0eS |BCS〉 , (19.16)

where N0 is a normalization factor and

S = 1
2

∑
JM

∑
pn
p′n′

Cpnp′n′(J)A†pn(JM)Ã†p′n′(JM) , Cp′n′pn(J) = Cpnp′n′(J) .

(19.17)
By analogy with (18.55) we write for the pnQRPA∑

pn

Xω∗
pnCpnp′n′(J) = Y ω∗

p′n′ for all p′n′, ω . (19.18)

Solving this set of linear equations yields the C coefficients.
From (19.16) and (19.17) we see that on expanding the exponential the

first term of the pnQRPA vacuum is the BCS vacuum and the rest are k-
proton-quasiparticle–k-neutron-quasiparticle terms for k = 2, 4, 6, . . ..

Breaking Point of the pnQRPA

As in the QRPA case, for a sufficiently strong two-body interaction the pn-
QRPA formalism breaks down. At this breaking point the first root of the
pnQRPA equations becomes imaginary. The interpretation is that the spher-
ical vacuum |pnQRPA〉 is no longer appropriate and a deformed mean field
has to be introduced. This matter is outside the scope of the present book
and will not be elaborated.

The simple example of a single two-quasiparticle excitation discussed in
the QRPA context applies here as well.

One-quasiparticle Densities

The one-quasiparticle density of the QRPA was derived in Subsect. 18.2.2.
From that derivation and its result (18.59) we deduce

〈pnQRPA|a†πaπ|pnQRPA〉 = ĵp
−2 ∑

kJ
Ek>0

Ĵ 2
∑
n

∣∣Y kJπ

pn

∣∣2 , (19.19)

〈pnQRPA|a†νaν |pnQRPA〉 = ĵn
−2 ∑

kJ
Ek>0

Ĵ
2 ∑

p

∣∣Y kJπ

pn

∣∣2 . (19.20)

This indicates that the condition (19.14) should be satisfied for (19.15) to be
valid.
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The one-quasiparticle densities (19.19) and (19.20) open up a way to im-
prove on the pnQRPA description towards higher-pnQRPA frameworks. Sim-
ilar frameworks were discussed briefly at the ends of Subsects. 11.3.3 and
18.2.2. In the present case the EOM can be used with the exact ground state
to give the exact A and B matrices

Apn,p′n′ ≡ 〈pnQRPA|
[
Apn,H, A†p′n′

]
|pnQRPA〉 , (19.21)

Bpn,p′n′ ≡ −〈pnQRPA|
[
Apn,H, Ãp′n′

]
|pnQRPA〉 . (19.22)

This leads to a self-consistent, iterative solution of the higher-pnQRPA equa-
tions. The pair of Eqs. (19.21) and (19.22) is analogous to the RPA pair
(11.112) and (11.113) and the QRPA pair (18.61) and (18.62).

The matrix elements (19.21) and (19.22) are evaluated in some approxi-
mation. The level of approximation is governed by the approximation adopted
for the one-quasiparticle densities. In lowest order the self-consistent problem
reads (

Ā B̄
−B̄∗ −Ā∗

)(
X̄ω

Ȳω

)
= Eω

(
X̄ω

Ȳω

)
. (19.23)

The barred matrices Ā, B̄, X̄ and Ȳ are the usual matrices A, B, X and Y mul-
tiplied by combinations of the one-quasiparticle densities (19.19) and (19.20)
in a way described in [86], where a renormalized pnQRPA (pnRQRPA) theory
is introduced.

In all higher-QRPA theories the quasiboson approximation is abandoned
and the bi-fermion commutator (18.109) is at least partly restored to better
obey the Pauli principle.

19.2 Description of Open-Shell Odd–Odd Nuclei
by the pnQRPA

The pnQTDA is the simplest scheme for describing odd–odd nuclei in terms
of mixed proton–neutron two-quasiparticle excitations. This approach was
discussed in Chap. 17. The extension to the pnQRPA requires evaluation
of the correlation matrix (19.3). To illustrate how pnQRPA calculations are
carried out in practice we take the following example.

19.2.1 Low-Lying 1+ States in 24Na and 24Al

In the example of Subsect. 17.2.1 the 1+ states of the mirror nuclei 2411Na13
and 24

13Al11 were studied within the pnQTDA. We now continue the exam-
ple into the pnQRPA within the same 0d5/2-1s1/2 valence space and with
the same energy parameters. Thus the even–even reference nucleus is 24

12Mg12
with the pairing parameters A

(p)
pair = 1.55MeV and A

(n)
pair = 1.58MeV stated
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in Table 16.5. The resulting u and v amplitudes of the BCS are given in Ta-
ble 16.9. Equation (17.10) defines the proton–neutron two-quasiparticle basis.
The matrix A is given in (17.14) for the SDI parameters A0 = A1 = 1.0MeV.

We construct the B matrix (19.3) with the two-body interaction matrix
elements from Table 8.2 and the particle–hole matrix elements from Eq. (17.5)
and Table 16.2. The u and v amplitudes we take from Table 16.9. The elements
of the B matrix are then

B11(1+) = −2× 0.6821× 0.6826× 0.7312× 0.7308(−1.6286A0)
+ 2× 0.6821× 0.7308× 0.7312× 0.6826(0.8143A1 + 0.8143A0)

= 1.2156A0 + 0.4052A1 , (19.24)

B12(1+) = −(0.6821× 0.6826× 0.6291× 0.6307
+ 0.7312× 0.7308× 0.7773× 0.7760)(−1.1832A0)

+ (0.6821× 0.7308× 0.6291× 0.7760
+ 0.7312× 0.6826× 0.7773× 0.6307)(0.5916A1 + 0.5916A0)

= 0.8887A0 + 0.2887A1 , (19.25)

B22(1+) = −2× 0.7773× 0.7760× 0.6291× 0.6307(−1.0000A0)
+ 2× 0.7773× 0.6307× 0.6291× 0.7760(0.5000A1 + 0.5000A0)

= 0.7180A0 + 0.2393A1 . (19.26)

With A0 = A1 = 1.0MeV the correlation matrix becomes

BpnQRPA(1+) =
(
1.6208 1.1774
1.1774 0.9573

)
MeV . (19.27)

This matrix and the Amatrix (17.14) constitute the pnQRPA matrix in (19.6).

The pnQRPA eigenenergies and eigenvectors are obtained from (19.6) by
using the Ullah–Rowe diagonalization method presented in Subsect. 11.5.2.
Diagonalization of (19.27) thus gives the eigenenergies

E(1+1 ) = 5.718MeV , E(1+2 ) = 6.286MeV (19.28)

and the eigenvectors

|1+1 〉 = 0.857|1〉 − 0.171|1−1〉+ 0.558|2〉 − 0.128|2−1〉 , (19.29)

|1+2 〉 = 0.543|1〉+ 0.009|1−1〉 − 0.840|2〉+ 0.013|2−1〉 , (19.30)

where we use the notation |1−1〉 and |2−1〉, introduced in Subsect. 18.3.2, for
the Y terms.

Comparing the pnQRPA energies and wave functions (19.28)–(19.30) with
the pnQTDA results (17.15)–(17.17) we see that the first pnQRPA state lies
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lower and is more mixed than its pnQTDA counterpart. This means that
the pnQRPA state is more collective than the pnQTDA state. The mixing is
carried mainly by the X amplitudes, but additional collectivity arises from
the ground-state correlations witnessed by the sizable Y amplitudes.

Figure 19.1 shows two computed pnQRPA excitation spectra of 24Na and
the complete experimental spectrum up to 1.5MeV. The model space for
the left-hand spectrum is 0d5/2-1s1/2; the 1+ eigenvalues (19.28) are part
of this spectrum. The middle spectrum is from a full 0d-1s calculation with
A0 = 0.8MeV and A1 = 0.5MeV. In both calculations the SDI parameters
are the same for all angular momenta J and the pairing parameters are from
Table 16.5.

Comparison of the theoretical spectra of Fig. 19.1 with those of Fig. 17.1
shows that the strong compression effect present in the pnQTDA spectra has
now largely disappeared. However, the order of states remains badly incorrect.
Even the two theoretical spectra are very different, which points to the need
of a larger valence space. The theoretical description can also be improved by
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Fig. 19.1. Proton–neutron QRPA spectra of 24Na in the valence spaces shown and
the complete experimental spectrum up to 1.5MeV. The single-particle energies are
from (14.12). The SDI was used with the parameter values stated in the text
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adjusting the single-particle energies and by choosing the A0 and A1 parame-
ters independently for each J .

19.2.2 Other Examples

We take up two more examples of the pnQRPA, one in the complete 0d-1s
shell and the other one in the 0f-1p-0g9/2 major shell.

Figure 19.2 shows the excitation spectrum of 3015P15 computed in the 0d-1s
shell, together with the experimental spectrum. With the even–even refer-
ence nucleus 30

14Si16, the SDI pairing parameters are from Table 16.6. The
pnQRPA calculation was done with the SDI parameters A0 = 1.0MeV and
A1 = 0.8MeV for all J . The computed spectrum is still compressed, but
not as much as the pnQTDA spectrum in Fig. 17.2. Unlike the pnQTDA, the
pnQRPA quite well reproduces the sequence of the lowest states. The theoret-
ical description can be improved, e.g. by choosing the A0 and A1 parameters
independently for each J .

0

0.5

1

1.5

2

2.5

E
xc

ita
tio

n 
en

er
gy

 [M
eV

]

 1+  0.00

 0+  0.41

 3+  0.60

 1+  0.80
 2+  0.86

 2+  1.12

 3+  1.36
 1+  1.48
 2+  1.53
 0+  1.58
 0+  1.70
 5+  1.73
 4+  1.74
 2+  1.85
 1+  1.85
 3+  2.19

 1+  0.00

 0+  0.68
 1+  0.71

 2+  1.45

 3+  1.97

Jπ E Jπ E

pnQRPA    EXP
30
15 P15

Fig. 19.2. Proton–neutron QRPA spectrum of 30P in the 0d-1s valence space and
the complete experimental spectrum up to the 3+1 level. The single-particle energies
are from (14.12). The SDI was used with the parameters stated in the text
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Fig. 19.3. Proton–neutron QRPA spectra of 66Cu in the valence spaces shown and
the experimental spectrum. The single-particle energies are from (14.13). The SDI
was used with the parameters stated in the text. All theoretical and experimental
energy levels are shown up to 1.5MeV of excitation

Figure 19.3 shows two computed pnQRPA spectra of 6629Cu37 and the ex-
perimental spectrum. The even–even reference nucleus is 66

30Zn36. The calcu-
lations were done in the 0f-1p and the 0f-1p-0g9/2 valence spaces with the
single-particle energies (14.13) and the SDI pairing parameters of Table 16.7.
For the pnQRPA calculations the SDI parameters were A0 = 0.6MeV and
A1 = 0.4MeV for all Jπ.

For both the pnQTDA and the pnQRPA the sequence of the first 0+,
1+ and 2+ states is sensitive to the relative magnitude of the A0 and A1

strengths of the SDI. The chosen parameters give a reasonable description
of the experimental spectrum. The 0g9/2intruder state is needed to generate
negative-parity states, some of which are seen in the experimental spectrum.
Contrary to the pnQTDA spectrum of Fig. 17.3, the pnQRPA spectrum has
the negative-parity states roughly at the correct energy relative to the positive-
parity states.
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19.3 Average Particle Number in the pnQRPA

In Subsect. 17.2.3 we studied the effects of particle number fluctuation on
pnQTDA wave functions. The wave functions were found to contain mainly
admixtures of states of odd–odd nuclei next to the even–even reference nu-
cleus. The average numbers of nucleons depend on the state and are near the
nucleon numbers of the reference nucleus. In this section we extend the study
to pnQRPA wave functions.

The average number of protons in a pnQRPA state (19.1) is

Zeff = 〈ω|n̂p|ω〉 = 〈pnQRPA|Qωn̂pQ
†
ω|pnQRPA〉 . (19.31)

In analogy with (11.276) the matrix element can be written as

〈pnQRPA|Qωn̂pQ
†
ω|pnQRPA〉 = 〈pnQRPA|

[
Qω, n̂p, Q

†
ω

]
|pnQRPA〉

+ 1
2 〈pnQRPA|QωQ

†
ωn̂p + n̂pQωQ

†
ω|pnQRPA〉 . (19.32)

In the second term we make the quasiboson approximation by using the
commutation relation (11.275), whereupon the term becomes

〈pnQRPA|n̂p|pnQRPA〉 = Zact . (19.33)

This is the number of valence protons in the underlying BCS vacuum according
to (13.37) and (13.39); we assume it to be the same in the BCS and pnQRPA
vacua. The double commutator in (19.32) guarantees that the Y contributions
are properly taken into account in the final result.

The remaining task is to calculate the double-commutator term in (19.32).
Expanded according to (11.12), it can be expressed as

〈pnQRPA|
[
Qω, n̂p, Q

†
ω

]
|pnQRPA〉

= 1
2 〈pnQRPA|

([
Qω, [n̂p, Q†ω]

]
+H.c.

)
|pnQRPA〉

= 〈pnQRPA|
[
Qω, [n̂p, Q†ω]

]
|pnQRPA〉 . (19.34)

When we insert the number operator n̂p in its quasiparticle representation
(13.38) we see that the only term contributing is∑

p

ĵp(u2p − v2p)
[
a†pãp

]
00
=

∑
π

(u2p − v2p)a
†
πaπ . (19.35)

To proceed with (19.34) when Q†ω is expanded in terms of the X and Y
amplitudes, we need the commutation relations (Exercise 19.6)∑

π

(u2p − v2p)
[
a†πaπ, A

†
p′n′(JM)

]
= (u2p′ − v2p′)A

†
p′n′(JM) , (19.36)∑

π

(u2p − v2p)
[
a†πaπ, Ãp′n′(JM)

]
= −(u2p′ − v2p′)Ãp′n′(JM) . (19.37)
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When both Qω and Q†ω are expanded in (19.34) the remaining commuta-
tors are evaluated in the quasiboson approximation:

〈pnQRPA|
[
Apn(JM), A†p′n′(JM)

]
|pnQRPA〉

QBA
≈ 〈BCS|

[
Apn(JM), A†p′n′(JM)

]
|BCS〉 = δpp′δnn′ . (19.38)

Through (19.32) and (19.33) this leads to the final result

Zeff = Zact +
∑
pn

(u2p − v2p)
(
|Xω

pn|2 + |Y ω
pn|2

)
. (19.39)

The analogous result for the effective neutron number is

Neff = Nact +
∑
pn

(u2n − v2n)
(
|Xω

pn|2 + |Y ω
pn|2

)
. (19.40)

Equations (19.39) and (19.40) deviate from their pnQTDA counterparts in
(17.22). The difference lies in the |Y |2 contributions arising from the pnQRPA
ground-state correlations. Increase in these contributions causes an increase
in the |X|2 contributions to maintain the normalization (19.10). This, in turn,
can cause Zeff and Neff to deviate considerably from Zact and Nact, partic-
ularly for the large Y magnitudes occurring near the breaking point of the
pnQRPA. Contrariwise, the average particle numbers of pnQTDA excitations
are constrained by (17.23).

19.4 Electromagnetic Transitions in the pnQRPA

In this section we want to extend our discussion of the electromagnetic ob-
servables of odd–odd nuclei from the pnQTDA formalism of Sect. 17.3 to the
pnQRPA framework. It is reasonable to expect that the ground-state corre-
lations, represented by the Y amplitudes, play an important role in gamma
decay rates.

19.4.1 Transition Amplitudes

The initial and final states for electromagnetic transitions in odd–odd nuclei
are

|ωi〉 =
∑
pini

[
Xωi

piniA
†
pini(JiMi)− Y ωi

piniÃpini(JiMi)
]
|pnQRPA〉 , (19.41)

|ωf 〉 =
∑
pfnf

[
X

ωf
pfnfA

†
pfnf

(JfMf )− Y
ωf
pfnf Ãpfnf (JfMf )

]
|pnQRPA〉 , (19.42)
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where the vacuum |pnQRPA〉 is based on the BCS vacuum computed for the
even–even reference nucleus. The states (19.41) and (19.42) are similar to
QRPA states created by the operators (18.103) and (18.104). This analogy
allows us to write the transition amplitude on the pattern of the QRPA result
(18.114). Thus we have

(ωf‖Mσλ‖ωi)pnQRPA =
∑
pini
pfnf

[
X

ωf∗
pfnfX

ωi
pini + (−1)

ΔJ+λζ(λ)Y
ωf∗
pfnfY

ωi
pini

]
× (pf nf ; Jf‖Mσλ‖pi ni ; Ji) ,

(19.43)
where (pf nf ; Jf‖Mσλ‖pi ni ; Ji) is the two-quasiparticle transition matrix
element according to (15.103). The phase factor ζ(λ), given in (18.81), takes
into account the CS or BR phase convention. The following example illustrates
the use of the formalism.

19.4.2 Decay of the 2+1 State in 24Na

Let us continue the example of Subsect. 17.3.1 on the decay of the 2+1 state
of 24Na to the 1+1 and 4

+
gs states, depicted in Fig. 17.4. In Subsect. 17.3.1 the

pnQTDA wave functions were calculated in the 0d5/2-1s1/2 valence space. We
now proceed to calculate the pnQRPA wave functions in the same valence
space.

We use the same parameters as in the pnQTDA calculation of Sub-
sect. 17.3.1 and in the calculation of the 1+ states in Subsect. 19.2.1. As
a result we obtain the pnQRPA wave functions

|24Na ; 1+1 〉 = 0.857|1〉1 − 0.171|1−1〉1 + 0.558|2〉1 − 0.128|2−1〉1 , (19.44)

|24Na ; 2+1 〉 = 0.719|1〉2 − 0.093|1−1〉2 + 0.504|2〉2 − 0.085|2−1〉2
+ 0.502|3〉2 − 0.085|3−1〉2 , (19.45)

|24Na ; 4+gs〉 = 1.000|1〉4 − 0.023|1−1〉4 , (19.46)

where the 1+1 state repeats (19.29).
We first calculate the M1 transition 2+1 → 1+1 . The X and Y amplitudes

come from the wave functions (19.44) and (19.45). The two-quasiparticle ma-
trix element was computed in Subsect. 17.3.1 and is given by (17.34), (17.37)
and (17.38). Substitution into (19.43) then yields

(1+1 ‖M1‖2+1 ) = [0.857× 0.719− (−0.171)(−0.093)](−3.747− 1.495)μN/c

= −3.147μN/c . (19.47)

This gives the reduced transition probability

B(M1 ; 2+1 → 1+1 ) = 1.981 (μN/c)2 . (19.48)
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Table 6.9 with the experimental gamma energy 0.0910MeV from Fig. 17.4
gives the decay probability

T (M1 ; 24Na) = 2.656× 1010 1/s . (19.49)

Next we calculate the transition 2+1 → 4+gs. The run of the calculation
is presented in Table 19.1. The X and Y amplitudes are from (19.45) and
(19.46). The two-quasiparticle matrix elements

(pf nf ; 4‖Q2‖pi ni ; 2) ≡ Qif (19.50)

were essentially calculated in Subsect. 17.3.1. Table 17.3 gives the proton and
neutron contributions Q(1) and Q(2), which are to be added according to
(17.42). We insert the oscillator length b = 1.813 fm and the effective charges
epeff = 1.3e and eneff = 0.3e, suggested by the result (18.92).

Table 19.1. Contributions to the sum (19.43) for the 2+1 → 4+gs transition in
24Na

pini(2
+) pfnf (4

+) Xωi
pini Y ωi

pini X
ωf
pfnf Y

ωf
pfnf Qif (e fm

2) Cif (e fm
2)

0d5/20d5/2 0d5/20d5/2 0.719 −0.093 1.000 −0.023 0.4271 0.308
0d5/21s1/2 0d5/20d5/2 0.504 −0.085 1.000 −0.023 −0.1048 −0.053
1s1/20d5/2 0d5/20d5/2 0.502 −0.085 1.000 −0.023 −0.4636 −0.234
The initial and final configurations and their X and Y amplitudes are listed in
the first six columns. The two-quasiparticle transition matrix elements (15.103)
are listed in column seven and the contributions in column eight.

The sum of the contributions in Table 19.1 is 0.021 e fm2, whence

B(E2 ; 2+1 → 4+gs) =
1
5
(0.021 e fm2)2 = 8.8× 10−5 e2fm4 . (19.51)

With the gamma energy 0.5633MeV from Fig. 17.4, Table 6.8 now gives the
decay probability

T (E2 ; 24Na) = 6.1× 103 1/s . (19.52)

This is negligibly small in comparison with (19.49). Note that it is even three
orders of magnitude smaller than the pnQTDA value (17.48) that was ne-
glected in determining the 2+1 half-life (17.49). The reason for this great dif-
ference between the pnQRPA and the pnQTDA is the fragmentation of states
discussed below in the context of the M1 transition. With the E2 contribution
negligible, (19.49) gives the decay half-life

t1/2(2+1 ) =
ln 2

T (M1)
= 26 ps , (19.53)

which is remarkably close to the experimental value 35 ps in Fig. 17.4.
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On comparison with the pnQTDA result (17.49) the pnQRPA result
(19.53) is seen to be better by a factor of three. This is due to the im-
proved description of the M1 transition 2+1 → 1+1 . The pnQRPA wave func-
tions (19.44) and (19.45) are strongly fragmented, while their pnQTDA coun-
terparts (17.27) and (17.32) are 99.8% pure π0d5/2ν0d5/2 two-quasiparticle
states. The fragmentation diminishes the leading strength.

19.5 Beta-Decay Transitions in the pnQRPA Framework

In this section we discuss beta-decay transitions between states of an open-
shell odd–odd nucleus and states of the neighbouring even–even reference
nucleus. In a pnQRPA calculation the reference nucleus serves to generate
the levels of the odd–odd nucleus in question. First we discuss transitions
involving the ground state of the reference nucleus.

19.5.1 Transitions Involving the Even–Even Ground State

Consider transitions taking the initial state (19.1) of an odd–odd nucleus to
the ground state |pnQRPA〉 of the even–even reference nucleus. The decay
amplitude for β− and β+ transitions is

〈pnQRPA|β∓LM |ω〉 = 〈pnQRPA|β
∓
LMQ†ω|pnQRPA〉

= 〈pnQRPA|
[
β∓LM , Q†ω

]
|pnQRPA〉 . (19.54)

As is usual in RPA work, we have introduced the commutator to access the
Y terms of the pnQRPA phonon.

The transition density (15.4) gives the quasiparticle representation of a
β− operator as

β−LM =
∑
pn

ML(pn)
{
upvnA

†
pn(LM) + vpunÃpn(LM)

+ upun
[
a†pãn

]
LM

+ (−1)jp+jn+Lvpvn
[
a†nãp

]
LM

}
. (19.55)

For allowed beta decay, (7.73) and (7.74) give the single-particle matrix el-
ements M0(pn) = MF(pn) and M1(pn) = MGT(pn). For Kth-forbidden
unique beta decay the single-particle matrix element is M(Ku)(pn) as given
by (7.188).

The operators of allowed beta decay, 1 for Fermi and σ for Gamow–Teller
type, are Hermitian tensor operators as defined in (2.31). The operator valid
for both types was written specifically for beta-minus decay in (7.69),

β−LM = L̂−1
∑
pn

(p‖βL‖n)
[
c†pc̃n

]
LM

=
∑
pn

ML(pn)
[
c†pc̃n

]
LM

. (19.56)
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By taking the Hermitian conjugate of this and using the property (2.32) one
can show that (Exercise 19.7)(

β−LM
)† = (−1)Mβ+

L,−M , (19.57)

where

β+
LM = L̂−1

∑
np

(n‖βL‖p)
[
c†nc̃p

]
LM

=
∑
np

ML(np)
[
c†nc̃p

]
LM

. (19.58)

The tensor operator β+
L appeared in (7.77). Combining (19.57) with the con-

verse relation we have (
β∓LM

)† = (−1)Mβ±L,−M . (19.59)

The relations for allowed beta decay are the same for the CS and BR
phase conventions. This is because the operators 1 and σ have no spatial
dependence. For forbidden unique decay the symmetry relation corresponding
to (19.59) is (7.212), and it has a convention-dependent phase factor due to
spatial dependence.

We now apply the quasiboson approximation to (19.54) and find

〈pnQRPA|β−LM |ω〉
QBA
≈ 〈BCS|

[
β−LM , Q†ω

]
|BCS〉

=
∑
pn
p′n′

ML(p′n′)
{
vp′un′Xω

pn〈BCS|
[
Ãp′n′(LM), A†pn(JMω)

]
|BCS〉

− up′vn′Y ω
pn〈BCS|

[
A†p′n′(LM), Ãpn(JMω)

]
|BCS〉

}
, (19.60)

where we use the notation Mω for the z projection of J to distinguish it from
the z projection M of L. The matrix elements give Kronecker deltas so that

〈pnQRPA|β−LM |ω〉 = δLJδM,−Mω
(−1)L+M

∑
pn

ML(pn)(vpunXω
pn+upvnY

ω
pn) .

(19.61)
By the Wigner–Eckart theorem this gives the transition amplitude

(pnQRPA‖β−L‖ω) = δLJ L̂
∑
pn

ML(pn)(vpunXω
pn + upvnY

ω
pn) . (19.62)

For forbidden unique decay the single-particle matrix elements ML(pn) are
replaced according to (7.210).

To find the transition amplitude for β+ decay, we use (19.59), which gives

〈pnQRPA|β+
LM |ω〉 = (−1)M 〈pnQRPA|

(
β−L,−M

)†|ω〉
= (−1)M 〈ω|β−L,−M |pnQRPA〉∗ = (−1)M 〈ω|β

−
L,−M |pnQRPA〉 , (19.63)
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where we have made the usual assumption that matrix elements are real.
Analogous to (19.60) this becomes

〈pnQRPA|β+
LM |ω〉

QBA
≈ (−1)M 〈BCS|

[
Qω, β

−
L,−M

]
|BCS〉

=
∑
pn
p′n′

ML(p′n′)
{
up′vn′Xω

pn〈BCS|
[
Apn(JMω), A

†
p′n′(L,−M)

]
|BCS〉

− vp′un′Y ω
pn〈BCS|

[
Ã†pn(JMω), Ãp′n′(L,−M)

]
|BCS〉

}
= δLJδM,−Mω

(−1)M
∑
pn

ML(pn)(upvnXω
pn + vpunY

ω
pn) . (19.64)

The Wigner–Eckart theorem yields the reduced matrix element

(pnQRPA‖β+
L‖ω) = δLJ(−1)LL̂

∑
pn

ML(pn)(upvnXω
pn + vpunY

ω
pn) .

(19.65)
For forbidden unique decay the single-particle matrix element in the formula
is replaced according to (7.213).

For transitions in the opposite direction we use the relation (19.59). For
β− transitions it gives

〈ω|β−LM |pnQRPA〉 = (−1)M 〈ω|
(
β+
L,−M

)†|pnQRPA〉
= (−1)M 〈pnQRPA|β+

L,−M |ω〉

= δLJδMMω

∑
pn

ML(pn)(upvnXω
pn + vpunY

ω
pn) , (19.66)

where the last step came from (19.64). The reduced matrix element becomes

(ω‖β−L‖pnQRPA) = δLJ L̂
∑
pn

ML(pn)(upvnXω
pn + vpunY

ω
pn) . (19.67)

The remaining transition amplitude is obtained similarly by use of (19.61),
with the result

(ω‖β+
L‖pnQRPA) = δLJ(−1)LL̂

∑
pn

ML(pn)(vpunXω
pn + upvnY

ω
pn) .

(19.68)
We next discuss an application of the theory presented in this subsection.

19.5.2 Gamow–Teller Decay of the 1+1 Isomer in 24Al

Consider the Gamow–Teller β+ decay of the isomeric 1+ first excited state
in 24Al to the ground state of its even–even neighbour nucleus 24Mg. The
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Fig. 19.4. Gamow–Teller β+ decay of the first 1+ state of 24Al to the ground and
excited states of 24Mg. The 1+ state decays also to the 4+ ground state of 24Al by
an M3 gamma transition. The measured total half-life of this state is indicated. The
experimental energies, Q value, branchings and log ft values are given

experimental data are shown in Fig. 19.4. The 1+1 state gamma decays by an
M3 transition to the 4+ ground state of 24Al. Due to its long gamma-decay
half-life it is an isomeric state and so its beta decay can be detected.

We follow the example of Subsect. 19.4.2 with the same valence space and
parameters. Equation (19.65) is the appropriate formula for the transition
under study. The transition is of Gamow–Teller type, and so the formula
gives

(pnQRPA‖β+
GT‖1+) = −

√
3
∑
pn

MGT(pn)
(
upvnX

1+

pn + vpunY
1+

pn

)
. (19.69)

We take the single-particle matrix elements from Table 7.3 and the BCS oc-
cupation amplitudes from Table 16.9. The X and Y amplitudes are given by
(19.44). We thus have

(pnQRPA‖β+
GT‖1

+
1 )

= −
√
3
{√

14
5
[0.6821× 0.7308× 0.857 + 0.7312× 0.6826(−0.171)]

+
√
2[0.7773× 0.6307× 0.558 + 0.6291× 0.7760(−0.128)]

}
= −1.51 . (19.70)

By the standard relations of Sect. 7.2 this gives
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log ft+ = 3.71 . (19.71)

This is far too small compared with the experimental value of 6.0.
We can extend our calculation to the complete 0d-1s valence space and

use the interaction parameters quoted in Subsect. 19.2.1. We then obtain

(pnQRPA‖β+
GT‖1

+
1 )0d-1s = −1.69 . (19.72)

This leads to log+ ft = 3.62, which is even worse than (19.71). It appears that
some other effects, like higher-order configurations, come into play and cause
the decay rate to decrease drastically.

In the 1+1 wave function (19.44) the X and Y amplitudes are of opposite
sign. This is a general feature of 1+1 states in odd–odd nuclei. It provides
for the Y amplitudes to reduce the magnitude of the Gamow–Teller matrix
element, as seen in (19.70). With increasing two-body interaction strength the
Y magnitudes grow, which can bring the calculated Gamow–Teller strength
down to the observed level. This behaviour, accompanied by a lowering of
the 1+1 energy, is considered collective.

However, the collective 1+ mechanism can produce Y amplitudes compa-
rable in magnitude to the X amplitudes; this case is near in (19.44). Then the
condition (19.14) is not satisfied, which invalidates the use of the pnQRPA.
The final stage is the collapse of the pnQRPA as discussed in Subsect. 19.1.2.

19.6 The Ikeda Sum Rule for the pnQRPA

In this section we discuss beta-decay strength distributions computed by the
pnQRPA. These distributions satisfy the Ikeda sum rule for Gamow–Teller
transitions, as did the strength distributions computed by the pnQTDA in
Subsect. 17.4.3.

19.6.1 Derivation of the Sum Rule

We defined in (17.63) the total β− and β+ transition strengths S− and S+

for Gamow–Teller transitions. We then showed that they satisfy the model-
independent Ikeda sum rule (17.74),

S− − S+ = 3(N − Z) . (19.73)

Furthermore, we derived the sum rule (17.84) as a special case applicable to
the pnQTDA. Let us now derive a pnQRPA version of the sum rule.

The difference of the β− and β+ total transition strengths (17.64) is

S− − S+ =
∑
nω

∣∣(ω‖β−GT‖pnQRPA)
∣∣2 −∑

nω

∣∣(ω‖β+
GT‖pnQRPA)

∣∣2 , (19.74)
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where ω = nω, 1+. Substituting (19.68) and (19.67) into (19.74) gives

S− − S+ = 3
∑
nω

∑
pn
p′n′

MGT(pn)MGT(p′n′)

×
[
(upvnXω

pn + vpunY
ω
pn)(up′vn′Xω∗

p′n′ + vp′un′Y ω∗
p′n′)

− (vpunXω∗
pn + upvnY

ω∗
pn )(vp′un′Xω

p′n′ + up′vn′Y ω
p′n′)

]
=

∑
nω

∑
pn
p′n′

MGT(pn)MGT(p′n′)
[
upvnup′vn′(Xω

pnX
ω∗
p′n′ − Y ω∗

pn Y ω
p′n′)

− vpunvp′un′(Xω∗
pnXω

p′n′ − Y ω
pnY

ω∗
p′n′) + upvnvp′un′(Xω

pnY
ω∗
p′n′ − Y ω∗

pn Xω
p′n′)

− vpunup′vn′(Xω∗
pnY ω

p′n′ − Y ω
pnX

ω∗
p′n′)

]
. (19.75)

The completeness relations (19.11) and (19.12) simplify this to

S− − S+ = 3
∑
pn

(u2pv
2
n − v2pu

2
n)[MGT(pn)]2 = 3

∑
pn

(v2n − v2p)[MGT(pn)]2 .

(19.76)
Since the right-hand sides of (19.76) and (17.80) coincide, the right-hand side
of the pnQTDA final result (17.83) can be substituted into (19.76). The Ikeda
sum rule for the pnQRPA thus becomes

S− − S+ = 3(Nact − Zact) (pnQRPA) . (19.77)

The equation looks the same as (17.84), but the left-hand sides are calculated
differently, in the pnQRPA and pnQTDA respectively.

19.6.2 Examples of the Sum Rule

We now present a few examples to test the validity of the Ikeda sum rule
(19.77). The pnQRPA calculations were done in the 0d-1s and 1p-0f-0g9/2
valence spaces.

Table 19.2 shows the results of a pnQRPA calculation for the reference
nucleus 24

12Mg12. The valence space is the complete 0d-1s major shell. The
single-particle energies are from (14.12) and the SDI pairing parameters from
Table 16.5. The SDI interaction parameters used in the pnQRPA calculation
are A0 = 0.8MeV and A1 = 0.5MeV. The summed strengths from the table
and the numbers of active nucleons give

S− − S+ = 5.393− 5.393 = 0.000 ,

3(Nact − Zact) = 3(4− 4) = 0 , (19.78)

so indeed the sum rule is satisfied by the pnQRPA calculation.
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Table 19.2. Ikeda sum rule for a pnQRPA calculation with the reference nucleus
24Mg

n E(1+k ) (MeV)
∣∣(1+k ‖β−

GT‖pnQRPA)
∣∣2 ∣∣(1+k ‖β+

GT‖pnQRPA)
∣∣2

1 5.358 2.8663 2.8764
2 6.344 0.0673 0.0641
3 8.187 0.9309 0.9565
4 8.578 0.3954 0.4163
5 9.273 0.2727 0.2526
6 9.392 0.8569 0.8243
7 11.372 0.0034 0.0026
Sum 5.393 5.393

The second column lists the pnQRPA energies. Columns three and four give
the β− and β+ Gamow–Teller strengths and the last row gives their sums.

The reference nucleus of our second example is 30
14Si16. Figure 19.5 shows

its β− and β+ strength distributions from a pnQRPA calculation. The valence
space and single-particle energies are the same as in the 24Mg example. The
SDI pairing parameters are from Table 16.6, and the pnQRPA parameters are
A0 = 1.0MeV and A1 = 0.8MeV. The two sides of the sum rule give

10 8 6 4 2 0 2 4
0

2

4

6

8

10

12

4

8

12

E [MeV]

β+ strengthβ− strength

Fig. 19.5. Calculated β− and β+ strengths for Gamow–Teller transitions from the
pnQRPA ground state of 30Si to the 1+ pnQRPA states in 30P and 30Al
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Fig. 19.6. Calculated β− and β+ strengths for Gamow–Teller transitions from
the pnQRPA ground state of 66Zn to the 1+ pnQRPA states in 66Ga and 66Cu.
The dashed bars represent the 0f-1p calculation and the solid bars the 0f-1p-0g9/2
calculation

S− − S+ = 9.510− 3.510 = 6.000 ,

3(Nact − Zact) = 3(8− 6) = 6 , (19.79)

so the sum rule is satisfied.
As our final example, Fig. 19.6 shows the β− and β+ strength distributions

for the reference nucleus 66Zn in the valence spaces 0f-1p and 0f-1p-0g9/2. The
single-particle energies are from (14.13) and the SDI pairing parameters from
Table 16.7. The pnQRPA parameters are A0 = 0.6MeV and A1 = 0.4MeV.
For the 0f-1p calculation the two sides of the sum rule give

S− − S+ = 22.893− 4.893 = 18.000 ,

3(Nact − Zact) = 3(16− 10) = 18 . (19.80)

For the 0f-1p-0g9/2 calculation we have

S− − S+ = 21.800− 6.550 = 15.250 ,

3(Nact − Zact) = 3(16− 10) = 18 . (19.81)
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The total strengths in (19.81) do not satisfy the Ikeda sum rule. This is because
the spin–orbit partner 0g7/2 of the orbital 0g9/2 is missing from the larger
valence space. A general point was made of this at the end of Subsect. 17.4.3.

Figure 19.6 displays for both calculations a rather strong peak on the β+

side at 6–7MeV of excitation. For the larger valence space this peak is twice
as strong as for the smaller one. The additional strength in the larger space
comes from the 0g9/2 orbital. On the β− side there is a strong peak around
13MeV for both valence spaces. This peak is similar to the one at 9MeV in
Fig. 19.5. The pnQTDA displayed similar behaviour in Figs. 17.5 and 17.6.
In Subsect. 17.4.5 the strong β− peak was identified with the GTGR.

Comparison of the pnQTDA sum rule tests (17.85)–(17.88) with their
pnQRPA counterparts (19.78)–(19.81) reveals that the total β− and β+

strengths are typically 30% smaller in the pnQRPA. The reduction is caused
by the Y amplitudes acting out of phase with the X amplitudes, as discussed
at the end of Subsect. 19.5.2.

19.7 Beta-Decay Transitions Between a QRPA
and a pnQRPA State

In this section we consider β− and β+ decay of a pnQRPA state |ωi〉 in an
odd–odd nucleus to a QRPA state |ωf 〉 in a neighbouring even–even nucleus.
The even–even nucleus serves as the reference nucleus for the QRPA and
pnQRPA calculations.

19.7.1 Derivation of the Transition Amplitude

We take the beta-decaying state to be a pnQRPA state (19.41) of an odd–odd
nucleus, i.e.

|ωi〉 = Q†ωi |pnQRPA〉

=
∑
pini

[
Xωi

piniA
†
pini(JiMi)− Y ωi

piniÃpini(JiMi)
]
|pnQRPA〉 . (19.82)

The final state in the even–even reference nucleus is given by (18.1) and (18.31)
as

|ωf 〉 = Q†ωf |QRPA〉

=
∑

af≤bf

[
X

ωf
af bf

A†af bf (JfMf )− Y
ωf
af bf

Ãaf bf (JfMf )
]
|QRPA〉 . (19.83)

To proceed in the usual RPA way, we express the matrix element in terms of
a symmetrized double commutator. Analogously to (19.32) we have
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〈pnQRPA|Qωfβ
∓
LMQ†ωi |pnQRPA〉 = 〈pnQRPA|

[
Qωf , β

∓
LM , Q†ωi

]
|pnQRPA〉

+ 1
2 〈pnQRPA|QωfQ

†
ωiβ
∓
LM + β∓LMQωfQ

†
ωi |pnQRPA〉 . (19.84)

We make the quasiboson approximation, in the pattern of (18.101),[
Qωi , Q

†
ωf

] QBA
≈ 〈BCS|

[
Qωi , Q

†
ωf

]
|BCS〉 = 0 . (19.85)

The unequivocal zero results from the orthogonality of the pnQRPA initial
state and the QRPA final state. Substitution of (19.85) into the second term
of (19.84) makes the term vanish. Moreover, we make the quasiboson approx-
imation in the first term by replacing the pnQRPA vacuum with the BCS
vacuum. The matrix element in the quasiboson approximation is thus

〈nωf Jf Mf |β∓LM |nωi Ji Mi〉 = 〈BCS|
[
Qωf , β

∓
LM , Q†ωi

]
|BCS〉 . (19.86)

To process (19.86) further we can insert the phonon operators of (19.82)
and (19.83) to yield

〈nωf Jf Mf |β∓LM |nωi Ji Mi〉

=
∑
pini
af≤bf

{
X

ωf∗
af bf

Xωi
pini〈BCS|

[
Aaf bf , β

∓
LM , A†pini

]
|BCS〉

−X
ωf∗
af bf

Y ωi
pini〈BCS|

[
Aaf bf , β

∓
LM , Ãpini

]
|BCS〉

− Y
ωf∗
af bf

Xωi
pini〈BCS|

[
Ã†af bf , β

∓
LM , A†pini

]
|BCS〉

+ Y
ωf∗
af bf

Y ωi
pini〈BCS|

[
Ã†af bf , β

∓
LM , Ãpini

]
|BCS〉

}
.

(19.87)

The commutator in the second (third) term contains an excess of quasiparticle
annihilation (creation) operators, and so its expectation value vanishes. The
first and fourth terms can be handled in analogy to the particle–hole case in
Subsect. 11.6.9. A more direct alternative is to expand the double commutator
and use (19.55). Most of the terms give zero either through a|BCS〉 = 0 or
〈BCS|a† = 0, or through excess creation or annihilation operators. The result
is (Exercise 19.8)

〈BCS|
[
Aaf bf , β

∓
LM , A†pini

]
|BCS〉 = 〈BCS|Aaf bfβ

∓
LMA†pini |BCS〉 , (19.88)

〈BCS|
[
Ã†af bf , β

∓
LM , Ãpini

]
|BCS〉 = 〈BCS|Ãpiniβ

∓
LM Ã†af bf |BCS〉 . (19.89)

It is expedient to convert (19.89) into a form that describes a transition
in the same direction as (19.88). Since the matrix element (19.89) is a real
number we can take its complex conjugate to yield

〈BCS|Ãpini(JiMi)β∓LM Ã†af bf (JfMf )|BCS〉

= 〈BCS|Ãaf bf (JfMf )
(
β∓LM

)†
Ã†pini(JiMi)|BCS〉

= (−1)Jf+Mf+M+Ji+Mi〈BCS|Aaf bf (Jf ,−Mf )β±L,−MA†pini(Ji,−Mi)|BCS〉 ,
(19.90)
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where we used (19.59). Substituting (19.88) and (19.90) back into (19.87) and
applying the Wigner–Eckart theorem we find

(nωf Jf‖β∓L‖nωi Ji
)
=

∑
pini
af≤bf

[
X

ωf∗
af bf

Xωi
pini(af bf ; Jf‖β∓L‖pi ni ; Ji)

+ (−1)LY ωf∗
af bf

Y ωi
pini(af bf ; Jf‖β±L‖pi ni ; Ji)

]
.

(19.91)

The two-quasiparticle matrix elements in (19.91) are given for final states
of two quasiprotons and two quasineutrons by (15.111) and (15.113) respec-
tively. With them specified, the final result becomes

(ωf‖β∓L‖ωi) =
∑
pini
pf≤p′f

[
X

ωf∗
pfp′f

Xωi
piniM

(∓)
L (pi ni ; Ji → pf p′f ; Jf )

+ (−1)LY ωf∗
pfp′f

Y ωi
piniM

(±)
L (pi ni ; Ji → pf p′f ; Jf )

]
+

∑
pini

nf≤n′
f

[
X

ωf∗
nfn′

f
Xωi

piniM
(∓)
L (pi ni ; Ji → nf n′f ; Jf )

+ (−1)LY ωf∗
nfn′

f
Y ωi
piniM

(±)
L (pi ni ; Ji → nf n′f ; Jf )

]
,

(19.92)
This relation coincides with the pnQTDA relation (17.93) in the limit Y → 0.

For Kth-forbidden unique beta decay the Fermi (L = 0) and Gamow–
Teller (L = 1) transition matrix elements in (19.92) are to be replaced as
summarized at the end of Subsect. 15.5.2.

19.7.2 The Gamow–Teller Decay 24Al(1+1 )→ 24Mg(2+1 )

We now apply the formula (19.92) to the β+ decay of the isomeric first excited
state of 24Al. This is continuation of the example of Subsect. 19.5.2, which
dealt with the decay to the 0+ ground state. The experimental situation is
shown in Fig. 19.4.

We want to compute the transition amplitude for the decay of the isomeric
1+1 state to the 2+1 state in 24Mg. The valence space and BCS parameters
are the same as in Subsect. 19.5.2. Equation (19.44) gives the wave function
|24Na ; 1+1 〉, calculated with the pnQRPA parameters A0 = A1 = 1.0MeV.
The mirror nucleus 24Al has the same wave function, i.e.

|24Al ; 1+1 〉 = 0.857|1〉1 − 0.171|1−1〉1 + 0.558|2〉1 − 0.128|2−1〉1 (19.93)

in the basis

|1〉1 = |π0d5/2 ν0d5/2 ; 1+〉 , |2〉1 = |π1s1/2 ν1s1/2 ; 1+〉 . (19.94)
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For the QRPA calculation of the 2+1 state in 24Mg we fit the 2+1 and
2+2 energies, which gives the SDI parameters A0 = 0.30MeV and A1 =
1.71MeV. With these parameters the QRPA wave function becomes

|24Mg ; 2+1 〉 = 0.476|π1〉+ 0.178|π−11 〉+ 0.620|π2〉+ 0.236|π−12 〉
+ 0.457|ν1〉+ 0.179|ν−11 〉+ 0.596|ν2〉+ 0.236|ν−12 〉 . (19.95)

The basis states were given in (16.71) as

{|π1〉 , |π2〉 , |ν1〉 , |ν2〉} = {|(π0d5/2)2 ; 2+〉 , |π0d5/2 π1s1/2 ; 2+〉 ,
|(ν0d5/2)2 ; 2+〉 , |ν0d5/2 ν1s1/2 ; 2+〉} . (19.96)

The only non-zero contributions to the two-quasiparticle matrix elements
(15.111) and (15.113) come from the configurations where all orbitals are
0d5/2. Evaluated, the two-quasiparticle matrix elements are

M(∓)
GT

(
π0d5/2 ν0d5/2 ; 1+ → (π0d5/2)2 ; 2+

)
= −M(±)

GT

(
π0d5/2 ν0d5/2 ; 1+ → (ν0d5/2)2 ; 2+

)
= −8

√
2
5
B(∓)1 (π0d5/2 ν0d5/2) (19.97)

with B(∓)1 given by (15.106) and (15.107).
Substituting the X and Y amplitudes from (19.93) and (19.95) and the

matrix elements (19.97) with BCS amplitudes from Table 16.9 into the formula
(19.92), we obtain

(2+1 ‖β+
GT‖1

+
1 ) = 0.476× 0.857

(
− 8
√
2
5
× 0.7312× 0.7308

)
− 0.178(−0.171)

(
− 8
√
2
5
× 0.6821× 0.6826

)
+ 0.457× 0.857

(8√2
5
× 0.6821× 0.6826

)
− 0.179(−0.171)

(8√2
5
× 0.7312× 0.7308

)
= −0.076 , (19.98)

whence
log ft+ = 6.3 . (19.99)

This log ft value is in perfect agreement with the experimental value of 6.2.
No large modifications are expected when the 0d3/2 orbital is added to the
valence space since the contribution of this orbital to the 1+1 and 2+1 wave
functions is rather small.
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Q     = 2.5624 MeV
EC

7 % 9.61

17 % 9.41
+0gs

33
74As41 34

74
+0gs

32
74Ge42

βQ     = 1.3531 MeV−

Se40

−
gs2

17.78 d

Fig. 19.7. First-forbidden unique β− and β+ decay of 74As to the ground states of
74Se and 74Ge. The experimental Q values, decay branchings and log ft values are
given. Use of the phase-space factor f1u in the log ft value, as given in (7.165), is
indicated by the superscript ‘1’

19.7.3 First-Forbidden Unique Beta Decay in the 0f-1p-0g9/2 Shell

In this subsection we consider first-forbidden unique beta decay in the
0f-1p-0g9/2 valence space. The transitions are of the type 2− → 0+gs, and
we use the pnQRPA to calculate the 2− wave functions. A representative case
is depicted in Fig. 19.7.

The decay amplitudes for first-forbidden unique transitions are obtained
from (19.62) and (19.65) with the appropriate replacements (7.210) and
(7.213) for the single-particle matrix elements. Using (7.167) and (7.168) with
CS phasing we obtain

M
(−)
1u =

√
5× 2.990× 10−3 × b [fm]

∑
pn

m(1u)(pn)(vpunX
2−1
pn + upvnY

2−1
pn ) ,

(19.100)

M
(+)
1u =

√
5× 2.990× 10−3 × b [fm]

∑
pn

m(1u)(pn)(upvnX
2−1
pn + vpunY

2−1
pn ) ,

(19.101)

where the basic single-particle matrix elements m(1u)(pn) are given in (7.169)
and Table 7.6.

For the β+ decay in Fig. 19.7 the even–even reference nucleus is 74Ge and
for the β− decay it is 74Se. We construct the 2−gs wave function of

74As by
application of the pnQRPA to each reference nucleus. Thus the wave function
is generated by two pnQRPA calculations, one starting from 74Ge and the
other from 74Se. The computed 2−gs wave functions are not exactly the same
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Table 19.3. Reference nuclei for pnQRPA calculations in the 0f-1p-0g9/2 major
shell

Nucleus Zact Nact Δp (MeV) Δn (MeV) A
(p)
pair (MeV) A

(n)
pair (MeV) b (fm)

72Ge 12 20 1.483 1.825 0.39 0.35 2.099
74Ge 12 22 1.563 1.778 0.40 0.35 2.107
74Se 14 20 1.800 1.931 0.41 0.37 2.107
76Ge 12 24 1.509 1.570 0.39 0.33 2.115
76Se 14 22 1.711 1.716 0.40 0.34 2.115
78Se 14 24 1.618 1.654 0.39 0.34 2.123
82Kr 16 26 0.977 1.648 0.23 0.34 2.138
84Kr 16 28 1.424 1.615 0.30 0.35 2.145
84Sr 18 26 1.886 1.614 0.36 0.34 2.145
86Sr 18 28 1.619 1.505 0.32 0.33 2.152

Columns two and three give the numbers of active nucleons. The pairing gaps
for protons and neutrons are given in columns four and five, followed by the
SDI pairing parameters. The oscillator length b is given in the last column.

but close to each other. In this respect the pnQRPA is different in philosophy
from the nuclear shell model, where only one unique 2−gs wave function should
be used.

Table 19.3 lists the reference nuclei for our pnQRPA calculations, where
the single-particle energies were taken from (14.13). The proton and neutron
pairing gaps in the table were extracted from the separation energies according
to (16.90). The SDI pairing parameters A

(p)
pair and A

(n)
pair were fitted to the

pairing gaps. The oscillator length b is the Blomqvist–Molinari value defined
by (3.43) and (3.45).

In Tables 19.4 and 19.5 we tabulate the occupation amplitudes u and v
that are obtained from BCS calculations for the reference nuclei. The wave
functions of the 2−1 states in the odd–odd nuclei are found by diagonalizing
the pnQRPA matrix. Table 19.6 lists the X and Y amplitudes of these wave
functions. We have used the same SDI parameter values A0 = A1 = 0.4MeV
for all reference nuclei to better follow general trends in the calculated results.

We summarize the final computed results in Table 19.7. There the first two
columns indicate the decay modes with the mother and daughter nuclei, and
the third column gives the reference nuclei used in the pnQRPA calculations.
The fourth column gives computed values of the transition matrix elements,
i.e. the decay amplitudes for beta decays as given by (19.100) for the β− decays
and by (19.101) for the β+ decays. The resulting log ft values, as extracted
from (7.165), have been given in the next column. We quote the experimental
log ft values in the last column.

Table 19.7 shows that the computed β+/EC decays are always much too
fast. The experimental log ft value exceeds the theoretical one by at least
one unit. This behaviour is due to one strongly dominating two-quasiparticle



www.manaraa.com

622 19 Proton–Neutron QRPA

Table 19.4. BCS occupation amplitudes for proton single-particle orbitals con-
tributing to 2− states

Orbital π0f7/2 π0f5/2 π0g9/2

Nucleus up vp up vp up vp

72Ge −0.1048 0.9945 −0.9782 0.2078 0.9829 0.1840
74Ge −0.1130 0.9936 −0.9755 0.2199 0.9808 0.1952
74Se −0.1311 0.9914 −0.9288 0.3707 0.9455 0.3255
76Ge −0.1048 0.9945 −0.9782 0.2078 0.9829 0.1840
76Se −0.1248 0.9922 −0.9312 0.3645 0.9479 0.3186
78Se −0.1186 0.9929 −0.9337 0.3580 0.9503 0.3114
82Kr −0.0527 0.9986 −0.8934 0.4492 0.9422 0.3350
84Kr −0.0821 0.9966 −0.8856 0.4644 0.9249 0.3801
84Sr −0.1135 0.9935 −0.8000 0.6000 0.8530 0.5219
86Sr −0.0965 0.9953 −0.8024 0.5967 0.8623 0.5063

The calculations were done with the SDI pairing parameters in
Table 19.3. CS phases are assumed.

Table 19.5. BCS occupation amplitudes for neutron single-particle orbitals con-
tributing to 2− states

Orbital ν0f7/2 ν0f5/2 ν0g9/2

Nucleus un vn un vn un vn

72Ge −0.1070 0.9943 −0.7188 0.6952 0.7893 0.6140
74Ge −0.1006 0.9949 −0.6316 0.7753 0.7131 0.7011
74Se −0.1145 0.9934 −0.7188 0.6952 0.7849 0.6196
76Ge −0.0849 0.9964 −0.5350 0.8448 0.6272 0.7788
76Se −0.0973 0.9952 −0.6309 0.7758 0.7152 0.6989
78Se −0.0877 0.9961 −0.5362 0.8441 0.6253 0.7804
82Kr −0.0738 0.9973 −0.4296 0.9030 0.5150 0.8572
84Kr −0.0550 0.9985 −0.2992 0.9542 0.3659 0.9306
84Sr −0.0738 0.9973 −0.4296 0.9030 0.5150 0.8572
86Sr −0.0519 0.9986 −0.2971 0.9548 0.3684 0.9297

The calculations were done with the SDI pairing parameters in
Table 19.3. CS phases are assumed.

contribution, namely π0f5/2ν0g9/2 that produces a large X amplitude; see the
fourth column of Table 19.6. The rest of the contributions, be they X or Y
terms, are not able to cancel the dominating term.

The prediction of too fast β+ decay persists into larger valence spaces and
more realistic interactions. The general feature is that the products vpun in
front of the Y amplitudes in (19.101) are not large enough to compensate for
the upvn factors in front of theX amplitudes. It seems that multi-quasiparticle



www.manaraa.com

19.7 Beta-Decay Transitions Between a QRPA and a pnQRPA State 623

Table 19.6. pnQRPA amplitudes X and Y for 2−1 states

Config. π0f7/2 ν0g9/2 π0f5/2 ν0g9/2 π0g9/2 ν0f7/2 π0g9/2 ν0f5/2

Nucleus X Y X Y X Y X Y

72Ge 0.015 0.055 0.951 0.052 −0.041 0.012 −0.318 −0.047
74Ge 0.018 0.044 1.003 0.042 −0.035 0.009 0.020 −0.037
74Se 0.017 0.053 0.923 0.098 −0.031 0.023 −0.409 −0.091
76Ge 0.015 0.031 0.962 0.028 −0.027 0.005 0.275 −0.024
76Se 0.022 0.047 1.003 0.085 −0.030 0.017 −0.105 −0.076
78Se 0.020 0.034 0.984 0.059 −0.024 0.011 0.194 −0.050
82Kr 0.023 0.028 0.969 0.086 −0.019 0.010 0.270 −0.064
84Kr 0.022 0.017 0.921 0.044 −0.015 0.006 0.393 −0.034
84Sr 0.037 0.035 1.015 0.111 −0.011 0.018 0.037 −0.094
86Sr 0.034 0.022 0.975 0.073 −0.011 0.010 0.239 −0.058

The proton–neutron two-quasiparticle configurations are given in the first row.

Table 19.7. First-forbidden unique beta-decay transitions in the 0f-1p-0g9/2 valence
space

Transition Mode Reference M
(±)
1u log f1ut log f1ut(exp)

72As(2−1 ) → 72Ge(0+gs) β+/EC 72Ge −0.0457 8.05 9.8
74As(2−1 ) → 74Ge(0+gs) β+/EC 74Ge −0.0394 8.18 9.6
74As(2−1 ) → 74Se(0+gs) β− 74Se 0.0152 9.01 9.4
76As(2−1 ) → 76Ge(0+gs) β+/EC 76Ge −0.0300 8.42
76As(2−1 ) → 76Se(0+gs) β− 76Se 0.0107 9.31 9.7
78As(2−1 ) → 78Se(0+gs) β− 78Se 0.0067 9.73 9.7
82Br(2−1 ) → 82Kr(0+gs) β− 82Kr 0.0042 10.1 8.9
84Br(2−1 ) → 84Kr(0+gs) β− 84Kr 0.0030 10.42 9.5
84Rb(2−1 ) → 84Kr(0+gs) β+/EC 84Kr −0.0253 8.57 9.6
84Rb(2−1 ) → 84Sr(0+gs) β− 84Sr 0.0102 9.36 9.5
86Rb(2−1 ) → 86Sr(0+gs) β− 86Sr 0.0050 9.97 9.4

The third column gives the reference nucleus of the pnQRPA. The computed
transition matrix element and log ft value are given in columns four and five.
The last column lists the experimental log ft values

states are needed to reproduce the data. Deformation effects offer another
possibility to that end.

For β− decay the computed log ft values range within two units of exper-
iment. Unlike the β+ transitions they are sensitive to small changes in the 2−1
wave function and hence to the interaction parameters. The uv products in
the β− decay amplitude (19.100) make it possible for the Y terms to largely
cancel the leading X terms. In this case the ground-state correlations play an
essential role for obtaining the correct transition matrix element.
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In conclusion we make the general remark that strong cancellation effects
can show up in pnQRPA calculations of Gamow–Teller β− decay. Such cancel-
lations occur when the 1+1 state of an odd–odd nucleus decays to the ground
state of the even–even daughter nucleus. While the β− branch is sensitive
to ground-state correlations, i.e. to the interaction strength, the β+ branch
is essentially independent of them. As discussed in the following subsection,
the sensitivity of the β− branch can be exploited to constrain parameters of
model Hamiltonians.

19.7.4 Empirical Particle–Hole and Particle–Particle Forces

As noted at the end of Subsect. 17.4.5, the particle–hole parts of the pnQTDA
matrix A govern the energy of the 1+ GTGR. For the pnQRPA the same
happens with the A and B matrices, i.e. their particle–hole parts determine
the location of the GTGR. In fact, in a large number of calculations (see
e.g. [51]) this part has been multiplied by an overall scaling factor gph whose
value is fixed by fitting the experimental energy of the GTGR. This energy
can be obtained from the measured energies of the GTGR states as described
in Subsect. 17.4.5 and summarized in the empirical formula (17.90).

Also the particle–particle parts of the A and B matrices can be multi-
plied by a common scaling factor gpp. Increasing this parameter increases the
ground-state correlations and thus the magnitudes of the Y amplitudes. This
leads to cancellations in the Gamow–Teller β− decay amplitude, as discussed
in the previous subsection. The calculated log ft value is sensitive to gpp,
which allows fitting the parameter to experimental data [51].

Above we have described how to create separate phenomenological particle–
hole and particle–particle forces. In doing this we violate the Pandya relation
(17.4) whenever we choose gpp 	= gph.

Epilogue

This chapter has dealt with the pnQRPA and its applications. We found that
ground-state correlations play an important role in beta-decay transitions.

This chapter ends the book. During our long journey through various
formalisms and derivations we have learned the basic properties of nuclear
structure and nuclear transitions. Although not necessary for applications,
the derivations help grasp the essence and limitations of nuclear structure
models. They also serve as training for theoretical work.

Nuclear states owe their structure to a mean field and configuration mixing.
We have treated this mixing by all basic microscopic approaches, within the
realms of particles, holes and quasiparticles. Applications have been worked
through and discussed in detail. To be tractable, the applications were limited
to light and medium-heavy nuclei. Extension of these applications to heavy
spherical nuclei is straightforward but tedious.
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Exercises

19.1. Derive (19.3) from the general expression (18.28).

19.2. Produce the eigenenergies (19.28) by diagonalizing the supermatrix con-
sisting of the pnQTDA matrix (17.14) and the correlation matrix (19.27).

19.3. Produce the eigenvectors (19.29) and (19.30) by using the matrices of
Exercise 19.2.

19.4. Reproduce the pnQRPA spectrum of 24Na on the left in Fig. 19.1 by
using the 0d5/2-1s1/2 valence space and the SDI parameters of Subsect. 19.2.1.
Take the single-particle energies from (14.12).

19.5. Produce the pnQRPA spectrum of 30P by using the 0d5/2-1s1/2 valence
space and the SDI parameters of Table 16.6. Take the single-particle ener-
gies from (14.12). Compare with the calculated and experimental spectra of
Fig. 19.2 and comment.

19.6. Derive in detail the commutator relations (19.36) and (19.37).

19.7. Derive the relation (19.57).

19.8. Carry out the derivation of (19.88) and (19.89).

19.9. Verify the result (19.91).

19.10. Continuation of Exercises 16.16 and 17.13.
Apply the pnQRPA to 20Na with 20Ne as the reference nucleus. Use the SDI
with parameters A0 = A1 = 1.0MeV.

(a) Form the correlation matrix for the 2+ states.
(b) Diagonalize the pnQRPA matrix by taking the pnQTDA matrix from

Exercise 17.13. Find the wave function of the lowest 2+ state of 20Na.

19.11. Continuation of Exercise 19.10.
Calculate the log ft value for the β+/EC decay of the 2+ ground state of 20Na
to the first 2+ state in 20Ne. The QRPA wave function of the latter state was
calculated in Exercise 18.12. Compare your result with the result of Exercise
17.14 and with experimental data, and comment.

19.12. Continuation of Exercises 16.18 and 17.15.
Calculate the log ft values for the second-forbidden unique β+/EC decay of
the 5+ ground state of 26Al to the two lowest 2+ states in 26Mg. The QRPA
wave functions of these states were computed in Exercise 18.14. Compute a
pnQRPA wave function for the 5+ state. Use the SDI with parameters A0 =
A1 = 1.0MeV. Compute also the decay half-life of the 5+ state. Compare
with the results of Exercise 17.15 and with experimental data, and comment.
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19.13. Continuation of Exercise 19.12.
Calculate the log ft value for the β− decay of the 3+ ground state of 26Na
to the first 2+ state in 26Mg. Compare with the result of Exercise 17.16 and
with experimental data, and comment.

19.14. Continuation of Exercise 17.17.
Calculate the log ft values for the β− and β+/EC decays of the 3+ ground
states of 28Al and 28P to the first 2+ state in 28Si. For the reference nucleus
28Si use the BCS results of Table 14.1. Diagonalize the QRPA and pnQRPA
matrices in the 0d5/2-1s1/2 valence space to find the wave functions. Use the
SDI with parameters A0 = A1 = 1.0MeV. Compare with the results of Exer-
cise 17.17 and with experimental data, and comment.

19.15. Continuation of Exercise 17.18.
Consider 1+ states in 30P. Start from the reference nucleus 30Si and use the
BCS results of Table 14.1, computed in the full d-s valence space. Form the pn-
QRPA matrix in the sub-basis of Exercise 17.18. Use the SDI with parameters
A0 = A1 = 1.0MeV.

19.16. Continuation of Exercise 19.15.
Diagonalize the pnQRPA matrix to find the eigenenergies and eigenstates.
Compare with experimental data, the results of Exercise 17.19 and the com-
plete d-s shell calculation of Fig. 19.2. Comment on the results.

19.17. Continuation of Exercise 19.16.
Calculate the log ft values for the β+/EC decay of 30S to the 1+ states in
30P. Compare with the results of Exercise 17.20 and with experimental data,
and comment.

19.18. Continuation of Exercise 19.17.
Evaluate the difference S− − S+ of the total strengths for Gamow–Teller
transitions from the ground state of 30Si to the 1+ states of 30P and 30Al.
Compare with the Ikeda sum rule. Explain your observation.

19.19. Continuation of Exercise 17.22.
Consider the 1+ states in 34P and 34Cl. Start from the reference nucleus 34S
and use the SDI parameters and pnQTDA matrices of Exercise 17.22. Form
the pnQRPA matrix for the 1+ states of 34P and 34Cl in the sub-basis of
Exercise 17.22.

19.20. Continuation of Exercise 19.19.
Diagonalize the pnQRPA matrix to find the eigenenergies and eigenstates.
Use the SDI with parameters A0 = A1 = 1.0MeV. Compare with the results
of Exercise 17.22 and with experimental data, and comment.

19.21. Continuation of Exercise 19.19.
Compute the pnQRPA eigenenergies and eigenstates of the 0+ and 3+ states
in 34P and 34Cl by using the sub-basis of Exercise 17.22 and the SDI with
parameters A0 = A1 = 1.0MeV.
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19.22. Continuation of Exercises 19.20 and 19.21.
Calculate the log ft values for the beta decays
(a) 34P(1+gs)→ 34S(0+gs),
(b) 34Cl(0+gs)→ 34S(0+gs).
Compare with the results of Exercise 17.23 and with experimental data.

19.23. Continuation of Exercise 19.20.
Study the validity of the Ikeda sum rule for the Gamow–Teller transitions
from the ground state of 34S to the 1+ states in 34P and 34Cl.

19.24. Continuation of Exercises 19.20 and 19.21.
Calculate the log ft values for the beta decays
(a) 34P(1+gs)→ 34S(2+1 ),
(b) 34Cl(3+1 )→ 34S(2+1 ).
The wave function of the 2+1 state was calculated in Exercise 18.19. Compare
with the results of Exercise 17.25 and with experimental data.

19.25. Continuation of Exercises 19.20 and 19.21.
Calculate the partial half-lives of the following electromagnetic transitions in
34Cl:

(a) 1+1 → 3+1 ,
(b) 1+1 → 0+gs.
(c) Calculate also the total half-life of the 1+1 state. Use experimental gamma

energies. Compare with the results of Exercise 17.26 and with experimental
data, and comment.

19.26. Continuation of Exercises 16.27 and 17.27.
Consider the 1+ states of 38K by using 38Ar as the reference nucleus.

(a) Form the pnQRPA matrix by using the sub-basis of Exercise 17.27.
(b) Diagonalize the pnQRPA matrix to find the eigenenergies and eigenstates.

Use the SDI with parameters A0 = A1 = 1.0MeV. Compare with the
theoretical and experimental spectra in Fig. 8.8 and with the results of
Exercise 17.27. Comment on the similarities and differences.

19.27. Continuation of Exercise 19.26.
Calculate the log ft values for the β+/EC decays 38Ca(0+gs)→ 38K(1+m), m =
1, 2, 3, 4. Note the isospin symmetry (17.99). Compare with the results of
Exercise 17.28 and with experimental data by plotting the theoretical and
experimental 1+ spectra and indicating the β+/EC feeding. Comment on the
results.

19.28. Continuation of Exercise 19.27.
Evaluate the difference S−−S+ of the total strengths for transitions from the
ground state of 38Ar to the 1+ states of 38K and 38Cl. Apply the Ikeda sum
rule and comment.

19.29. Verify the relations (19.100) and (19.101).
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D function 25, 26
LS coupling scheme 21
Q value 161, 171
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electron capture) 166
ft value (see beta decay, electron

capture) 166
g factor 119, 123
jj coupling scheme 21
l-forbidden allowed beta decay (see also

beta decay) 172
m table 11, 382

Allowed beta transitions (see also beta
decay)
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173–175

in particle–hole nuclei 176–180, 182
in two-particle and two-hole nuclei
182–189, 238–240

involving two-quasiparticle states
462–467, 471–475

phase-space factors 168–170
selection rules 165

Angular momentum
coupling 6, 7, 11, 15
definition 4

orbital 55
raising and lowering operators 4, 5
total 55

Annihilation operator for
BCS quasiparticles 395
particles 64

Anticommutation of
particle operators 65
Pauli spin matrices 31, 32
quasiparticle operators 396

Anticommutator relations 311, 312
Antiparticle 160
Antisymmetry of
many-nucleon states 57
two-nucleon interaction matrix
elements 69
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Atomic mass 373, 500, 501
Average particle number 400, 401, 406,
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Axial-vector coupling constant 166
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QTDA matrix 491
single-particle orbitals 55, 394
two-body matrix elements 485, 486

Bardeen–Cooper–Schrieffer theory (see
BCS) 393

Barn 120
Barrier
centrifugal 51
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Coulomb 51
Bartlett spin-exchange force 214
BCS (Bardeen–Cooper–Schrieffer

theory)
auxiliary Hamiltonian 401
connection to electron theory 393
equations 404, 419
for Lipkin model 410–415
for single j shell 409, 410
for two-level model 414–416
gap equation 404, 419
ground state 394, 395
ground-state energy 404, 410, 412,
415

iterative solution 420–422
phase conventions 403
transformation (Bogoliubov–Valatin)
395

vacuum 396
variational problem 402, 403

Beta decay (see also allowed, forbidden)
Q value 161, 171
ft value 166, 170, 192, 198, 203
l-forbidden allowed 172, 182
classification 161, 162, 172, 173, 195,
196, 203

endpoint energy 169
Fermi function 169, 170
half-life (total) 165, 171
hindrance factor 173, 178
partial decay half-life 171
Primakoff–Rosen approximation
169

processes 161, 162
reduced transition probability 165,
192, 198

shape function 169, 192, 193, 196,
203

superallowed 172, 174, 185
transition strength 543
unfavoured allowed 172, 177

Beta vibration 589
Biedenharn–Rose phase convention for
BCS 403
electromagnetic decays 122, 123
forbidden beta decays 193, 197
pairing interaction 376
pnQTDA matrix 527
QRPA correlation matrix 564

QTDA matrix 491
single-particle wave functions 56, 66
two-body matrix elements 212

Binding energy 501
Blomqvist–Molinari formula 49
Bogoliubov–Valatin transformation

395
Bose-like excitations 309
Boson
commutator 590
ideal 590
identical 589, 590
massive vector 163, 164

Branching probability 171
Breaking point of
pnQRPA 600
QRPA 569
RPA 333, 334

Brillouin’s theorem 247
Broken pair 388, 405

Canonical transformation 396
Cartesian
coordinate system 24, 25
tensor 28

Central
(mean-field) potential 43
force 213

Centrifugal barrier 51
Charge
conservation 491, 598
effective 123, 124, 145, 276
independent interaction 504

Charge-changing particle–hole excita-
tions 100, 289

Charge-conserving particle–hole
excitations 100

Chemical potential 406, 410, 412, 421,
422, 424, 446, 447

Clebsch–Gordan coefficient (see also
Wigner 3j symbol)

definition 6
special relations 9
symmetry properties 8

Closed-shell nucleus 74, 100
Coherence 273
Collective excitations in
open-shell nuclei 372, 581, 589–591
pnQRPA 614
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QRPA 580, 581
QTDA 511–514
RPA 348–351
TDA 258, 273, 274

Commutator relations 311, 312
Comparative or reduced half-life (ft

value, see beta decay, electron
capture) 166

Complete set of commuting operators
5, 6

Completeness of
angular momentum states 6, 8, 12,
16

Clebsch–Gordan coefficients 8
Hartree–Fock wave functions 82
many-nucleon configurations 60
pnQRPA wave functions 599
pnQTDA wave functions 527
pnTDA wave functions 290
QRPA wave functions 566–568
QTDA wave functions 493
RPA wave functions 323, 324
single-particle states 56
spin- 12 spinors 56
TDA wave functions 254

Condon–Shortley phase convention for
BCS 403
electromagnetic decays 122, 123
forbidden beta decays 193, 196
pairing interaction 376
pnQTDA matrix 527
QRPA correlation matrix 564
QTDA matrix 491
single-particle wave functions 56, 66
two-body matrix elements 212

Configuration 58
Conservation of
baryon and lepton number 159
charge 159, 491, 598
parity 121, 491

Constrained variational problem 401
Contraction
definition 71, 72
for arbitrary operators 84
for BCS vacuum 397
for particle–hole vacuum 76

Contravariant
coordinates 24
spherical components of vectors 27

unit basis vectors 28
Core 88
Correlation matrix
pnQRPA 598, 602
QRPA 561–564, 571–573
RPA 317–320

Coulomb
barrier 51
energy 94, 107, 146, 551
potential of a sphere 46

Coupled
basis 6
tensor operators 32, 35

Covariant
spherical components of tensors 27
unit basis vectors 24, 28

Creation operator for
BCS quasiparticles 395
particles 64

Critical strength 333, 334, 412, 569
Current–current interaction 163

Decay
amplitude 68
energy (see Q value) 161
rate 170

Deformed nucleus 43, 508, 589
Degenerate model
RPA 333, 334, 357, 358
TDA 257, 258, 281, 282

Delta-function interaction 85, 213
Diagonalization of
Hamiltonian matrix with good isospin
227, 263, 264, 341, 342

pnQRPA matrix 602–605
pnQTDA matrix 528–532
pnTDA matrix 290–292
QRPA matrix 571–575
QTDA matrix 494, 495, 498–500
RPA matrix 337–344
TDA matrix 262–267
two-by-two matrix 223–225, 335,
336

two-hole Hamiltonian matrix 233,
235–237

two-particle Hamiltonian matrix
226–232

Woods–Saxon Hamiltonian 50, 51
Dipole moment
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magnetic 37, 38, 130
single-particle value 130, 136, 137

Dirac neutrino 160
Direct (Hartree) term 81
Dispersion equation for
RPA 331
TDA 256, 260
two-particle spectrum 390, 391

Dot product 28
Double
beta decay 160, 206
commutator 309

Doubly magic nucleus 74, 99, 150
Doubly reduced
matrix element 108
one-body transition density 108
single-particle matrix element 108

E2/M1 mixing ratio 122, 135
Effective
charge 123, 124, 145, 276
interaction 503, 508

Eigenvalue equation (see also diagonal-
ization)

Hamiltonian matrix 221–223
Hartree–Fock 83
pnQRPA 598
pnQTDA 491, 526
pnTDA 289, 290
QRPA 561
QTDA 490
RPA 316
TDA 254

Electric
dipole operator 37
multipole matrix elements 122, 124
multipole moments 128, 130
multipole operator 119–121
polarization constant 124
quadrupole moment 37, 38, 130
quadrupole operator 37, 38

Electromagnetic (gamma) transitions
and isospin selection rules 151, 152
and pnQRPA 607–610
and pnQTDA 535–539
and pnTDA 296–298
and QRPA 577–588
and QTDA 508–520
and RPA 346–362

and TDA 267–283
and two-phonon states 590, 591
classification 121, 122
E2/M1 mixing ratio 122, 135
half-life (total) 118, 120
in odd-A nuclei 455, 457, 458
in one-particle and one-hole nuclei
132–135

in particle–hole nuclei 140–148, 150
in two-particle and two-hole nuclei
137–140, 151, 152, 238, 239, 241

involving two-quasiparticle states
461, 462, 468–471, 475, 476

isoscalar 149
isovector 149
partial decay half-life 120
reduced transition probability 118,
119, 131

selection rules 121, 122
single-particle matrix elements 122,
124, 127, 128

transition operators 119, 121
transition probability 118, 120, 131
Weisskopf units 130, 131

Electron capture
Q value 161, 171
ft value 170, 192, 198, 203
phase-space factor 168, 192, 197
process 161, 162

Endpoint energy 169
Energy-weighted sum rule (EWSR)
QRPA 581–583
RPA 351–355

Equations-of-motion method (EOM)
and Hartree–Fock equations
312–314

and particle–hole RPA 314–316
and QRPA 560, 561
and QTDA 486–490
basic principles 307–310
derivation 308, 309
examples of applications 310, 311

Euler angles 25
Exchange
(Fock) term 81
forces 214

Excitations
Bose-like 309
Fermi-like 309
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Extreme collective model 348

Fermi
constant 163, 164
energy 59
function 169, 170
level (surface) 59, 74
matrix element 167
operator 190

Fermi-like excitations 309
First-forbidden beta decay (see

Forbidden beta transitions) 190
Flavour
conservation 159
oscillations 160

Fock
(exchange) term 81
space 64

Forbidden beta transitions (see also
beta decay)

and pnQRPA 611, 612, 620, 622–626
and pnQTDA 540, 552
and pnTDA 299, 300
classification 195, 203
first-forbidden 190, 192
first-forbidden unique 192–195, 299,
300, 622–626

higher-forbidden unique 195–201
in few-particle and few-hole nuclei
201, 202

in odd-A nuclei 456
involving two-quasiparticle states
464, 474

matrix elements 193, 196, 197
non-unique decays 203
operators 191
phase-space factors 191, 193, 194,
196, 198, 199

suppression factors 190, 191
Force
central 213
central with spin and isospin 214,
215

empirical 626
exchange 214
Rosenfeld 215
Serber 215

Gamma

unstable nucleus 589

vibration 589

Gamma decay (see electric, electromag-
netic, magnetic) 117

Gamow–Teller

giant resonance 550, 551, 618, 626

matrix element 167

operator 190

Gap equation

BCS 404, 419

LNBCS 436

Gaunt formula 36

Gaussian units 117–119, 130, 131

Generalized

Pandya transformation 485

particle–hole matrix elements 485,
495

seniority 393

Giant resonance

dipole 261

Gamow–Teller 550, 551, 618, 626

octupole 274

Graphical solution of

RPA dispersion equation 331

TDA dispersion equation 257, 260,
261

two-particle spectrum 390, 391

Ground state

BCS 394, 395

LNBCS 433

many-nucleon configurations 58

particle–hole 74

particle–hole RPA 324–326

pnQRPA 600

QRPA 569

rotational band 589

Ground-state correlations

particle–hole RPA 320, 321, 328,
329, 333

pnQRPA 607, 625, 626

QRPA 568, 569

Ground-state energy

BCS 404, 410, 412, 415

Hartree–Fock 81

Lipkin–Nogami BCS 433, 437, 439,
444–446, 448, 449

many-nucleon configurations 58

Gyromagnetic ratio (g factor) 119, 123
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Half-life
beta decay 165, 171
gamma decay 118, 120

Hamiltonian matrix (see eigenvalue
equation) 221

Harmonic oscillator
potential 44
radial integrals 124, 126
wave function 49, 50

Hartree
(direct) term 81
wave function 41

Hartree–Fock
and equations-of-motion method
312–314

and Wick’s theorem 78, 79
as eigenvalue problem 81, 83
equation 42, 80, 81
for delta-function interaction 85
ground-state energy 81
mean field 43
quasiparticles 75
wave function 42, 43, 82

Hartree–Fock–Bogoliubov 310, 311,
374

Hat factor 9
Heaviside step function 248, 381, 382
Heisenberg isospin-exchange force 214
Hermitian tensor operator 30, 366
Higher
pnQRPA 601
QRPA 570, 571
RPA 310, 329

Hindrance factor 173, 178
Hole
operators 74
orbitals 74
type of transitions 456, 471

Ideal boson 590
Ikeda sum rule
pnQRPA 614–618
pnQTDA 543–549

Impulse approximation 163
Interaction
central two-body 213
delta-function 213
effective 503, 508
empirical 626

general separable 216, 217
isovector and isotensor 218
multipole–multipole 216, 217
pairing-plus-quadrupole 216
realistic 212
renormalized 503
schematic 212
separable schematic (see also
separable interactions) 213

surface delta (see surface delta
interaction) 213

Internal conversion 121
Isobar 94
Isobaric analogue state 551
Isomeric state 613
Isoscalar
operator 108
transition 150–152

Isospin
and electromagnetic decay operator
149

and particle–hole nuclei 112, 113,
150

and two-particle and two-hole nuclei
109–112, 151, 152

breaking 146, 276, 278
definition 105
formalism (representation) 105
raising and lowering operators 105
representation of tensor operators
107, 108

symmetry 104, 106, 107, 504
total 106

Isospinor 105
Isovector
operator 108
transition 150–152

Iteration 42, 329, 420–422, 447, 448,
571

Koopmans’ theorem 86

Ladder operators
angular momentum 4, 26
isospin 105

Lagrange undetermined multiplier 401
Laguerre polynomials 50
Landé formula 36
Legendre polynomial 25, 213



www.manaraa.com

Index 639

Levi-Civita permutation symbol 4, 31,
105

Lifetime 118
Lipkin model 387, 388, 410–415,

440–445
Lipkin–Nogami BCS (LNBCS)
auxiliary Hamiltonian 432
chemical potential 446, 447
equations 436
gap equation 436
general characteristics 444, 445
ground state 433
ground-state energy 433, 437, 439,
444–446, 448, 449

iterative solution 447, 448
phase conventions 436

Local potential 81
Lowering operators
angular momentum 4, 5, 26
isospin 105

Magic
nucleus 87
numbers 44, 46

Magnetic
dipole moment 37, 38, 130, 136, 137
multipole matrix elements 123, 124
multipole moments 128–130
multipole operator 119–121

Majorana
particle 160
spatial-exchange force 214

Mass

atomic 373, 500, 501
nuclear 373, 501
nucleon 40
proton 119

Mean field
approximation 40, 41
Hamiltonian 40, 41
quasiparticle 405
shell model 87

Mirror nuclei 504, 505, 528, 601, 620
Mixing ratio (E2/M1) 122, 135
Model space 88
Modified surface delta interaction

(MSDI) 220, 243
Multipole

expansion of central two-body
interaction 213, 214, 216, 217

operators 26, 119, 121, 122
Multipole–multipole force 216, 217
Muon-to-electron conversion 160

Nearly magic nucleus 88
Nine-j (9j) symbol
definition 16
special relations 18, 19
symmetry properties 17

Non-energy-weighted sum rule
(NEWSR)

QTDA 515–518
TDA 269–273

Non-local potential 81
Normal ordering 70, 71, 80, 399, 400
Nuclear
magneton 119
mass 373, 501
radius 44

Nucleon mass 40
Number operator (see particle number

operator) 66
Number parity 407
Numerical tables for
BCS observables 423, 424
correlation matrix elements 320–322
electromagnetic single-particle matrix
elements 127–129

electromagnetic transition probabili-
ties 132

Gamow–Teller matrix elements 168
generalized particle–hole matrix
elements 496–498

particle–hole matrix elements
251–253

radial integrals 125
single-particle matrix elements of
forbidden unique beta decay
194, 197, 198

two-body matrix elements of SDI
220–223

Woods–Saxon energies and wave
functions 51, 52

Occupation amplitude 396, 403, 436
Occupation number representation
of BCS quasiparticles 396, 397



www.manaraa.com

640 Index

of Hartree–Fock quasiparticles 75
of one-body operators 67
of particle number operator 66
of particle operators 64
of two-body operators 69
particle–hole 74, 77
Wick’s theorem 72

Odd-A (odd-mass) nuclei 89
Odd–even effect 373, 408
Odd–odd (doubly odd) nuclei 94
One-body
operator 67
transition density 68

One-hole
density 328
nuclei 91–93

One-particle
density 326–328
nuclei 89, 90

One-quasiparticle density 570, 571,
600, 601

Open-shell nucleus 74, 372
Orthogonality of
Clebsch–Gordan coefficients 8
unit basis vectors 28

Orthonormality of
angular momentum states 4, 6
Hartree–Fock wave functions 82
many-nucleon configurations 59
oscillator functions 49
particle–hole wave functions 100
pnQRPA wave functions 599
pnQTDA wave functions 527
pnTDA wave functions 290
QRPA wave functions 565, 566
QTDA wave functions 492, 493
RPA wave functions 323
single-particle states 56
spin- 12 spinors 56
TDA wave functions 254
Woods–Saxon wave functions 48

Oscillator function
asymptotic properties 49
definition 49
orthonormality 49
recursive generation 50

Oscillator length 49
Overlap of
two-hole wave functions 114, 115

two-hole wave functions with isospin
115

two-particle wave functions 114
two-particle wave functions with
isospin 115

Pair
basis 384
creation operator 310, 486

Pairing
correlations 372
energy 372, 405
gap 372, 373, 405, 410, 412, 413, 422,
424, 502

interaction (see also pure pairing
interaction) 372

parameters 500
spectrum 376, 377

Pairing-plus-quadrupole interaction
216

Pandya transformation 249, 250, 262,
290, 485, 491, 494, 495, 526

Parity
conservation 121, 491
of a quasiparticle pair 486

Partial decay half-life
beta decay 171
gamma decay 120

Particle
orbitals 74
type of transitions 456, 471

Particle number
average 400, 401, 406, 419, 420, 433,
438, 440, 532–535, 606, 607

constraint 406, 409, 411, 419, 421,
433, 438, 440

fluctuations 407, 410, 432, 433, 532,
533, 606

operator 66, 379, 384, 401, 407, 433,
434

Particle–hole
excitations 77
interaction strength 551, 626
nuclei 99–104
operators 74
representation 74–77
vacuum 75

Particle–hole wave function
for pnTDA 296
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for RPA 314, 346
for TDA 253, 254
one-component 100

Particle–particle interaction strength
626

Pauli exclusion principle 58, 328, 571,
601

Pauli matrices
isospin 106
spin 31, 32, 34

Phonon
ideal 590
in a lattice 393
particle–hole RPA 320
QRPA 565
QTDA 492

Plane wave 85
pnQRPA
average particle number 606, 607
beta transitions between a QRPA
and a pnQRPA state 618–621

beta transitions involving even–even
ground state 610–614

breaking point 600
collective excitations 614
correlation matrix 598, 602
electromagnetic transitions 607–610
first-forbidden unique beta decay in
0f-1p-0g9/2 shell 622–626

ground state 600
Ikeda sum rule 614–618
matrix equation 598
properties of solutions 598–601
wave function 597, 598

pnQTDA
and EOM 525
average particle number 532–535
beta-decay transitions between a
QTDA and a pnQTDA state
552–554

beta-decay transitions involving
ground state 539–543

electromagnetic transitions 535–539
equation of motion 491, 526
Ikeda sum rule 543–549
matrix 491, 526–529
properties of solutions 527
wave function 527

pnTDA

beta-decay transitions 298–303
electromagnetic transitions 296–298
matrix and its diagonalization
289–292

wave function 296
Polarization constant 124
Primakoff–Rosen approximation 169
Principal quantum number 49, 55
Proton–neutron
formalism (representation) 105
QRPA (see pnQRPA) 597
QTDA (see pnQTDA) 525
TDA (see pnTDA) 289

Pure pairing interaction
definition 375, 376
seniority model 378–383
Two particles in many j shells
389–391

two-level model 383–388
two-particle spectrum 376, 377

Quadrupole moment 37, 130
Quasiboson approximation (QBA)

314, 322, 323, 325, 326, 358, 565–
568, 578, 584, 606, 607, 611, 612,
619

Quasiparticle
BCS 372, 395
energy 403, 405, 409–411, 422, 424,
426, 436, 502

excitations 405, 407
Hartree–Fock 40, 41, 75
mean field 405
representation of nuclear Hamiltonian
399, 400, 481–485

spectra 426–432
Quasiparticle random-phase approxima-

tion (QRPA)
and EOM 310, 311, 560, 561
correlation matrix 561–564, 571–573
diagonalization of QRPA matrix
573–575

electromagnetic transitions to ground
state 577–582

energy-weighted sum rule (EWSR)
581–583

equation of motion 561
gamma transitions between excited
states 584–588
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properties of solutions 564–571

vacuum 565, 569

wave function 565

Quasiparticle Tamm–Dancoff approxi-
mation (QTDA)

and EOM 310, 311, 486–490

collective states 511–514

electromagnetic transitions to ground
state 508–514

equation of motion 490

gamma transitions between excited
states 517–520

matrix 490, 494, 495, 498–500

non-energy-weighted sum rule
(NEWSR) 515–518

properties of solutions 492, 493

wave function 492

Racah symbol (W coefficient) 13

Radial

integral 48–50, 124–126, 131,
215–217, 219

oscillator function 49, 50

quantum numbers 49

Schrödinger equation 48

Woods–Saxon function 48, 51

Raising operators

angular momentum 4, 5, 26

isospin 105

Random-phase approximation (see
RPA) 314

Realistic interactions 212

Recursion relation for

Associated Laguerre polynomials 50

Clebsch–Gordan coefficients 20
radial integrals 126

Reduced

one-body transition density 68

single-particle matrix element 68
transition probability 37, 118, 119,
131, 165, 192, 198

Reduced matrix element

examples 30, 31, 34–36

for coupled tensor operators 33, 35

in coordinate space 29

in isospace 108

single-particle 68

symmetries 30

Reduced or comparative half-life (ft
value, see beta decay, electron
capture) 166

Reference nucleus 100, 426
Renormalized
interaction 503
pnQRPA (pnRQRPA) 601
RPA (RRPA) 329

Residual interaction 40, 80, 248–250,
399, 400, 481–485, 488

Restricted summation 487, 560
Rigid rotor 19
Rosenfeld force 214, 215
Rotations 23–25
RPA (random-phase approximation)
and graphical solution 331
correlation matrix 317–320
degenerate model 333, 334, 357, 358
derivation of equations of motion
314–316

diagonalization 337–344
dispersion equation 331
electromagnetic transitions 346–362
energy-weighted sum rule 351–355
extreme collective model 348
ground state 324–326
matrix equation 316
one-level model solved 334–336
properties of solutions 320, 322–324
schematic separable model 329–331,
333, 355–357

wave function 314, 346

Scalar (dot) product of
spherical tensors 32, 33, 35
two vectors 32, 36

Schematic interactions 212, 213
Schematic model
and isospin channels 258, 259
degenerate 257, 258, 281, 282, 333,
334, 357, 358

extreme collective 348
for particle–hole RPA 329–331, 333,
355–357

for particle–hole TDA 255–261,
280–283

for single j shell 409, 410, 438, 439
for two levels 383–388, 414–416,
445, 447
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for two particles in many j shells
389–391

of Lipkin 387, 388, 410–415, 440–445

of seniority 378–383

with pure pairing force 374–377

Schmidt lines 136

Schrödinger equation

A-nucleon 41

in matrix form 221–223

one-nucleon 41, 54

radial 48

SDI (see surface delta interaction) 213

Second quantization (see occupation
number representation) 64

Selection rules for

beta-decay transitions 165, 196, 203

electromagnetic transitions 121, 122

Self-conjugate nucleus 276, 530

Self-consistent

mean field 43

RPA (SCRPA) 329

Self-energy 406, 410, 412, 421, 422,
424, 426, 434, 435, 439, 440, 442,
448

Semi-magic nucleus 88

Seniority model

comparison with BCS 410

comparison with LNBCS 439

definition of seniority 379

for 0f7/2 shell 382, 383

spectra 379–382

Separable interactions 213–217, 255,
329, 330

Separation energy 86, 500, 502

Serber force 215

Shape function (see beta decay) 169

Similarity transformation 25, 337–339

Single-particle

energy 54

estimate (Weisskopf unit) 130, 131

Hamiltonian 41, 46

matrix element 68

wave function 55, 66

Six-j (6j) symbol

definition 12

explicit expressions 14, 15

special relations 14

symmetry properties 13

Slater determinant 42, 57, 59, 60, 246,
247

Spherical
component 27, 28
harmonic 25, 27, 36, 55, 56, 119, 121,
154, 213

nucleus 43
tensor operator 26

spin- 12 eigenspinor (see also isospinor)
56

Spin–orbit
interaction 45–47, 62
partners 54, 547

Spurious centre-of-mass motion 145,
276, 575–577

Standard model (of electroweak
interactions) 159, 160

Streched state 4, 20
Sum rule
energy-weighted (EWSR) 351–355,
581–583

Ikeda 543–549, 614–618
non-energy-weighted (NEWSR)
269–273, 515–518

Superallowed beta decay (see also beta
decay) 172

Superfluid 372
Surface delta interaction
definition 213, 214
modified (MSDI) 220, 243
two-body matrix elements 217–220

Symmetries of
beta-decay operators 202, 611
beta-decay single-particle matrix
elements 167, 193, 197

electromagnetic single-particle matrix
elements 124

two-nucleon interaction matrix
elements 69, 211, 212, 417

Tamm–Dancoff approximation (TDA)
and graphical solution 260, 261
and particle–hole matrix elements
248–252

degenerate model 257, 258, 281, 282
diagonalization of TDA matrix
262–267

electromagnetic transitions 267–283
matrix equation 254
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non-energy-weighted sum rule
(NEWSR) 269–273

properties of solutions 253, 254
schematic model with isospin 258,
259

schematic separable model 255–258,
280–283

separable model with SDI 259–261
wave function 253, 254

Tensor
Cartesian 24
operator 26
product 32
spherical 26

Thouless theorem 325, 569
Three-j (3j) symbol
definition 9
special relations 10, 11
symmetry properties 10

Time-reversal operator 403
Transition
amplitude 68
probability 118–120, 131, 165, 170,
171

strength 515, 543
strength distribution 548–550,
615–617

Triangular condition 7
Triple-barred matrix element 108
Two-body operator 69
Two-hole nuclei
and beta-decay transitions 185, 189,
238, 239

and electromagnetic transitions 137,
139, 238, 239

eigenvalue problem 233, 235–237
isospin selection rules 151
matrix elements of Hamiltonian
233, 235

wave function 97, 226, 227
wave function with isospin 109–112

Two-level model
application 388
BCS solution of 414–416
LNBCS solution of 445, 447
matrix elements 385–388
pair basis 383–385

Two-nucleon interaction matrix element
antisymmetrized 69, 73

coupled 208–211
for MSDI 220
for SDI 217–220
relation to pairing interaction 376
relations between isospin and
proton–neutron 211

symmetries 69, 211, 212, 417
uncoupled 69
with good isospin 210, 211

Two-particle nuclei
and beta-decay transitions 182–189,
238–240

and electromagnetic transitions
137–141, 238–241

eigenvalue problem 221–223,
226–232

isospin selection rules 151
matrix elements of Hamiltonian
225, 226

wave function 93, 226, 227
wave function with isospin 109–112

Two-phonon states 589–591
Two-quasiparticle excitation 372, 405,

453, 469, 470

Ullah–Rowe diagonalization method
337–344

Uncoupled
basis 6
two-nucleon interaction matrix
element 69

Unfavoured allowed beta decay (see also
beta decay) 172

Unit basis vectors 24, 28
Unitarity of 6j symbols 14
Unoccupation amplitude 396, 403, 436

Vacuum
BCS 396
Lipkin–Nogami BCS 433
particle 65
particle–hole (Hartree–Fock) 74, 75
particle–hole RPA 324, 325
pnQRPA 598
QRPA 565

Valence space 88
Variational problem
and particle–hole RPA 315
and QRPA 560
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BCS 401–403
for equations-of-motion method
308–311

for particle–hole TDA 245–247
for QTDA 487
Hartree–Fock 42, 312–314
Lipkin–Nogami BCS 435

Vector (cross) product of
spherical tensors 33
two vectors 32

Vector coupling coefficients (see Wigner
nj symbols) 11

Vector coupling constant 166
Vibrational (collective) states in
closed-shell nuclei 273, 274, 350
open-shell nuclei 372, 511–514, 580,
581, 589–591

Weak interaction
coupling constant 163, 164
currents 163, 164, 166
vertex 163

Weisskopf single-particle estimate (unit)
130, 131

Wick’s theorem 72, 78
Wigner
3j symbol and properties 9–11
6j symbol and properties 11–15
9j symbol and properties 15–19
D function 25, 26

Wigner–Eckart theorem 29
Woods–Saxon
Hamiltonian 46, 47, 50
potential 44
wave functions 47, 48, 51
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